当前位置:文档之家› 工程力学实验教案

工程力学实验教案

工程力学实验教案
工程力学实验教案

第1章 工程力学试验的任务和程序

§1-1 基本任务

1、测定材料的力学行为。(如测定σs、σb、E、υ);

2、孕育理论和验证理论(如:胡克定律、泊松关系);

3、了解结构的力学特性—应力特性和变形形态(飞机的整体特性,大型结构的选型和检测)。

§1-2 基本程序

第2章 试验的基本环节 §2-1 实验技术标准

§2-4 试样

试验分为两类:

1、实物试验:一般规模生产的试验(如飞机的整体性能)及大型结构的监测等。

2、模型试验:模型试验又分为实物模型试验和标准试样试验。

实物模型试验主要用于大型结构的可行性设计(大坝、桥梁、核反应堆)。 标准试样试验用以了解材料特性。标准试样依据相关的国家标准制备。 试验原则:可小不大,可模型不实物。

§2-5 测试与记录

①每台设备应有专人负责。

②测试前应检查、标定仪器设备。 ③记录试验现象,如有异常及时处理。

④详尽记录试验数据,包括试验条件、试验方案、试验现象、试验数据。 ⑤试验人员及审核人签字。

§2-6 数值修约规则

一、修约的表达方式

1、指定修约位数的表示方法

如:保留三位有效数字。保留两位小数。 2、指定修约间隔的表示方法

如:修约间隔为0.02。其含义是保留到小数点后两位且是0.02的整数倍。

二、数值修约规则

口诀: 四舍六入五考虑, 五后非零则进一, 五后皆零看奇偶, 五前为偶则舍去, 五前为奇则进一。

例1:将下列数据修约到三位有效数据。

3.426, 5244, 1.14502, 21.450, 21.150

修约后: 3.43, 5.24×103, 1.15, 21.4, 21.2 例2:将数据12.63按0.5单位修约。 修约后数据为12.5。

12.63 25.26 25.0

12.5

×2÷2 按个位修约注意事项:

①对负数,应去绝对值修约后冠以负号

②不得连续修约

③修约情况可用修约值后的(+)、(-)表示,(+)表示实际值大,(-)表示实际值小,不标表示与实际值相同。

三、有效数字运算法则

原则:先修约后运算

1、加减法:修约时,应按各数中末位最高者修约。

例3:求21.01,7.341,0.786的和。

解:应为 21.01+7.34+0.79=29.14

2、乘除法:修约时,按各数中有效数字最少者修约。

例4:求21.01,7.34,0.786的积。

解:应为 21.0×7.34×0.786=121

第3章 电阻应变计

§3-1 变形计概述

一、应变及其测量

1、应变的定义

设位移函数 u=u(x ,y) v=v(x ,y),

x

v +

C

x

y

x u x ε?=

? y v y ε?=? v u x y

γ??=+??

若线段Δx 的变形为Δu,则

x u

x εΔ=

Δ 称为Δx 上的平均线应变,而

0lim

x x u x

εΔ→Δ=Δ

称为一点处的线应变。当Δx 很小时,可用平均线应变代替一点处的线应变。

2、线应变测量

应变计测量——直接测量标距段内的应变 引伸计测量——直接测量标距段内的变形

3、测量精度

平均应变

x

l x

dx l εε=∫

只有当应变函数为二次函数时,才会产生测量误差,其误差的大小与应变梯度和应变计标距有关。

二、变形计的基本特征

变形计通指应变计和引伸计。 1、标距:指测量所使用的长度。

引伸计:10~200㎜ 应变计: 0.2~200㎜

2、灵敏度:指变形计对被测变形量的感应能力,是读数与被测量的商。

3、量程:指被测量值的上、下限之差。

4:精确度:指测量结果与真值的符合程度 。用示值误差、示值变动性和示值进回程差衡量。

三、变形计的类型

机械引伸计

光学引伸计

电学引伸计

引伸计

§3-2 电阻应变计的工作原理和构造

一、金属丝的电阻应变效应

金属丝的电阻 L R A

ρ= 用对数形式表示,并微分得

dR d dL dA

R L A

ρρ=+? 式中 dL

L ε= 对圆截面 22dA dD A D

νε==? 所以

(12)dR d R ρνερ

=++ 则 (12)S dR R

d K ρρ

νε

ε

=

=

++

称为金属丝的应变灵敏系数。

有些金属丝在一定的变形范围内,电阻变化率与其应变之间成线性关系(如Cu ,Cu-Cr ,Cu-Ni ,Pt ),因此常用这些材料作为应变计材料。

二、应变计的构造

敏感栅:合金丝(箔)制成。将被测构件表面应变转换成电阻变化。

基 底:将敏感栅定位并保证敏感栅与构件之间的绝缘电阻。 覆盖层:保护敏感栅。

粘结剂:将敏感栅固结在基底和覆盖层之间。

引出线:连接敏感栅与测量导线。

§3-3 应变计的类型及适用性

一、敏感栅

1、材料

要求:①灵敏系数K s大,且在较大范围内保持不变。

②电阻率高。

③电阻温度系数(温度每变化1度的电阻变化率)小且稳定。

④弹性极限高于被测构件弹性极限。

⑤易于加工成丝或箔。

常温应变计性能

名称成分灵敏系数

电阻率

(?㎜2/m)

电阻温度

系数

(10-6/

0c)

适用性

康铜Cu

Ni

55%

45%

1.9~

2.1 0.40~0.50±20

静态、大应变测量

(在很大范围K s值不

变)

镍铬合

金Ni

Cr

80%

20%

2.1~2.3 1.0~1.1 110~130 动态、小应变

卡玛合

金Ni

Cr

Al

Fe

74%

20%

3%

3%

2.4~2.5 1.24~1.42±20

中、高温应变测量

(理想材料,但加工复

杂,不易与铜丝焊接)

铂钨合

金Pt

W

92%

8%

高温应变测量

恒弹合

金Ni

Cr

Mo

Fe

36%

8%

0.5%

55.5%

动态应变测量

2、结构

(a )加工工艺

丝绕式:工艺简单,造价低廉。但横向效应大。使用温度一般小于1800。 短接式:横向效应小,但疲劳寿命短。

箔 式:易于加工,横向效应极小,附着性好,散热性好,蠕变及机械滞后小,疲劳寿命长。

图3-9 丝绕式应变计 图3-10 短接式应变计

(b )栅数

单栅:用于单向应力状态点 双栅(直角):用于主应力方向已知的二向应力状态点

三栅(450):用于主应力方向大略可知的二向应力状态点

三栅(等角):用于主应力方向完全未知的二向应力状态点

四栅(450):用于主应力方向未知的二向应力状态点

(c)栅长

小应变计:L<2㎜,适用于均质材料,应力梯度大的区域。

大应变计:L>30㎜,适用于非均质材料,要求L≥4d(d为骨料直径)

普通应变基:2≤L≤30㎜,使用于普通应变测量

二、基底

基底材料的要求:

①厚度小,强度高,可挠性好。

②与粘结剂的粘合能力强。

③抗潮湿,绝缘强度高。

④热稳定性好。

⑤无机械滞后。

⑥稍透明,便于观察粘贴情况。

常用基底材料:

纸基:价格便宜,易粘贴。但耐湿、耐热、耐久性差。主要用于常温应变测量。

胶 基:耐湿及耐久性良好,抗腐蚀和绝缘性能高,耐热性好。适应的温度范围广。

纤维基:其耐热、耐湿、绝缘性能都很好,但不够柔软。可用于中、高温应变测量。

金属基:

三、使用温度

常温应变计:-300~600

中温应变计:600~3500

高温应变计:高于3500

低温应变计:低于-300

四、特殊用途

大应变量应变计:

应力计:

裂纹扩展应变计:

疲劳寿命应变计:

温度应变计:

§3-4 应变计的工作特性

应变片的性能优劣直接影响应变测量的精度,因此对其性能提出各种要求,其性能主要用八项指标表征。

一、灵敏系数

1、定义

单向应力状态 ,将应变计轴向沿应力方向粘贴,此时

dR R

K ε

=

称为应变计的灵敏系数 2、灵敏系数的测定

①装置 :纯弯梁如图所示

②εx 和dR/R 的确定

几何关系

θ

f

l

l

R

R 2

(1cos )2

f R R θθ=?=?

根据材料力学

2222x h h h h f

R l l l

θεθ??=

=== 由应变仪测定

d R

K R

εΔ=?仪 ③K 值的确定

抽样法,抽样率为1%(最少不少于6片),

1

1n

i i K K n ==∑

100%δ=

二、横向效应系数

1、定义

应变计轴向(x 向)的丝栅主要感受应变计轴线方向的应变,

应变计横向(y 向)的丝栅主要感受垂直于应变计轴线方向的应变。 所以

(1)

x x y x y

y

x x x

R R R K K R R R K H y εεεεεΔΔΔ????

=+=?+????????=?+??

式中K x 为应变计轴向灵敏系数,K y 为应变计横向灵敏系数。

y x

K H K =

称为应变计的横向效应系数。 2、横向效应系数的测定

x 方向,横向为y 1x x

R R K R R εΔΔ????

==?

??????? 2y y

R R K R R εΔΔ????==???????? 图3-15测定横向效应系数的试样

又 11

d R K R εΔ??

=?

???仪

22

d R K R εΔ??=????仪 所以 2

1

()()y y d x

x

d K R R H K R R εεΔ=

=

=

Δ 横向效应系数也用抽样法测定。

三、电阻值

常用120Ω,还有60Ω、350Ω、600Ω、1000Ω。

四、机械滞后

机械滞后:在恒定温度下,应变计在加卸载过程中的指示应变关系曲线不重合现象,称为应变计的机械滞后。

机械滞后量:以同一真实应变下,应变计在加载和卸载过程中指示应变之差的最大值Z j 表示。

减小机械滞后措施:

⑴ 采用高质量的应变计; ⑵ 固化完全;

⑶ 在正式测量前,预先加、卸载3~5次。

五、绝缘电阻

粘贴后的应变计引出线与被测构件之间的电阻值。一般要求在100M Ω以上并保持稳定。

六、应变极限

指应变计所能测量的最大应变值。在恒定温度下,当应变片的指示应变与构件实际应变的相对误差达到某规定值(一般为10%)时,此时的构件实际应变即为该应变计的应变极限。

七、零点飘移和蠕变

零漂:在温度恒定,无机械应变作用时,指示应变随时间变化的现象。

蠕变:温度不变时,在某一恒定的机械应变(一般为1000με)作用下,指示应变随时间变化的现象称为。

八、疲劳寿命

应变计在恒定幅值的交变应力作用下,连续工作直至疲劳损坏的循环次数称为应变计的疲劳寿命。

§3-5 应变计的粘贴技术和质量检查 主要步骤:

质量要求:

①粘贴位置、方向准确。

②粘贴缝内务气泡、孔隙。

③应变计阻值无明显变化。

④引出线与构件间的绝缘电阻大于100MΩ。

第4章 电阻应变仪

§4-1 概述

电阻变化率与应变计灵敏系数及测点应变成正比。在线弹性范围,ε很小,故ΔR/R很小。(如低碳钢σp=200MPa,E=206GPa,若K=2,R=120?,则ΔR/R=1.94×10-3)ε ΔR/R ΔU 放大显示或记录

一、电阻应变仪种类

静态电阻应变仪:用于静态应变测量。手动平衡和切换的多点静态应变测量。现今多为直读式。

静动态电阻应变仪:以测量静态应变为主,并能兼做频率在200Hz以下的单点动态应变测量。

动态电阻应变仪:用于测量频率在10KHz以下的动态应变。一般做成多通道的,即可同时测量数个动态应变信号。

超动态电阻应变仪:主要用于爆炸、高速冲击等的瞬态应变测量,其测量频率可高达几千至几兆赫。

二、应变仪的基本组成

测量电路:将应变计电阻变化转换成电压变化。(分为电桥电路和电位计式电路)电源电路:给测量电路和放大器提供电源。

放大器:将电压信号放大并输送给显示器或输出电路。

输出电路:输出信号。

§4-2测量电路

一、直流电桥

1、直流电桥的工作原理

①电桥平衡条件

R 1、R 2、R 3、R 4为桥臂电阻,B 、D 端接放大器。依据欧姆定理和克希霍夫定理可知

A

AC 图4-3 直流电桥

AC U R R R R R R U ????????+?+=433211BD

()()

AC 43214

231BD

U R R R R R R R R U ++?= 0BD =U 称为电桥平衡

电桥平衡条件:R 1 R 3= R 2R 4结论:(a) 若R 1=R 2,R 3=R 4,则电桥平衡

(b) 若R 1=R 2=R 3=R 4,则电桥平衡 ②桥臂阻值变化时的电压输出

各桥臂阻值变化分别为ΔR 1、ΔR 2、ΔR 3、ΔR 4,则

AC BD U R R R R R R R R R R R R R R R R U )

)(()

)(())((4433221144223311Δ++Δ+Δ++Δ+Δ+Δ+?Δ+Δ+=

若R 1=R 2=R 3=R 4,并忽略高阶微量。则

1

4144332211AC BD

2114?=???

?

????Δ+????????Δ?Δ+Δ?Δ=∑i i

i

R R R R R R R R R R U U 忽略非线性项,可取

????????Δ?Δ+Δ?Δ=′≈4433221

1AC

BD 4

R R R R R R R R U U U BD

其相对误差

∑=Δ=?′=4121i i

i BD BD BD R R U U U e

结论:①若相邻桥臂阻值变化异号,可减少误差,增大输出电压。

②若应变计灵敏系数为K ,则

)(4

4321AC

BD εεεε?+?=

K U U

∑==

4

1

2

i i

K e ε

2、直流电桥的平衡调节电路

桥臂电阻包括应变计电阻、测量导线电阻、接触电阻,在测量桥路中通常初始桥路不平衡。

电桥中增加固定电阻R 5和电位器R W ,电阻R 5在电位器上滑移,可改变AD 及DC 间的电阻比,从而使桥路达到平衡。 3、电桥读数方法

目前的应变仪均采用直读法。

d

AC

BD

K U U K εεεεε仪==?+?4

)(4321 )(4321εεεεε?+?=

K K

d 图4-4 电阻预调平衡装置

A

AC

二、交流电桥(选讲)

1、电桥平衡条件

一般情况下,在交流电线路中,除有电阻外,还有容抗和感抗存在,所以各桥臂电阻用阻抗Z 1、Z 2、Z 3、Z 4来代替。

(a )

(b )

图4-7 交流电桥

A

()()AC

43214

231BD

U

Z Z Z Z Z Z Z Z U ++?= 电桥平衡,即

4231Z Z Z Z =

若导线间的分布电容用等效集中电容表示,则半桥连接时的电桥平衡条件为

2

24

2113111R C j R R R C j R R ωω+=

+

A

整理上式,并使等式两边实部、虚部分别相等,得

?

??

==14234231C R C R R R R R

可见,欲使交流电桥平衡,需同时满足电阻平衡和电容平衡两个条件。 2、交流电桥的平衡调节

交流电桥的平衡不仅与电阻分量有关,而且与电容分量有关,因此,在电桥线路中,除设置电阻预调平衡装置外,还设置电容预调平衡装置,实际应用时,通常要反复调节电阻平衡和电容平衡,直到电桥平衡。 3、输出电压

交流电桥的电容平衡时,若电源频率和电容都比较小,输出电压可以用直流公式表示。

§4-3 静态电阻应变仪

CML-1L 型应变&力综合测试仪能是静态电阻应变仪和测力仪的组合,可以同时进行静态电阻应变测量和静态测力。

一、结构及面板说明

CML-1L 型应变&力综合测试仪有16个测量通道,共分两排,可连接16个电桥。每一通道都有A 、B 、B 1、C 、D 五个接线头(其中B 1用于1/4桥进行公共补偿测量,其余四个接线头相当于电桥的四个结点),用于连接应变计。另每排有一个公共补偿端子,其主要用于单臂(即1/4桥)及半桥测量。

二、桥路连接方式

1、全桥连接

2、半桥连接

3、单臂工作半桥

4、混合连接

温度

三、操作说明

1、传感器初始值清零

按“SHIFT/NEXT”键,再按“测力/标定” 键,对传感器初始值清零。

2、设定传感器输出单位

①按“测力/标定”键,测力显示进入测力标定界面,表头显示L。

②用数字1(t)、2(kN)、3(kg)、4(N)选择单位,相应指示灯亮。

③按“SHIFT/NEXT”键保存设置。

④ 按“K(S)/测量”键,返回测量界面。

3、应变仪灵敏系数K仪修正

①在测量界面下,按 “SHIFT/NEXT”键,再按“K(S)/测量”键,应变显示进入K 值设定界面。

②按数字键(或增减键)对当前K值进行修改。

③按“K(A)/巡检”键,仪器所有通道的K值被修改为与当前通道K值相同。

④按“K(S)/测量”键,返回测量界面。

4、应变仪各通道调零

①按“总清/清零”键,当前通道自动调零。

工程力学教案

第一章静力学基础 力学包括静力学,动力学,运动学三部分,静力学主要研究物体在力系作用下的平衡 规律,静力学主要讨论以下问题: 1.物体的受力分析; 2.力系的等效.与简化; 3. 力系的平衡问题。 第1讲§ 1 - 1静力学的基本概念§1-2静力学公理 【目的与要求】 1 、使学生对静力学基本概念有清晰的理解,并掌握静力学公理及应用范围。 2、会利用静力学静力学公理解决实际问题。 【重点、难点】 1、力、刚体、平衡等概念; 2、正确理解静力学公理。 一、静力学的基本概念 1、力和力系的概念 一)力的概念 1)力的定义:力是物体间的相互作用,这种作用使物体运动状态或形状发生改变。 (举例理解相互作用) 2)力的效应: ○1外效应(运动效应):使物体的运动状态发生变化。(举例) ○2内效应(变形效应):使物体的形状发生变化。(举例) 3)力的三要素:大小、方向、作用点。 力是定位矢量 4)力的表示: ○1图示○2符号:字母+箭头如:F 二)力系的概念 1)定义:作用在物体上的一组力。(举例) 2)力系的分类

○ 1按力的的作用线现在空间分布的形式: A 汇交力系 b 平行力系 c 一般力系 ○ 2按力的的作用线是否在同一平面内 A 平面力系 B 空间力系 3)等效力系与合力 A 等效力系 ——两个不同力系,对同一物体产生相同的外效应,则称之 B 合力——若一个力与一个力系等效,则这个力称为合力 2.刚体的概念: 1)定义:在力的作用下保持其大小和形状不发生变化。 2)理解:刚体为一力学模型。 3.平衡的概念: 1)平衡——物体相对惯性参考系(如地面)静止或作匀速直线运动. 2)平衡力系——作用在刚体上使物体处于平衡状态的力系。 3平衡条件——平衡力系应满足的条件。 二.静力学公里 公理一:二力平衡公里 作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相等,方向相反,且 作用在同一直线上。 使刚体平衡的充分必要条件 二力构件:在两个力作用下处于平衡的物体。 公理二加减平衡力系原理 在已知力系上加上或减去任意的平衡力系,并不改变厡力系对刚体的作用。 推理1 力的可传性 作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。 作用在刚体上的力是滑动矢量,力的三要素为大小、方向和作用线. 12 F F = -

工程力学实验指导书(建环)

工程力学实验指导书(建环、给排水、包装工程) 2016年 9月

目录 实验一金属材料的拉伸实验 (2) 实验二金属材料的压缩实验 (5) 实验三弯曲正应力电测实验 (8)

实验一金属材料的拉伸实验 一、实验目的和要求 1、 观察低碳钢和铸铁在拉伸过程中的力与变形的关系。 2、测定低碳钢拉伸时的屈服极限s σ;强度极限b σ,伸长率δ和截面收缩率φ 3、测定铸铁的强度极限b σ。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸时的力学性质。 5、了解CMT 微机控制电子万能实验机的构造原理和使用方法。 二、实验装置和原理 实验仪器设备: CMT 微机控制电子万能实验机、游标卡尺、拉伸试件。 试件制备: 实验采用的圆截面短比例试件按国家标准(GB/T 228-2002)制成,如图1-1所示。这样可以避免因试件尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:d 0为试件直径,L 0为试件的标距,并且短比例试件要求L 0=5d 0。 图1-1 实验原理: 试件夹持在夹具上,点击试件保护键,消除夹持力,调节拉力作用线,使之能通过试件轴线,实现试件两端的轴向拉伸。 试件在开始拉伸之前,设置好保护限位圈,微机控制系统首先进入POWERTEST3.0界面。试件在拉伸过程中,POWERTEST3.0软件自动描绘出一条力与变形的关系曲线如图1—2,低碳钢在拉伸到屈服强度时,取下引伸计,试件继续拉伸,直至试件被拉断。 低碳钢试件的拉伸曲线(图1—2a)分为四个阶段―弹性、屈服、强化、颈缩四个阶段。 铸铁试件的拉伸曲线(图1—2b)比较简单,既没有明显的直线段,也没有屈服阶段,变形很小时试件就突然断裂,断口与横截面重合,断口形貌粗糙。抗拉强度σb 较低,无明显塑性变形。与电子万能实验机联机的微型电子计算机自动给出低碳钢试件的屈服载荷Fs 。、最大载荷Fb 和铸铁试件的最大载荷Fb 。

兰大网院工程力学测试题及答案

1.梁横截面上的内力,通常()。 ?只有剪力FS ?只有弯矩M ?既有剪力FS,又有弯矩M ?只有轴力FN 本题分值:??4.0? 用户未作答? 标准答案:??既有剪力FS,又有弯矩M? 2.下列正确的说法是。() ?工程力学中,将物体抽象为刚体 ?工程力学中,将物体抽象为变形体 ?工程力学中,研究外效应时,将物体抽象为刚体,而研究内效应时,则抽象为变形体 ?以上说法都不正确。 本题分值:??4.0? 用户未作答? 标准答案:??以上说法都不正确。? 3.单元体各个面上共有9个应力分量。其中,独立的应力分量有()个。 ?9 ?3 ?6 ?4 本题分值:??4.0? 用户未作答? 标准答案:??6? 4.静不定系统中,未知力的数目达4个,所能列出的静力方程有3个,则系统静不定次数是()。?1次 ?3次 ?4次 ?12次 本题分值:??4.0? 用户未作答? 标准答案:??1次? 5.任意图形,若对某一对正交坐标轴的惯性积为零,则这一对坐标轴一定是该图形的()。 ?形心轴 ?主惯性轴

本题分值:??4.0? 用户未作答? 标准答案:??主惯性轴? 6.空间力系作用下的止推轴承共有()约束力。 ?二个 ?三个 ?四个 ?六个 本题分值:??4.0? 用户未作答? 标准答案:??三个? 7.若在强度计算和稳定性计算中取相同的安全系数,则在下列说法中,()是正确的。?满足强度条件的压杆一定满足稳定性条件 ?满足稳定性条件的压杆一定满足强度条件 ?满足稳定性条件的压杆不一定满足强度条件 ?不满足稳定性条件的压杆不一定满足强度条件 本题分值:??4.0? 用户未作答? 标准答案:??满足稳定性条件的压杆一定满足强度条件? 8.有集中力偶作用的梁,集中力偶作用处()。 ?剪力发生突变 ?弯矩发生突变 ?剪力、弯矩不受影响 ?都不对 本题分值:??4.0? 用户未作答? 标准答案:??弯矩发生突变? 9.下列说法正确的是() ?工程力学中我们把所有的物体都抽象化为变形体 ?在工程力学中我们把所有的物体都抽象化为刚体 ?稳定性是指结构或构件保持原有平衡状态 ?工程力学是在塑性范围内,大变形情况下研究其承截能力。 本题分值:??4.0? 用户未作答? 标准答案:??稳定性是指结构或构件保持原有平衡状态?

工程力学教案 (详细讲稿)

理论力学教案1

本次讲稿 第一章绪论 第一节工程力学的研究对象 建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。 图1-1ab 结构按其几何特征分为三种类型: (1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。 (2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。 (3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。 工程力学的研究对象主要是杆系结构。 第二节工程力学的研究内容和任务 工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。 进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构

件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。 结构正常工作必须满足强度、刚度和稳定性的要求。 强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。 刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。 稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。 按教学要求,工程力学主要研究以下几个部分的内容。 (1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。 (2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。 (3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。 (4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。 第三节刚体、变形固体及其基本假设 工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。 刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。 理想变形固体是对实际变形固体的材料理想化,作出以下假设: (1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。 (2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。 (3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。 按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。 变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只

工程力学实验指导书.

第一章绪论 §1.1 工程力学实验的内容 实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。例如材料力学中应力应变的线性关系就是虎克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。不仅如此,实验对材料力学有着更重要的一面。因为材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。在解决工程设计的强度,刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数。这些常数只有靠材料试验测试才能得到。有时实际工程中构件的几何形状和载荷都十分复杂,构件中的应力单纯靠计算难以得到正确的数据,这种情况下必须借助于实验应力分析的手段才能解决。因此,材料力学实验是学习材料力学课程不可缺少的重要环节。材料力学实验包括以下三个方面的内容: 1.测定材料的力学性能材料的力学性能是指在力或能的作用下,材料在变形、强 度等方面表现出的一些特性,如弹性极限、屈服极限(屈服强度)、强度极限、弹性模量、疲劳极限、冲击韧性等。这些强度指标或参数都是构件强度、刚度和稳定性计算的依据,而它们一般要通过实验来测定。此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。随着材料科学的发展,各种新型合金材料、合成材料不断涌现,力学性能的测定,是研究每一中新型材料的重要任务。 2.验证理论公式的正确性材料力学的一些理论是以某些假设为基础的,例如杆件 的弯曲理论就以平面假设为基础。用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。至于新建立的理论和公式,用实验来验证更是必不可少的。实验是验证、修正和发展理论的必要手段。 3.实验应力分析某些情况下,例如因构件几何形状不规则,受力复杂或精确的边 界条件难以确定等,应力分析计算难于获得准确结果。这时,用诸如电测、光弹性等实验应力分析方法直接测定构件的应力,便成为有效的方法。对经过较大简化后得出的理论计算或数值计算,其结果的可靠性更有赖于实验应力分析的验证。§1.2 材料力学试验的标准、方法和要求 材料的强度指标如屈服极限、强度极限、持久极限等,虽是材料的固有属性,但往往与试样的形状、尺寸、表面加工精度、加载速度、周围环境(温度、介质)等有关。为使实验结果能相互比较,国家标准对试样的取材、形状、尺寸、加工精度、试验手段和方法以及数据处理都作了统一规定。

工程力学教案(很经典)汇编

工程力学教案 第一章 物体的受力分析 静力学:研究物体在力系作用下平衡规律的科学。 主要问题:力系的简化; 建立物体在力系作用下的平衡条件。 本章将介绍静力学公理,工程中常见的典型约束,以及物体的受力分析。静力学公理是静力学理论的基础。物体的受力分析是力学中重要的基本技能。 §1.1 力的概念与静力学公理 一、力的概念 力的概念是人们在长期生活和生产实践中逐步形成的。例如:人用手推小车,小车就从静止开始运动;落锤锻压工件时,工件就会产生变形。 力是物体与物体之间相互的机械作用。 使物体的机械运动发生变化,称为力的外效应; 使物体产生变形,称为力的内效应。 力对物体的作用效应取决于力的三要素,即力的大小、方向和作用 点。 力是矢量,常用一个带箭头的线段来表示,在国际单位制中,力的单位牛顿(N)或千牛顿(KN)。 二、静力学公理 公理1力的平行四边形法则 作用在物体上同一点的两个力,可以合成一个合力。合力的作用点仍在该点,合力的大小和方向由这两个力为邻边所构成的平行四边形的对角线确定。其矢量表达式为 FR =F1+F2 根据公理1求合力时,通常只须画出半个平行四边形就可以了。如图1-2b、c所示,这样力的平行四边形法则就演变为力的三角形法则。

【说明】:1.FR=F1+F2表示合力的大小等于两分力的代数和 2.两力夹角为α,用余弦定理求合力的大小,正弦定理求方向 3.可分解力:(1) 已知两分力的方向,求两分力的大小 (2) 已知一个分力的大小和方向,求另一分力大小和方向 4.该公理既适用于刚体,又适用于变形体,对刚体不需两力共点 公理2二力平衡公理 刚体仅受两个力作用而平衡的充分必要条件是:两个力大小相等,方向相反,并作用在同一直线上,如图1-3所示。即 F1=-F2

工程力学教案

《工程力学》教案2016~2017学年第2 学期 学院名称:机械学院 授课专业:16级机械全部专业 14五年机械全部专业 课程名称:工程力学 主讲教师:王琳琳 山东凯文科技职业学院教务处制

备注: 一、教案和讲稿的区别 1.讲稿,所承载的是知识信息。教案,所承载的是课堂教学的组织管理信息。 2.讲稿的思路形成,受教学过程的知识逻辑支配,而教案的思路形成,受教学过程的管理逻辑支配。 3.讲稿与教案,二者是决定与被决定的关系。 4.在内容上,讲稿涉及的是知识性和能力开发项目,教案涉及的是组织性项目。 5.在表现形式上,讲稿篇幅较长,是课程教学内容和教师个人观点的浓缩或延伸;教案篇幅较短。 二、教学反思 所谓教学反思,是指教师对教育教学实践的再认识、再思考,并以此来总结经验教训,进一步提高教育教学水平。教学反思一直以来是教师提高个人业务水平的一种有效手段,教育上有成就的大家一直非常重视之。现在很多教师会从自己的教育实践中来反观自己的得失,通过教育案例、教育故事、或教育心得等来提高教学反思的质量。

山东凯文科技职业学院 教案首页 课程名称工程力学总学时:48 其中: 讲课:41学时 实验实训:3学时课程性质A:理论课()B:(理论+实践)课(√)C:实践课() 授课对象机械工程学院16级全部专业,14五年一贯全部专业 授课时间2016-2017学年第二学期授课地点综合楼 教材《工程力学(第六版)》大连理工大学出版社蒙晓影李聚霞主编 主要参考资料《工程力学》冶金工业出版社张百新主编 《工程实验力学》机械工业出版社计欣华、邓宗白、鲁阳主编《工程力学》高等教育出版社沈养中主编 教学目标知识目标1.使学生掌握必要的力学基础理论知识; 2.初步运用这些力学知识对简单的工程技术问题问题进行分析、科学的抽象,进而予以解决; 3.了解材料的主要力学性能并有测试材料强度指标的能力了; 4.掌握等直杆的四种基本变形形式,并学会分析应力和应变; 5.掌握压杆稳定的计算及提高压杆稳定性的措施; 6.为后续学习其他专业课以及进行施工实践、结构设计及职业岗位能力打好力学基础,也为终身继续学习打下良好的力学基础。

非常经典的工程力学实验指导书+题.

《工程力学》实验指导书 主编:2011年11月

目录 实验一拉伸和压缩实验 (3) 实验二梁弯曲正应力实验 (8) 实验三金属材料扭转实验 (12)

实验一 拉伸和压缩实验 拉伸实验 一、实验目的 1.观察与分析低碳钢、灰铸铁在拉伸过程中的力学现象并绘制拉伸图。 2.测定低碳钢的σs 、σb 、δ、ψ 和灰铸铁的σb 。 3.比较低碳钢与灰铸铁的机械性能。 二、实验内容 1.低碳钢拉伸实验 材料的机械性能指标σs 、σb 、δ 和ψ 由常温、静载下的轴向拉伸破坏试验测定。整个试验过程中,力与变形的关系可由拉伸图表示,被测材料试件的拉伸图由试验机自动记录显示。低碳钢的拉伸图比较典型,可分为四个阶段 : 直线阶段OA ——此阶段拉力与变形成正比,所以也称为线弹性变形阶段,A 点对应的载荷为比例极限载荷Fp ; 屈服阶段BC ——曲线常呈锯齿形,此阶段拉力的变化不大,但变形迅速增加,此段内曲线上的最高点称为上屈服点B ,,最低点称为下屈服点B ,因下屈服点B 比较稳定,工程上一般以B 点对应的力值作为屈服载荷Fs ; 强化阶段CD ——此阶段拉力增加变形也继续增加,但它们不再是线性关系,其最高点D 对应的力值为最大载荷Fb ; 颈缩阶段DE ——过了D 点,试件开始出现局部收缩(颈缩),直至试件被拉断。 图1-1为低碳钢拉伸图。 图1-1 图1-2 F

2.灰铸铁拉伸实验 对于灰铸铁,由于拉伸时的塑性变形极小,在变形很小时就达到最大载荷而突然断裂,没有明显的屈服和颈缩现象,其强度极限即为试件断裂时的名义应力。图1-2为铸铁拉伸图。 三、实验仪器、设备 1.600KN 微机屏显式液压万能试验机; 2.游标卡尺。 四、实验原理 1.根据低碳钢拉伸载荷F s 、F b 计算屈服极限σs 和强度极限σb 。 2.根据测得的灰铸铁拉伸最大载荷F b 计算强度极限σb 。 3.根据拉断前后的试件标距长度和横截面面积,计算低碳钢的延伸率δ和截面收缩率ψ。 %100001?-= L L L δ %1000 1 0?-=A A A ψ 五、实验步骤 (一)实验准备 1.打开计算机,双击计算机桌面上的TestExpert 图标,试验软件启动。 2.打开控制系统电源,系统进行自检后自动进入PC-CONTROL 状态。 3.软件联机并启动控制系统: (1)点击“联机”按钮.出现联机窗口,当此窗口消失证明联机成功。 (2)按下启动按钮,控制系统“ON ”灯亮后,软件操作按钮有效。 4.测量并记录试件的尺寸:在刻线长度内的两端和中部测量三个截面的直径d 0,取直径最小者为计算直径,并量取标距长度L 0。 5.调节横梁位置并安装试样。 (二)进行实验 1.设置试验条件。 2.开始试验: (1)按下“试验”按钮,试验机开始按试验程序对试件进行拉伸。仔细观 A F s s =σ0 A F b b =σ4 2 00d A ?= π

《工程力学》整体教学设计

《工程力学》整体教学设计 一、管理信息 课程名称:《工程力学》 学分:4 学时:60 课程类型:专业基础课 授课对象:一年级第一学期的高职土建类专业学生 先修课程:高等数学、道路工程制图、建筑材料 后修课程:、结构力学、结构设计原理、土力学、基础工程等 学生情况分析:应往届高中毕业生,应届职高毕业生,文理科生都有,交流表达能力较好,愿意动手,有一定的计算机操作能力。多数学生数理基础差,学习习惯差,自我控制力差,团队合作意识欠缺,职业素养欠缺,自主学习能力差。 二、课程设计 1、课程目标设计 课程目标的设计应突出职业能力培养,体现基于职业岗位分析和职业岗位技术应用能力培养的教学设计理念,以学生为主体,以真实工作任务或土建工程结构为载体组织教学内容,在真实工程案例中采用行动导向的教学方法和手段进行实施。培养学生在工程施工中必备的力学素养和实际问题的解决能力。 《工程力学》课程目标分为职业能力目标和关键能力目标两个方面。见表1。 表1 课程目标 职业能力目标关键能力目标 静定结构受力分析能力 力系平衡条件的应用能力 梁、柱的强度、刚度、稳定性计算能力基本的力学实验操作能力 工程结构实际问题的解决能力学习能力 工作能力 数字逻辑应用能力信息技术能力 合作协调能力 创新能力 2、课程内容设计 重构内容体系:为适应湖南交通职业技术学院道路桥梁工程技术专业的校企合作、工学交替人才培养模式和“专业+产业”系企一体的专业建设模式,以工作过程导向的课程观为指导思想,根据职业岗位能力要求、职业标准要求、工作任务要求、职业素质要求和前后续课程的衔接。按照职业岗位和职业能力培养的要求,对教学内容进行遴选,重新构建了适应施工岗位工作的过程性知识为主、陈述性知识为辅的内容体系,以梁、轴和柱等结构件为载体,形成模块化的课程内容结构(见表2、表3)。 实践内容设计:为了以真实的工作任务为载体,强化学生能力培养,本课程精心设计了与理论知识相对应的实践教学项目。研究建立虚拟力学实验室,设计验证性实验的模拟实验软件。在校办企业试验检测中心建立仿真力学试验室,与企业工程师合作开发出真实的力学试验项目(见表2、表3)。

工程力学实验考试思考题

金属拉伸试验时加载速度为什么必须缓慢均匀? 为了获得更加准确的试验精度.加载时如果动作过大,则在加载的瞬间其重量是有变化的,对精度有较大的影响. 加载速度超过一定值就称为“动载荷”,此时低碳钢的“屈服”阶段变得不明显,强度极限也有所提高。所以拉伸加载时速度应缓慢:静载荷 为了看金属的疲劳曲线,缓慢均匀才看得清楚 什么是卸载规律和冷作硬化现象? 当对材料加载,使其应力超过弹性极限,材料会出现弹性应变和塑性应变。此时卸载,其弹性变形会完全恢复,但是弹性变形是不可恢复的,这部分应变被称为残余应变。 对有残余应变的材料重新加载,则其应力应变曲线沿着卸载的直线上升,可以发现其弹性极限(应力)有提高,那么它的屈服极限(强度指标)自然有提高。这种在常温下,经过塑性变形后材料强度变高,塑性降低的现象称为冷作硬化 冷作硬化在实际运用的很多特别是钢材 望采纳 低碳钢与铸铁试样扭转破坏情况有何不同,为什么? 低碳钢试件受扭转时沿横截面破坏, 此破坏是由横截面上的切应力造成 的,说明低碳钢的抗剪强度较差; 铸铁试件受扭转时沿大约45度斜截面 破坏,断口粗糙,此破坏是由斜截面 上的拉应力造成的,说明铸铁的抗拉 强度较差。 低碳钢与铸铁的抗拉抗压抗剪能力 低碳钢的拉、压强度近似相等,抗扭强度要小(大概根号3倍)。铸铁就不同了铸铁的抗压强度最大,其它要小得多。 圆截面试样拉伸试验屈服点和扭转试验屈服点有什么区别和联系? 当圆截面试样横截面的最外层切应力达到剪切屈服极限时,占横截面绝大部分的内层切应力任低于弹性极限,因而此时试样人变现为弹性行为,没有明显的屈服现象。当扭矩继续增加使截面大部分区域的切应力达到剪切屈服极限时,试样会表现出屈服极限,此时的扭矩比真实的屈服扭矩要大一些,对于破坏扭矩也会有同样的情况。 剪切弹性模量G的物理意义

工程力学教案

绪 论 一、工程力学的研究对象 建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a 所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b 所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。 结构按其几何特征分为三种类型: (1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。 (2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。 (3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。 (a ) (b ) 图0-1

工程力学的研究对象主要是杆系结构。 二、工程力学的研究内容和任务 工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。 进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。 结构正常工作必须满足强度、刚度和稳定性的要求。 强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。 刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。 稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。 按教学要求,工程力学主要研究以下几个部分的内容。 (1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。 (2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。 (3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。 (4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。 三、刚体、变形固体及其基本假设 工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。 刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。 理想变形固体是对实际变形固体的材料理想化,作出以下假设: (1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。 (2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。 (3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。 按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。 变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只发生弹性变形。工程中,大多数构件在荷载的作用下产生的变形量若与其原始尺寸相比很微小,称为小变形。小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。 综上所述,工程力学把所研究的结构和构件看作是连续、均匀、各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。

《工程力学》实验指导书

工程力学实验指导书力学与机械学研究所编 天津理工大学机械工程学院

2005.7 学生实验守则 1.学生应按照课程教学计划,准时上实验课,不得迟到早退。 2.实验前认真阅读实验指导书,明确实验目的、步骤、原理,预习有关的理论知识,并接受实验教师的提问和检查。 3.进入实验室必须遵守实验室的规章制度。不得高声喧哗和打闹,不准抽烟、随地吐痰和乱丢杂物。 4.做实验时必须严格遵守仪器设备的操作规程,爱护仪器设备,节约使用材料,服从实验教师指导。未经许可不得动用与本实验无关的仪器设备及其它物品。 5.实验中要细心观察,认真记录各种试验数据。不准敷衍,不准抄袭别组数据,不得擅自离开操作岗位。 6.实验时必须注意安全,防止人身和设备事故的发生。若出现事故,应立即切断电源,及时向指导教师报告,并保护现场,不得自行处理。 7.实验完毕,应主动清理实验现场。经指导教师检查仪器设备、工具、材料和实验记录后方可离开。 8.实验后要认真完成实验报告,包括分析结果、处理数据、绘制曲线及图表。在规定时间内交指导教师批改。 9.在实验过程中,由于不慎造成仪器设备、工具损坏者,应写出损坏情况报告,并接受检查,由领导根据情况进行处理。 10.凡违反操作规程,擅自动用与本实验无关的仪器设备、私自拆卸仪器而造成事故和损失的,肇事者必须写出书面检查,视情节轻重和认识程度,按章程预以赔偿。

目录 引言..................................................(4)实验一金属拉伸实验....................................(5)实验二金属压缩实验.....................................(8)实验三金属(园轴)扭转试验..............................(17)

工程力学测试题(附答案)

1、如图1所示,已知重力G ,DC=CE=AC=CB=2l ;定滑轮半径为R ,动滑轮半径为r ,且R=2r=l, θ=45° 。试求:A ,E 支座的约束力及BD 杆所受的力。 1、解:选取整体研究对象,受力分析如图所示,列平衡方程 解得: 选取DEC 研究对象,受力分析如图所示,列平衡方程 解得: 2、图2示结构中,已知P=50KN ,斜杆AC 的横截面积A1=50mm2,斜杆BC 的横截面积A2=50mm2, AC 杆容许压应力[σ]=100MPa ,BC 杆容许应力[σ]=160MPa 试校核AC 、BC 杆的强度。 解:对C 点受力分析: 所以,; 对于AC 杆:, 所以强度不够; 对于BC 杆:, 所以强度不够。 3、图3传动轴上有三个齿轮,齿轮2为主动轮,齿轮1和齿轮3消耗的功率分别为和。若轴的转速为,材料为45钢,。根据强度确定轴的直径。 3、解: (1) 计算力偶距 (2) 根据强度条件计算直径 从扭矩图上可以看出,齿轮2与3 间的扭矩绝对值最大。 4、设图4示梁上的载荷q,和尺寸a 为已知,(1) 图;(3)判定最大剪力和最大弯矩。 剪力方程: 弯矩方程: AC :(). CB: () 5、图5示矩形截面简支梁,材料容许应力[σ]=10MPa ,已知b =12cm ,若采用截面高宽比为h/b =5/3,试求梁能承受的最大荷载。 解:对AB 梁受力分析 作AB 梁的弯矩图,可以看出,最大弯矩发生在梁的中点处,且 由强度条件,, 所以,。 1、解:选取整体研究对象,受力分析如图所示,列平衡方程 解得: 选取DEC 研究对象,受力分析如图所示,列平衡方程 解得: 2、 解:对C 点受力分析: 1 2 3 x T 155N.m

工程力学教案-2模板复习过程

教学课题第一章、静力学基础 第三节约束与约束反力第四节物体的受力分析与受力图教学目的 (一)、知识点 1、掌握约束的概念; 2、掌握主动力和约束反力的概念; 3、了解常见的约束类型; 4,掌握受力图的画法。 (二)、能力训练 1、培养学生运用概念去分析问题、解决问题的能力。 2、培养学生的认识能力,进一步发展学生的思维能力。 (三)、德育渗透 1、树立正确的辩证唯物主义观点。 2、培养学生勤学好问、严谨求实、勇于探索的优秀品质。 教学方法 本节内容理论性强,宜采用讲授法。 重点、难点、及解决方法 (一)、重点 约束的概念;主动力和约束反力的概念;受力图的画法。 (二)、难点 受力图的画法 (三)、解决办法 1、重点解决的办法。 (1)、从概念上讲清约束的概念。

(2)、用图示的方法弄清主动力和约束反力的概念。 (3)、用举例法阐述受力图的画法。 2、难点解决的办法 用实例和做图的方法使学生弄懂受力图的画法。 教学准备 工程力学(武汉大学出版社)教案挂图ppt等其他教学工具 课时安排 2课时 板书设计 力的概念→力的三要素→力学中标量和矢量的概念→力的表达方式→力学四大公理。复习旧课 所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。静力学的研究对象仅限于刚体,所以又称之为刚体静力学。 所谓公理就是无需证明就为大家在长期生活和生产实践中所公认的真理。静力学公理是静力学全部理论的基础。 导入新课 工程上所遇到的物体通常分两种:可以在空间作任意运动的物体称为自由体,如飞机、火箭等;受到其它物体的限制,沿着某些方向不能运动的物体称为非自由体。如悬挂的重物,因为受到绳索的限制,使其在某些方向不能运动而成为非自由体,这种阻碍物体运动的限制称为约束。约束通常是通过物体间的直接接触形成的。 讲授新课 第三节约束与约束反力 既然约束阻碍物体沿某些方向运动,那么当物体沿着约束所阻碍的运动方向运动或有运动趋势时,约束对其必然有力的作用,以限制其运动,这种力称为约束反力。简称反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反,它的作用点就在约束与被约束的物体的接触点,大小可以通过计算求得。 工程上通常把能使物体主动产生运动或运动趋势的力称为主动力。如重力、风力、水压力等。通常主动力是已知的,约束反力是未知的,它不仅与主动力的情况有关,同时也与约

工程力学实验指南

工程力学实验指导书 仲恺农业工程学院机电工程系 2008.1

前言 材料力学是研究工程材料力学性能和构件强度、刚度和稳定性计算理论的科学,主要任务是按照安全、适用与经济的原则,为设计各种构件(主要是杆件)提供必要的理论和计算方法以及实验研究方法。 要合理地使用材料,就必须了解材料的力学性能,各种工程材料固有的力学性质要通过相应的试验测得,这是材料力学实验的一个主要任务。 另外,材料力学的理论是以一定的简化和假设为基础。这些假设多来自实验研究,而所建立理论的正确性也必须通过实验的检验,这是材料力学实验的第二个任务。 材料力学实验的第三个任务是通过工程结构模型或直接在现场测定实际结构中的应力和变形,进行实验应力分析,为工程结构的设计和安全评估提供可靠的科学依据。 从以上所述各项任务中,不难看到材料力学实验的重要性,它与材料力学的理论部分共同构成了这门学科的两个缺一不可的环节。 学生在学习并进行材料力学实验时,应注意学习实验原理、试验方法和测试技术,逐步培养科学的工作习惯和独立分析、解决问题的能力,要善于提出问题,勤于思考,勇于创新。这样才能牢固地掌握材料力学课程的基本内容,为将来参加祖国社会主义现代化建设打下坚实的基础。 指导书中将实验内容分为“基本实验”和“选做实验”两个层次,这样既可保证实验教学的基本要求,又可根据不同的需求进行选择,以期在培养学生的综合分析能力和创新能力方面发挥重大作用。 本实验指导书中难免存在缺点和错误之处,请师生们指正,以便今后进一步修改和完善。

基本实验 1 低碳钢和灰口铸铁的拉伸、压缩实验 一、实验目的 1.试样在拉伸或压缩实验过程中,观察试样受力和变形两者间的相互关系,并注意观察材料的弹性、屈服、强化、颈缩、断裂等物理现象。 2.测定该试样所代表材料的P S、P b和ΔL等值。 3.对典型的塑性材料和脆性材料进行受力变形现象比较,对其强度指标和塑性指标进行比较。 4.学习、掌握电子万能试验机的使用方法及其工作原理。 二、仪器设备和量具 电子万能试验机,引伸计、钢板尺,游标卡尺。 三、低碳钢的拉伸和压缩实验 1.低碳钢的拉伸实验 在拉伸实验前,测定低碳钢试件的直径d和标距L。试件受拉伸过程中,观察屈服(流动)、强化,卸载规律、颈缩、断裂等现象;绘制p——ΔL曲线如图2—1(a)所示;记录试件的屈服抗力P s和最大抗力P b。试件断裂后,测量断口处的最小直径d1和标距间的距离L1。依据测得的实验数据,计算低碳钢材料的强度指标和塑性指标。 7 图1—1 低碳钢拉伸图及压缩图 强度指标:

工程力学

第一章物体受力分析 §1.1基本概念与公理 1、三个基本概念: (1)平衡的概念 (2)刚体的概念 (3)力的概念 2、四个公理: (1)二力平衡公理 (2)加减平衡力系公理 (3)力的平行四边形法则 (4)作用与反作用定律 3、两个推论 (1)力的可传性原理 (2)三力平衡汇交定理 这些概念和公理是我们画受力图的基础,但这还不够,要画受力图,还必须学习约束与约束反力。 §1.2约束与约束反力 1、在力学中通常把物体分成两类: (1)自由体——物体能在空间做任意运动,他们的位移不受任何限制。如天空中飞行的飞机、鸟等。 (2)非自由体——物体总是以一定的形式与周围其他物体相互联系,即物体的位移要受到周围其他物体的限制。如用绳悬挂的灯可向上、前、后、左、右运动,但不能向下运动,转轴要受到轴承的限制。 2、约束——这种对非自由体的某些位移起限制作用的周围其他物体称为约束。如绳是灯的约束,轴承就是转轴的约束。

既然约束限制了物体的某些运动,所以一定有约束力作用于物体上。 3、约束力——这种约束对物体的作用力称为约束力。约束力也叫约束反力。 4、工程实际中将物体所受的力分为两类: (1)一类是主动力——这种能使物体产生运动或运动趋势的力,称为主动力,主动力有时也叫载荷;如重力,一般大小、方向往往已知。 (2)另一类是约束反力,它是由主动力引起的,是一种被动力,是未知力。静力分析的重要任务之一就是要确定未知的约束反力大小、方向。 四种常见约束类型的约束反力 工程中约束的种类很多,对于一些常见的约束,根据其特性可归纳为下列四种基本类型。 一、柔性约束(柔索) 1、组成:由柔性绳索、胶带或链条等柔性物体构成。 2、约束特点:只能受拉,不能受压。 3、约束反力方向:作用在接触点,方向沿着柔体的中心线背离物体。通常用FT表示。见图1-8 二、光滑面约束(刚性约束) 1、组成:由光滑接触面构成的约束。当两物体接触面之间的摩擦力小到可以忽略不计时,可将接触面视为理想光滑的约束。

工程力学实验考试复习

第二章 一、实验技术标准 实验标准:针对给定试验对试验对象、设备、条件、方法、技术等各个环节给予具体规定的文件。一般由标准化组织制定。 二、试验方案 1、试验目的、内容,依据的标准或协议。 2、试样的要求(设计图、加工质量、数量)。 3、仪器设备的选择和标定。 4、试验的具体方法和步骤,试验出现异常时的预备方案和安全措施。 5、规划试验人员的配备、组织和协调。 6、试验经费预算和进度安排。 三、力学量及其测量设备 载荷测力仪、材料试验机 长度量具(游标卡尺、千分尺、光学显微镜) 变形引伸计 应变电测设备(应变计+应变仪) 四、试样 实验分为材料试样实验和实物模型实验 材料试样实验主要用于了解材料的力学性能;取材方式应满足相应的国家标准。 实物模型试验主要用于大型结构的设计(大坝、桥梁、核反应堆)等。模型应满足相似理论。 五、数值修约规则 一、修约的表达方式 指定修约位数的表示方法如:保留三位有效数字。保留两位小数。 指定修约间隔的表示方法 如:修约间隔为0.02。其含义是保留到小数点后两位、且是0.02的整数倍。 四舍六入五考虑, 五后非零则进一, 五后皆零看奇偶, 五前为偶则舍去, 五前为奇则进一。 例1:将下列数据修约到三位有效数据例2:将数据12.75按0.5单位修约。 三、有效数字运算法则 原则:先修约后运算 1、加减法:修约时,应按各数中末位最高者修约。 例4:求21.01,7.341,0.786的和。解:应为21.01+7.34+0.79=29.14 2、乘除法:修约时,按各数中有效数字最少者修约。

例4:求21.01,7.34,0.786的积。解:应为 21.0×7.34×0.786=121 第三章 一、变形计的基本特征 标距:指测量所使用的长度。 灵敏度:指变形计对被测变形量的感应能力,是读数与被测量值的商 。(也称为放大倍数) 量程:指被测量值的上、下限之差。 精确度:指测量结果与真值的符合程度 。用示值误差、示值变动性和示值进回程差衡量。 二、应变及其测量 1、线应变定义 若线段Δx 的变形为Δu ,则线段Dx 的平均线应变 x u x ??=ε 一点的线应变 x u x x ??=ε→?0lim 三、电阻应变计的构造 基 底—将敏感栅定位并保证敏感栅与构件之间的绝缘电阻 敏感栅—将被测构件表面应变转换成电阻变化输出 覆盖层—保护敏感栅 粘结剂—将敏感栅固结在基底和覆盖层之间 引出线—连接敏感栅与测量导线 Ks ——称为金属丝的应变灵敏系数 )21(ν++ερρ=ε=d R dR K S 在一定范围内,对特定材料和加工方法,电阻变化率与其应变之间成线性关系(如康铜等)。 四、理想的敏感栅材料特性 1、灵敏系数Ks 大,且在较大范围内保持不变。 2、电阻率高。 3、电阻温度系数小且稳定。 4、弹性极限高于被测构件弹性极限。 5、易于加工成丝或箔。 五、按敏感栅材料分类 : 康铜(Ni45%Cu55%) ——KS 高且稳定,电阻率r 高,电阻温度系数小,弹性好,加工性能好。常用于中、常温 静载及大应变测量。 镍铬合金(Ni80%Cr20%) ——高,电阻温度系数也大,疲劳寿命高。适宜动态应变测量和制作小栅长应变计。 卡玛合金(Ni74%Cr20%Al3%Fe3%)

工程力学教案课程

绪 论 课题 第1讲——绪论 学时 1学时 教学目的要求 1、掌握工程力学的任务、地位、作用和学习方法,可变形固体的基本假设,工程力学的研究对象(杆件),杆件变形的形式。 2.理解工程力学的研究对象(杆件)的几何特征,使学生对工程力学这门课程的任务、研究对象有一个全面的概念。 3.了解工程的发展简史和学习本课程的方法。 主要内容 工程力学的研究内容 重点难点 变形固体及其基本假设 教学方法 和手段 以讲授为主,使用电子教案 课后作业练习 预习:第一章 静力学基本概念 一、工程力学的研究对象 建筑物中承受荷载而起骨架作用的部分称为结构。结构是由若干构件按一定方式组合而成的。组成结构的各单独部分称为构件。例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a 所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b 所示。结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。 结构按其几何特征分为三种类型: (1)杆系结构:由杆件组成的结构。杆件的几何特征是其长度远远大于横截面的宽度和高度。 (2)薄壁结构:由薄板或薄壳组成。薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。 (3)实体结构:由块体构成。其几何特征是三个方向的尺寸基本为同一数量级。 (a ) (b ) 图0-1

工程力学的研究对象主要是杆系结构。 二、工程力学的研究内容和任务 工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。 进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。 结构正常工作必须满足强度、刚度和稳定性的要求。 强度是指抵抗破坏的能力。满足强度要求就是要求结构的构件在正常工作时不发生破坏。 刚度是指抵抗变形的能力。满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。 稳定性是指结构或构件保持原有的平衡状态的能力。满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。 按教学要求,工程力学主要研究以下几个部分的内容。 (1)静力学基础。这是工程力学的重要基础理论。包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。 (2)杆件的承载能力计算。这部分是计算结构承载能力计算的实质。包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。 (3)静定结构的内力计算。这部分是静定结构承载能力计算和超静定结构计算的基础。包括研究结构的组成规律、静定结构的内力分析和位移计算等。 (4)超静定结构的内力分析。是超静定结构的强度和刚度问题的基础。包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。 三、刚体、变形固体及其基本假设 工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。 刚体是在外力作用下形状和尺寸都不改变的物体。实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。 理想变形固体是对实际变形固体的材料理想化,作出以下假设: (1)连续性假设。认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。 (2)均匀性假设。认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。 (3)向同性假设。认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。本教材中仅研究各向同性材料。 按照上述假设理想化的一般变形固体称为理想变形固体。刚体和变形固体都是工程力学中必不可少的理想化的力学模型。 变形固体受荷载作用时将产生变形。当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。在多数工程问题中,要求构件只发生弹性变形。工程中,大多数构件在荷载的作用下产生的变形量若与其原始尺寸相比很微小,称为小变形。小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。 综上所述,工程力学把所研究的结构和构件看作是连续、均匀、各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。

相关主题
文本预览
相关文档 最新文档