第3章_范数理论及其应用
- 格式:ppt
- 大小:1.58 MB
- 文档页数:62
淮北师范大学2013届学士学位论文范数在数值计算中的应用学院、专业数学科学学院数学与应用数学研究方向数值分析学生姓名李双阳学号***********指导教师姓名陈昊指导教师职称讲师2013年月日范数在数值计算中的应用李双阳(淮北师范大学数学科学学院,淮北,235000)摘要范数在解决数值计算中的一些问题有很大的用处。
应用复合最速下降法,给出了求解矩阵方程组(AXB=E,CXD=F)加权范数下对称解及最佳逼近问题的迭代解法。
对任意给定的初始矩阵,改迭代算法能够在有限步迭代计算之后得到矩阵方程组的对称解,并且在上述解集合中也可以给出指定矩阵的最佳逼近矩阵。
并对线性方程组解的误差估计的推广定理理解对解的误差与矩阵、摄动矩阵、向量、摄动向量、算子范数之间的关系进行证明。
从而了解范数以及极限的概念以致更好的解决像函数的一次逼近、二次逼近、矩阵方程组对称解的最佳逼近以及线性方程组解的误差估计等数值计算问题。
关键词:最速下降法,对称解,最佳逼近,摄动矩阵,算子范数Norm in the application of the numerical calculationLi Shuangyang(School of Mathematical Science, Huaibei Normal University, Huaibei, 235000)AbstractNorm in numerical calculation in solving the problems are of great use. Application of compound the steepest descent method, solving matrix equations is presented (AXB = E, CXD = F) weighted norm under symmetric solution and the optimal approximation problem of iterative method. On any given initial matrix, the iterative algorithm can step in finite iterative calculation after get the symmetric solutions of matrix equations, and also in the solution set can be specified matrix optimal approximation of the matrix is given. And the error estimates of solutions of the linear equation theorem to understand the solution of the error and matrix, the perturbation matrix, vector, the perturbation dynamics, the relationship between the operator norm. To understand the norm and the concept of limit so that a better solution as a function of an approximation, quadratic approximation, symmetric matrix equations solution of the optimal approximation and the error of linear equations and numerical calculation.Key words:The steepest descent method, the symmetric solution of optimal approximation, the perturbation matrix operator norm目录一.引言................................................................................................ - 1 -二.范数性质........................................................................................... - 2 -2.1向量范数、矩阵范数的基本性质 ........................................... - 2 -定理2.1.1 .................................................................................. - 2 -定理2.1.2 .................................................................................. - 2 -定理2.1.3 .................................................................................. - 2 -定理2.1.4 .................................................................................. - 2 -定理2.1.5 .................................................................................. - 2 -2.2.李普希兹条件下范数的一些性质 ........................................... - 4 -定理2.2.1.................................................................................. - 4 -定理2.2.2 .................................................................................. - 4 -定理2.2.3 .................................................................................. - 4 -定理2.2.4 .................................................................................. - 5 -定理2.2.5 .................................................................................. - 5 -定理2.2.6 .................................................................................. - 6 - 三.加权范数下矩阵方程组的对称解及其最佳逼近 ....................... - 6 - 例题............................................................................................ - 8 -四.向量范数、矩阵范数下线性方程组解的误差估计的推广 ........ - 10 -4.1证明.......................................................................................... - 10 -4.2证明.......................................................................................... - 11 - 结论...................................................................................................... - 12 -参考文献.............................................................................................. - 12 - 致谢...................................................................................................... - 13 -一.引言近年来,随着计算机技术的普及和计算速度的不断提高,数值计算在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开数值计算,其在航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛应用已使设计水平发生了质的飞跃。
关于范数的总结范文
一、范数的定义
范数(Norm)是对向量空间中的向量长度或矩阵列之间的距离的度量。
范数具有很好的抽象性,可以用来衡量向量与向量、矩阵与矩阵之间的距
离(不同定义的范数衡量的是不同的距离),是向量空间、矩阵理论以及
机器学习和深度学习等各个领域都很重要的概念。
范数,由曼哈顿距离和欧氏距离得名,有着自然的几何解释:向量或
矩阵表示为一个点,范数则表示为该点到原点的距离。
向量空间中的范数
不仅代表着向量的长度,还可以用来衡量向量之间的距离,从而被广泛应
用于不同的领域,其中有几种范数的定义比较重要,如曼哈顿距离、欧式
距离、切比雪夫距离和闵式距离等。
二、范数的分类
1)一阶范数:一阶范数是指向量中元素绝对值之和,或者是矩阵每
一列元素绝对值之和,也就是模,常用的一阶范数有曼哈顿距离L1、欧
氏距离L2和切比雪夫距离L∞。
2)二阶范数:二阶范数是指向量每个元素的绝对值平方和,或者是
矩阵每一列元素的绝对值平方和,也叫做F范数或Frobenius范数。
它表
示的是一个矩阵中向量的总范数,常用于评估数据的分布特征。
向量范数在一维空间中,实轴上任意两点距离用两点差的绝对值表示。
绝对值是一种度量形式的定义。
范数是对函数、向量和矩阵定义的一种度量形式。
任何对象的范数值都是一个非负实数。
使用范数可以测量两个函数、向量或矩阵之间的距离。
向量范数是度量向量长度的一种定义形式。
范数有多种定义形式,只要满足下面的三个条件即可定义为一个范数。
同一向量,采用不同的范数定义,可得到不同的范数值。
定义3.1 对任一向量,按照一个规则确定一个实数与它对应,记该实数记为,若满足下面三个性质:若X是数域K上的线性空间,泛函║·║: X->R 满足:1. 正定性:║x║≥0,且║x║=0 <=> x=0;2. 正齐次性:║cx║=│c│║x║;3. 次可加性(三角不等式):║x+y║≤║x║+║y║ 。
那么║·║称为X上的一个范数。
常用范数这里以C^n空间为例,R^n空间类似。
最常用的范数就是p-范数。
若x=[x1,x2,...,xn]^T,那么║x║p=(|x1|^p+|x2|^p+...+|xn|^p)^{1/p}可以验证p-范数确实满足范数的定义。
其中三角不等式的证明不是平凡的,这个结论通常称为闵可夫斯基(Minkowski)不等式。
当p取1,2,∞的时候分别是以下几种最简单的情形:1-范数:║x║1=│x1│+│x2│+…+│xn│2-范数:║x║2=(│x1│^2+│x2│^2+…+│xn│^2)^1/2∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)其中2-范数就是通常意义下的距离。
定理中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使m║x║α≤║x║β≤M║x║可根据范数的连续性来证明它.由定理1可得定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j=1,2,…,n(k→∞)其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k)→x(k→∞),或 .矩阵范数一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║XY║≤║X║║Y║。