第四章液压泵和液压马达
- 格式:ppt
- 大小:1.84 MB
- 文档页数:66
四、泵和马达的不同点
1、泵是能源装置,马达是执行元件,泵输入机械能(转矩M和转速n)输出液压能(压力p和流量q );马达输入的是液压能(p、 q ),输出机械能(M、n)。
2、泵的吸油腔一般为真空(为改善吸油性和抗气蚀耐力),通常进口尺寸大于出口;马达排油腔的压力稍高于大气压力,没有特殊要求,所以马达的进出油口尺寸相同。
3、泵的结构需保证自吸能力,而马达无此要求。
4、马达需要正反转(内部结构需对称),泵一般是单向旋转。
5、马达的轴承结构,润滑形式需保证在很宽的速度范围内使用,而泵的转速虽相对比较高,但变化小,故无此苛刻要求。
6、泵的起动靠外机械动力;马达起动需克服较大的静摩擦力,因此要求起动扭矩大,扭矩脉动小,内部摩擦小(如齿轮马达的齿数比齿轮泵多)
7、泵需容积效率高;马达需机械效率高,一般地,液压马达的容积效率比泵低,液压泵的机械效率比液压马达低。
8、通常泵的转速高。
而马达输出较低的转速。
9、叶片泵的叶片倾斜安装,叶片马达的叶片则径向安装(考虑正反转)。
10、叶片马达的叶片依靠根部的扭转弹簧,使其压紧在定子表面上,而叶片泵的叶片则依靠根部的压力油和离心力压紧在定子表面上(起动动力不同)。
11、一般齿轮泵的齿数少,齿轮马达的齿数多。
12、液压泵是连续运转的,油温变化相对较小,马达经常空转或停转,受频繁的温度冲击。
13、泵与原动机装在一起,主轴不受额外的径向负载。
而马达主轴常受径向负载(轮子或皮带、链轮、齿轮直接装在马达上时)。
液压马达工作原理解说明液压马达是一种将液压能转化为机械能的装置,它在工程机械、船舶、风力发电等领域都有广泛的应用。
液压马达的工作原理是利用液压系统中的液压能,通过液压马达的内部构造和工作原理,将液压能转化为旋转机械能,驱动机械设备的运动。
液压马达的内部构造通常包括定子、转子、油口、排油口、分配器等部件。
液压马达的工作原理主要是通过液压系统中的液压油压力作用在定子和转子上,从而产生转矩,驱动机械设备的转动。
液压马达的工作原理可以分为液压能转化为机械能的过程。
当液压油进入液压马达内部时,油液的压力作用在定子和转子上,使得定子和转子产生相对运动,从而产生转矩。
定子和转子的相对运动是通过液压系统中的油液压力传递到液压马达内部的定子和转子上,使得定子和转子产生相对运动,从而产生转矩。
这种转矩可以驱动机械设备的转动,从而实现液压能转化为机械能的过程。
液压马达的工作原理还包括液压油的进出口控制。
液压马达内部的液压油进口和出口是通过液压系统中的分配器控制的。
分配器可以根据机械设备的需要,控制液压油的进出口,从而实现液压能的控制和调节。
这种控制和调节可以根据机械设备的需要,调整液压马达的转速和转矩,从而满足不同工况下机械设备的运行要求。
总之,液压马达的工作原理是通过液压系统中的液压油压力作用在液压马达内部的定子和转子上,从而产生转矩,驱动机械设备的转动。
液压马达的工作原理还包括液压油的进出口控制,可以根据机械设备的需要,调整液压马达的转速和转矩,从而实现液压能的控制和调节。
液压马达的工作原理在工程机械、船舶、风力发电等领域有着广泛的应用,是现代工程技术中不可或缺的重要装置。
第一章绪论1-1液压系统中的压力取决于〔〕,执行元件的运动速度取决于〔〕。
1-2液压传动装置由〔〕、〔〕、〔〕和〔〕四局部组成,其中〔〕和〔〕为能量转换装置。
1—3 设有一液压千斤顶,如图1—3所示。
小活塞3直径d=10mm,行程h=20mm,大活塞8直径D=40mm,重物w=50000N,杠杆l=25mm,L=500mm。
求:①顶起重物w时,在杠杆端所施加的力F;②此时密闭容积中的液体压力p;⑧杠杆上下动作一次,重物的上升量H;④如果小活塞上有摩擦力f l=200N,大活塞上有摩擦力f2=1000 N, 杠杆每上下动作一次,密闭容积中液体外泄0.2cm3至油箱,重新完成①、②、③。
图题1—3第二章液压油液2-1什么是液体的粘性?2-2粘度的表式方法有几种?动力粘度及运动粘度的法定计量单位是什么?2-3压力和温度对粘度的影响如何?2—4 我国油液牌号与50℃时的平均粘度有关系,如油的密度ρ=900kg /m 3,试答复以下几个问题:1)30号机油的平均运动粘度为( )m 2/s ;2〕30号机油的平均动力粘度为( )Pa .s ;3) 在液体静止时,40号机油与30号机油所呈现的粘性哪个大?2—5 20℃时水的运动粘度为l ×10—6m 2/s ,密度ρ=1000kg /m 3;20℃时空气的运动粘度为15×10—6m 2/s ,密度ρ=1.2kg /m 3;试比拟水和空气的粘度( )(A)水的粘性比空气大;(B)空气的粘性比水大。
2—6 粘度指数高的油,表示该油 ( )(A)粘度较大;(B)粘度因压力变化而改变较大;(C) 粘度因温度变化而改变较小;(D) 粘度因温度变化而改变较大。
2—7 图示液压缸直径D=12cm ,活塞直径d=11.96cm ,活塞宽度L =14cm ,间隙中充以动力粘度η=0.065Pa ·s 的油液,活塞回程要求的稳定速度为v=0.5 m /s ,试求不计油液压力时拉回活塞所需的力F 等于多少" 第三章 液压流体力学根底§ 3-1 静止流体力学3—1什么是液体的静压力?压力的表示方法有几种?压力的单位是什么?3—2在图示各盛水圆筒活塞上的作用力F =3000 N 。
《液压与气压传动》平时作业平时作业(一)第一章概述1.液压传动系统由哪几部分组成各个组成部分的作用是什么答:(1)能源装置:将原动机所提供的机械能转变成液压能的装置,通常称液压泵。
(2)执行元件:将液压泵所提供的液压能转变称机械能的元件。
(3)控制元件:控制或调节液压系统中液压油的压力、流量和液压油的流动方向元件。
(4)辅助元件:上述三部分以外的其他元件,例如油箱、油管、管接头、蓄能器、滤油器、冷却器、加热器及各种检测仪表等,它们的功能各不相同,但对保证系统正常工作有重要作用。
(5)工作介质:油液或液压液,是液压传动中能量传递的载体。
2.液压传动的主要优缺点是什么答:优点:(1)与机械传动、电力传动同功率相比较时,液压传动的体积小、重量轻、结构紧凑。
(2)工作平稳、反应快、冲击小、能高速启动、制动、能够频繁换向。
(3)可实现大范围的无级调速,能在运行过程中进行调速,调速范围可达(2000:1)。
(4)控制方便,易于实现自动化,对压力、流量、方向易于进行调节或控制。
(5)易于实现过载保护。
(6)液压元件已经标准化、系列化和通用化,在液压系统的设计和使用中都比较方便。
(7)有自润滑和吸振性能。
缺点:(1)不能保证严格的传动比。
(2)损失大,有利于远距离传输。
(3)系统工作性能易受温度影响,因此不易在很高或很低的温度条件下工作。
(4)液压元件的制造精度要求高,所以元件价格贵。
(5)液压诉故障不易查找。
(6)工作介质的净化要求高。
第二章液压油与液压流体力学基础1.试解释下列概念(1)恒定流动:液体流动时,若液体中任何一点的压力、流速和密度都不随时间而变化,这种流动就称为恒定流动。
(2)非恒定流动:流动时压力、流速和密度中任何一个参数会随时间变化,则称为非恒定流动(也称非定常流动)。
(3)通流截面:液体在管道中流动时,垂直于流动方向的截面称为通流截面。
(4)流量:单位时间内,流过通流截面的液体体积为体积流量,简称流量。
液压马达与液压泵得区别详解液压马达习惯上就是指输出旋转运动得,将液压泵提供得液压能转变为机械能得能量转换装置、三维网技术论坛- {, ^8 V/ f- H* c一、液压马达得特点及分类C& y/ D1 w& E$ e- v|& U) l, p( s8 |; O从能量转换得观点来瞧,液压泵与液压马达就是可逆工作得液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达得主轴由外力矩驱动旋转时,也可变为液压泵工况。
因为它们具有同样得基本结构要素--密闭而又可以周期变化得容积与相应得配油机构。
三维网技术论坛+ X3 D r6 g9 U% a" U- \但就是,由于液压马达与液压泵得工作条件不同,对它们得性能要求也不一样,所以同类型得液压马达与液压泵之间,仍存在许多差别。
首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达得转速范围需要足够大,特别对它得最低稳定转速有一定得要求。
因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定得初始密封性,才能提供必要得起动转矩。
由于存在着这些差别,使得液压马达与液压泵在结构上比较相似,但不能可逆工作。
5 Y) [' G7 R1 M' h$ v8 d液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式与其它型式。
按液压马达得额定转速分为高速与低速两大类。
额定转速高于500r/min得属于高速液压马达,额定转速低于500r/min得属于低速液压马达。
高速液压马达得基本型式有齿轮式、螺杆式、叶片式与轴向柱塞式等。
它们得主要特点就是转速较高、转动惯量小,便于启动与制动,调节(调速及换向)灵敏度高。
通常高速液压马达输出转矩不大所以又称为高速小转矩液压马达。
低速液压马达得基本型式就是径向柱塞式,此外在轴向柱塞式、叶片式与齿轮式中也有低速得结构型式,低速液压马达得主要特点就是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大,所以又称为低速大转矩液压马达。
简述液压系统中液压泵与液压马达的选用摘要:液压泵是一种是一种能量转换装置,它把驱动电动机的机械能转换成输出送到系统中去的油液的压力能,以满足执行机构驱动外负载的需要。
目前使用的液压泵都是依靠液压密封工作腔的容积变化来实现吸油和压油,因此称为容积式液压泵。
液压马达是把液体的压力能转换为机械能的装置,原理上和液压泵是通用,但在其结构、工作范围等多个方面是不同的。
关键词:液压泵与液压马达的类型、选用原则液压泵与液压马达的类型选择1、液压泵:液压泵是一种能量转换装置,它把驱动电动机的机械能转换成输出送到系统中去的油液的压力能,以满足执行机构驱动外负载的需要。
1.1液压泵分类:按其在每转一转所能输出(所需输入)油液流量分成定量泵和变量泵。
对于变量泵,可以分为单向和双向。
单向变量泵在工作时,输油方向不可变,双向变量泵,通过手动、电动、液动、压力补偿等方式可以改变输出油液的方向。
按结构分为齿轮式、叶片式、和柱塞式三大类。
1.2液压泵的选择原则:1.2.1 根据主机工况、功率大小河系统对工作性能的要求,确定液压泵的类型再按照系统所要求的压力、流量大小确定其规格型号。
1.2.2根据使用场合选择液压泵。
一般在机床液压系统中,选用双作用叶片泵和限压式叶片泵;在筑路、港口和小型工程机械中,选用抗污染能力较强的齿轮泵,在负载大、功率大的场合,选用柱塞泵。
1.2.3根据液压泵的流量或排量选择液压泵在液压泵在不使用时可以完全卸荷,并且需要液压泵输出全部流量,选用定量泵。
在流量变化较大,则考虑变量泵。
1.3参照其他要求选择液压泵根据重量、价格、使用寿命及可靠性、液压泵的安装方式、泵的连接方式与承受载荷、连接形式来综合考虑。
2、液压泵的安装:a避免液压泵支撑架刚度不够,产生振动或变形,造成安全事故,无法保证同心度和角度。
b避免液压泵的安装基础不牢,产生同轴度的偏差,导致液压泵轴封损坏,直至到液压泵损坏。
c液压泵的进出口安装牢固,密封装置要可靠,避免吸入空气或漏油的情况。
第四章习题答案4-1、填空题1.液压马达和液压缸是液压系统的(执行)装置,作用是将(液压)能转换为(机械)能。
2.对于差动液压缸,若使其往返速度相等,则活塞面积应为活塞杆面积的(2倍)。
3.当工作行程较长时,采用(柱塞) 缸较合适。
4.排气装置应设在液压缸的(最高)位置。
5.在液压缸中,为了减少活塞在终端的冲击,应采取(缓冲)措施。
4-2、问答题1.如果要使机床工作往复运动速度相同,应采用什么类型的液压缸?答:双杆活塞缸2.用理论流量和实际流量(q t 和q )如何表示液压泵和液压马达的容积效率?用理论转距和实际转距(T t 和T)如何表示液压泵和液压马达的机械效率?请分别写出表达式。
液压泵的容积效率:t V q q =η 液压马达的容积效率:q q t v =η 液压泵的机械效率: T T t m =η 液压马达的机械效率:t m T T=η4-3、计算题1.已知某液压马达的排量V =250mL/r ,液压马达入口压力为p 1=10.5MPa ,出口压力p 2=1.0MPa ,其机械效率ηm =0.9,容积效率ηv =0.92,当输入流量q =22L/min 时,试求液压马达的实际转速n 和液压马达的输出转矩T 。
答案:81r/min ;340N ﹒m2.如图4-12所示,四种结构形式的液压缸,分别已知活塞(缸体)和活塞杆(柱塞)直径为D 、d ,如进入液压缸的流量为q ,压力为p ,试计算各缸产生的推力、速度大小并说明运动的方向。
答案:a )4)(22d D p F -⋅=π;4)(22d D qv -=π;缸体左移b )42d p F π⋅=;42d qv π=;缸体右移 c )42D p F π⋅=; 42D qv π=;缸体右移d )42d p F π⋅=;42d qv π=;缸体右移3.如图4-13所示,两个结构相同的液压缸串联,无杆腔的面积A 1=100×10-4 m 2,有杆腔的面积A 2=80×10-4 m 2,缸1的输入压力p 1=0.9 MPa ,输入流量q 1=12L/min ,不计泄漏和损失,求:1) 两缸承受相同负载时,该负载的数值及两缸的运动速度。
第三章-第四章一、填空题1.液压泵和液压马达都是能量转化装置,液压泵将驱动电动机的机械能转换成液压系统中的油液的(),供系统使用,液压马达是把输来的油液的()转换成机械能,使工作部件克服负载而对外做功。
(压力能、压力能)2.液压泵是依靠密封工作腔的()变化进行工作的,其输出流量的大小也由其大小决定。
(容积)3.液压泵的额定流量是指在额定()和额定()下由泵输出的流量。
(转速、压力)4. 单作用叶片泵和双作用叶片泵的流量都存在脉动,为了减小脉动量,单作用叶片泵叶片数通常选用(),而双作用叶片泵叶片数通常选用()。
(奇数、偶数)5.变量泵是指()可以改变的液压泵,常见的变量泵有( )、( ),其中()是通过改变转子和定子的偏心距来实现变量,()是通过改变斜盘倾角来实现变量。
(排量;单作用叶片泵、轴向柱塞泵;单作用叶片泵;轴向柱塞泵)6.液压泵的实际流量比理论流量();而液压马达实际流量比理论流量()。
(小;大)7.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是()腔,位于轮齿逐渐进入啮合的一侧是()腔。
(吸油;压油)8.为了消除齿轮泵的困油现象,通常在两侧盖板上开(),使闭死容积由大变少时与()腔相通,闭死容积由小变大时与()腔相通。
(卸荷槽;压油;吸油)9.齿轮泵产生泄漏的间隙为()间隙和()间隙,此外还存在()间隙,其中()泄漏占总泄漏量的70%~80%。
(端面、径向;啮合;端面)10.双作用叶片泵的定子曲线由两段()、两段()及四段()组成,吸、压油窗口位于()段。
(大半径圆弧、小半径圆弧、过渡曲线;过渡曲线)11.齿轮泵的吸油口制造的比压油口大,是为了减小()。
(径向不平衡力)12.双作用叶片泵一般为()量泵;单作用叶片泵一般为()量泵。
(定、变)13.轴向柱塞泵主要有驱动轴、斜盘、柱塞、缸体和配油盘五大部分组成,改变(),可以改变泵的排量。
(斜盘的倾角)14.对于液压泵来说,实际流量总是()理论流量;实际输入扭矩总是()其理论上所需要的扭矩。
04-04液压泵和液压马达习题及答案第四章液压泵和液压马达4.1 液压泵完成吸油和排油,必须具备什么条件?泵靠密封⼯作腔的容积变化进⾏⼯作,容积增加吸油,容积减⼩排油。
4.2 什么是齿轮泵的困油现象?有何危害?如何解决?⼀部分的油液困在两轮齿之间的密闭空间,空间减⼩,油液受积压,发热,空间增⼤,局部真空,⽓⽳、振动、噪声。
在两侧盖板上开卸荷槽。
4.3 齿轮泵、双作⽤叶⽚泵、单作⽤叶⽚泵各有哪些特点。
如何正确判断转向、油腔和进出油⼝。
齿轮泵结构简单、尺⼨⼩、重量轻、价格低、流量压⼒脉动⼤、泄漏⼤。
叶⽚泵流量压⼒脉动⼩、噪声⼩、结构复杂、吸油差、对污染敏感。
单作⽤叶⽚泵可做成变量泵。
叶⽚泵根据叶⽚⽅向判断转向。
根据容积变化判断进出油⼝。
4.4 为什么轴向柱塞泵适⽤于⾼压?柱塞泵配合精度⾼、泄漏⼩、容积效率⾼。
4.5 已知泵的额定压⼒和额定流量,管道压⼒损失忽略不计,图c 中的⽀路上装有节流⼩孔,试说明图⽰各种⼯况下泵出⼝处的⼯作压⼒值。
a) b)c) d) e) FF T,n M题4.5图a) b)油回油箱,出⼝压⼒为0。
c) 节流⼩孔流量ρP A C q d =20出⼝压⼒ 20)(2A C q P d ?=?ρd) 出⼝压⼒A FP =e) 功率关系M TT V q T T q P ??=?=?πω2 出⼝压⼒M V TP ?=π24.6设液压泵转速为950r/min ,排量为V P =168m l /r ,在额定压⼒2.95MPa 和同样转速下,测得的实际流量为150l /min ,额定⼯况下的总效率为0.87,求:1)泵的理论流量q t ; 2)泵的容积效率ηv ; 3)泵的机械效率ηm ;4) 泵在额定⼯况下,所需电机驱动功率P ;5) 驱动泵的转矩T 。
1)理论流量min /6.159/168min /950l r ml r V n q p t =?=?=2) 容积效率94.06.159150===t v q qη 3) 机械效率93.094.087.0===v m ηηη4) 电机功率kW l Mpa q p P 48.887.0min//15095.2/=?=?=η5) 转矩Nm nP P T 3.85602===πω 4.7 某液压马达排量V M =250ml/r ,⼊⼝压⼒为9.8MPa ,出⼝压⼒为0.49Mpa ,总效率η=0.9,容积效率ηV =0.92。
液压马达和液压泵一样,都是依靠密封工作容积的变化实现能量的转换,同样具有配流机构。
液压马达在输入的高压液体作用下,进液腔由小变大,并对转动部件产生扭矩,以克服负载阻力矩,实现转动;同时马达的回液腔由大变小,向油箱或泵的吸液口回液,压力降低。
高压液体不断从液压马达的进液口进入,从回液口流出,则液压马达的转子不断地转动而对外做功。
从理论上讲,除阀式配流的液压泵外,其他形式的液压泵和液压马达具有可逆性,可以互用。
实际上,由于使用性能和要求不同,同一种形式的泵和马达在结构上仍有差别。
(1)液压马达是输入带有压力的液体推动其转于旋转,所以必须保证初始密封性,而不必具备自吸能力。
而液压泵通常必须具备自吸能力。
(2)液压马达应能正反转,因而要求其内部结构必须对称。
液压泵通常都是单向旋转,在结构上一般没有此限制。
(3)液压马达的转速范围较大,特别是当转速较低时,应能保证正常工作,因此应采用滚动轴承或静压滑动轴承;若采用动压滑动轴承,就不易形成润滑油膜。
而液压泵的转速较高,一般变化小,就没有这一要求。
第一章习题答案1-1 填空题1.液压传动是以(液体)为传动介质,利用液体的(压力能)来实现运动和动力传递的一种传动方式。
2.液压传动必须在(密闭的容器内)进行,依靠液体的(压力)来传递动力,依靠(流量)来传递运动。
3.液压传动系统由(动力元件)、(执行元件)、(控制元件)、(辅助元件)和(工作介质)五部分组成。
4.在液压传动中,液压泵是(动力)元件,它将输入的(机械)能转换成(压力)能,向系统提供动力。
5.在液压传动中,液压缸是(执行)元件,它将输入的(压力)能转换成(机械)能。
6.各种控制阀用以控制液压系统所需要的(油液压力)、(油液流量)和(油液流动方向),以保证执行元件实现各种不同的工作要求。
7.液压元件的图形符号只表示元件的(功能),不表示元件(结构)和(参数),以及连接口的实际位置和元件的(空间安装位置和传动过程)。
8.液压元件的图形符号在系统中均以元件的(常态位)表示。
1-2 判断题1.液压传动不易获得很大的力和转矩。
(×)2.液压传动装置工作平稳,能方便地实现无级调速,但不能快速起动、制动和频繁换向。
(×)3.液压传动与机械、电气传动相配合时,易实现较复杂的自动工作循环。
(√)4.液压传动系统适宜在传动比要求严格的场合采用。
(×)第二章习题答案2-1 填空题1.液体受压力作用发生体积变化的性质称为液体的(可压缩性),可用(体积压缩系数)或(体积弹性模量)表示,体积压缩系数越大,液体的可压缩性越(大);体积弹性模量越大,液体的可压缩性越(小)。
在液压传动中一般可认为液体是(不可压缩的)。
2.油液粘性用(粘度)表示;有(动力粘度)、(运动粘度)、(相对粘度)三种表示方法;计量单位m2/s是表示(运动)粘度的单位;1m2/s =(106)厘斯。
3.某一种牌号为L-HL22的普通液压油在40o C时(运动)粘度的中心值为22厘斯(mm2/s)。
4. 选择液压油时,主要考虑油的(粘度)。