《正弦定理》
- 格式:doc
- 大小:95.50 KB
- 文档页数:7
《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理所有公式
正弦定理是数学中最重要的定理之一,也是三角函数的基础。
它描述了三角形内角度和边长之间的关系。
它是一种把三角形内角度和边长联系起来的定理,可以用来计算三角形内角度、边长和面积等。
正弦定理的第一个公式表明,三角形的两个内角比和为180度,即a+b=180°。
它表明了三角形内的角度总和为180度,也是三角形的基本特征。
第二个正弦定理的公式是sin a / a= sin b / b,它描述了三角形内角a和角b之间的比例关系。
这个关系表明,在三角形中,两个内角的正弦值比值相等。
最后一个正弦定理的公式是a = b = c,它表明三角形的三条边长是相等的。
它表明,如果三角形的三条边都是相等的,则三角形是等边三角形。
正弦定理也可以用来计算三角形的面积。
计算三角形面积的公式为S=1/2ab sin C,其中a和b分别是三角形的两条边长,C是三角形的夹角大小。
正弦定理的应用非常广泛,它可以用于计算三角形的角度、边长和面积,以及求解其他相关问题。
它是三角函数的基础,也是数学中最重要的定理之一。
正弦定理内容及证明正弦定理是指在一个任意三角形ABC中,三个边的长度a、b、c与对应的角A、B、C之间存在以下关系:a/sin(A) = b/sin(B) = c/sin(C)证明正弦定理一般有两种方法:几何证明和代数证明。
几何证明:1. 过点B作AC的垂线BD,使得BD与AC交于点D。
则三角形ABD与BCD为直角三角形。
2. 由于三角形ABD、BCD为直角三角形,可得:sin(A) = BD / AB,sin(C) = BD / CD。
3. 对于三角形ABD和BCD,因为角B为共对角,所以可得:BD / AB = CD / BC。
4. 根据上面三个等式可以得到:sin(A) = BD / AB = CD / BC = sin(C)。
5. 再利用BD / AB = CD / BC,可以得到BD / CD = AB / BC = sin(B)。
6. 整理可得出正弦定理:a / sin(A) = b / sin(B) = c / sin(C)。
代数证明:1. 通过三角形ABC的两边b和c之间的夹角A,可构造一个高为h的直角三角形ADE(D在BC上)。
2. 根据正弦的定义可得:sin(A) = h / c,sin(90°-A) = h / b。
3. 注意到sin(90°-A) = sin(B)(余角公式),那么可以得到:sin(A) = h / c = sin(B) * b。
4. 类似地,可以通过三角形ABC的两边a和c之间的夹角B,构造一个高为h的直角三角形BEF(E在AC上)。
5. 根据正弦的定义可得:sin(B) = h / a,sin(90°-B) = h / c。
6. 注意到sin(90°-B) = sin(A)(余角公式),那么可以得到:sin(B) = h / a = sin(A) * c。
7. 把第3步的公式和第6步的公式相比较,可以得到:h / a =h / c,即a = c * sin(A)。
正弦定理定理公式正弦定理(Sine Law)是三角形中常用的一个定理,它揭示了三角形的边与角之间的关系。
正弦定理可以用来求解未知边长或角度的问题,在实际生活中有着广泛的应用。
正弦定理的表述如下:在任意三角形ABC中,设三边分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC通过正弦定理我们可以得出以下三个推论:推论1:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sinA/a = sinB/b = sinC/c推论2:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC = 2R(其中R为三角形ABC外接圆的半径)推论3:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sin(A-B) = sinC正弦定理的应用非常广泛,下面我们来看几个实际问题的例子。
例题1:已知三角形ABC中,角A=60°,角B=45°,边AC=8cm,求边BC的长度。
解:根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin45° = 8cm/sin60°BC/(√2/2) = 8cm/(√3/2)BC = 8cm * (√2/2) * 2/√3BC = 8√2/√3 cm所以边BC的长度约为9.24cm。
例题2:已知三角形ABC中,角A=30°,角B=60°,边AC=10cm,求边BC的长度。
解:同样根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin60° = 10cm/sin30°BC/(√3/2) = 10cm/(1/2)BC = 10cm * (√3/2) * 2BC = 10√3 cm所以边BC的长度约为17.32cm。
高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
《正弦定理》的说课稿优秀5篇作为一名默默奉献的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以让教学工作更科学化。
怎样写说课稿才更能起到其作用呢?旧书不厌百回读,熟读精思子自知,本文是美丽的编辑给大伙儿找到的《正弦定理》的说课稿优秀5篇,希望对大家有所帮助。
《正弦定理》的说课稿篇一大家好,今天我说课的题目是《正弦定理》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。
在正式内容开始之前,我要先谈一谈对教材的理解。
《正弦定理》是人教A版必修5一章一节的内容,其主要内容是正弦定理及其应用。
此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。
本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。
因此本节的学习有着特别重要的地位。
二、说学情合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。
所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能能证明正弦定理,并能利用正弦定理解决实际问题。
(二)过程与方法通过正弦定理的'推导过程,提高分析问题、解决问题的能力。
(三)情感、态度与价值观在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点为:正弦定理。
难点:正弦定理的证明。
必修5 1.1 正弦定理和余弦定理1.1.1 正弦定理内蒙古包头市第一中学 王晓慧一、教学目标:1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦 定理。
会初步运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边 与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题的能力。
3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生 之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
二、教学重点与难点:1.重点:正弦定理的探索发现及其初步应用。
2.难点:①正弦定理的证明;②了解已知两边和其中一边的对角解三角形时,解的情况不唯一。
三、教学过程:㈠ 创设情境:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?1671年两个法国天文学家首次测出了地月之间的距离大约为385400km ,你们想知道他们当时是怎样测出这个距离的吗?学习了本章《解三角形》的内容之后,这个问题就会迎刃而解。
㈡ 新课学习:⒈提出问题:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角关系的准确量化的表示呢? ⒉解决问题:回忆直角三角形中的边角关系:根据正弦函数的定义有:sin ,sin a b A B c c==,sinC=1。
经过学生思考、交流、讨论得出: sin sin sin a b c A B C==, C B A c b a问题1:这个结论在任意三角形中还成立吗?(引导学生首先分为两种情况,锐角三角形和钝角三角形,然后按照化未知为已知的思路,构造直角三角形完成证明。
)①当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin a b A B =, 同理可得sin sin c b C B =, 故有 sin sin abA B =sin c C =.从而这个结论在锐角三角形中成立.②当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin a b A ABC , 同理可得=∠sin sin c b C ABC 故有 =∠sin sin abA ABC sin c C =.由①②可知,在∆ABC 中,sin sin abA B =sin cC = 成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abA B =sin cC =.这就是我们今天要研究的——1.1.1 正弦定理思考:你还有其它方法证明正弦定理吗?接着给出解三角形的概念:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形.问题2:你能否从方程的角度分析一下,解三角形需要已知三角形中的几个元素?问题 3:我们利用正弦定理可以解决一些怎样的解三角形问题呢?a b D A B CA B C D b a(1)已知三角形的任意两个角与一边,求其他两边和另一角。
(2)已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。
3. 应用定理:例1.A32.0B81.8.∆=︒=︒在中,已知:,,a=42.9cm,解三角形ABC例2.a B45,.在中,已知:b解三角形∆===︒ABC问题4:你发现运用正弦定理解决的这两类问题的解的情况有什么不同吗?㈢课堂小结:学生发言,互相补充,老师评价.㈣布置作业:1.思考:已知两边和其中一边的对角,解三角形时,解的情况可能有几种?试从理论上说明.2.P10.习题1.1.A组:1.2.正弦定理教学设计说明内蒙古包头市第一中学王晓慧一、本课的教学内容及其地位和作用《正弦定理》共2课时,本课是第1课时,学生在初中已经学习了直角三角形中的边角关系和三角形全等的判定,本课是在此基础上继续研究任意三角形中的边角关系,教师带领学生从已有的知识出发,通过探究得到正弦定理,理解定理的内容并能运用正弦定理解三角形的两类问题,结合三角形全等的判定,理解在已知边边角的情况下,三角形解的个数不确定。
学生在此之前已经学习了三角函数、平面向量、圆等内容,使得这部分内容的处理有了比较多的工具,教学过程中按照从简原则和最近发展区原则,采用“作高”的方式证明了正弦定理,之后,为了发展学生的思维,学会思考数学问题,又引导学生从向量、作外接圆、三角形面积计算等几个角度找到证明的途径,渗透了事物间普遍联系的辩证唯物主义观点。
本章的中心内容是解三角形,正弦定理是解三角形的重要工具之一,是对三角知识的应用,又是对初中解直角三角形内容的直接延伸,在日常生活和工业生产中也时常有解三角形的问题,在天文、航海测量中也有广泛应用(在下一节中专门研究),充分体现了“数学是有用的”,对培养学生应用数学的意识起到重要作用。
二、本课的数学本质与教学目标定位在数学发展史上,受到天文测量、航海测量和地理测量等方面实践活动的推动,解三角形的理论得到不断发展。
如:怎样在航行途中测出海上两个岛屿之间的距离?怎样测量底部不可到达的建筑物的高度?怎样测出在海上航行的轮船的航向和航速?……在生产、生活实际中也会遇到例如:怎样确定楼间距,使得一楼的住户也能得到较为充足的阳光?怎样充分利用废旧钢板来节约成本?……这些都是学生非常感兴趣的生活现实,大千世界,数学无处不在,正如荷兰数学家弗赖登塔尔在他所著的《作为教育任务的数学》一书中所讲:“数学起源于现实”,“数学教师的任务之一是帮助学生构造数学现实,并在此基础上发展他们的数学现实。
”教学中,通过“如何测出地月之间的距离”来布疑激趣,带领学生进入解三角形内容的学习,通过探究,由特殊到一般得到正弦定理,引导学生多角度思考证明正弦定理,体会数学知识彼此紧密联系的特点,从而感受数学的魅力。
教学过程中,让学生经历提出问题、解决问题、初步应用等过程,使学生成为正弦定理的“发现者”和“创造者”,《课程标准》将解三角形作为几何度量问题来展开,重在正弦定理在解三角形中的应用,而不必在恒等变换上进行过于繁琐的训练。
这就要求在教学中突出几何的作用和数学量化的思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究、再创造过程。
基于此,本课的教学目标定位在:1. 在创设的问题情境中,引导学生发现正弦定理,推证正弦定理及简单运用正弦定理与三角形内角和定理解斜三角形的两类问题;2. 通过探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知解决问题的能力;3.面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
三、教学诊断分析学生在初中已经学习了锐角三角函数,在必修4中又研究了任意角的三角函数,所以很容易根据直角三角形中的边角关系,得出直角三角形中的正弦定理,从而引出课题:这一结论在任意三角形中还成立吗?证明这个结论是一个难点,特别是钝角三角形中,教师通过引导学生如何化未知为已知,从而找到解决问题的途径。
再引导学生思考:什么运算可以把长度和角度联系在一起?从而得到多种解决问题方法。
运用定理解三角形不难做到,但是在运用定理的过程中,有一点是学生不容易想到的,也是难以理解的,就是在已知三角形中两边和其中一边的对角时,解的情况不唯一,教师通过引导学生回忆初中所学的三角形全等的判定,“边边角”不能判定三角形全等来理解,本节课只需要让学生知道这一点,详细探究在以后完成。
四、教法特点和预期效果分析原苏联数学教育家斯托利亚尔在他所著的《数学教育学》一书中指出:“数学教学是数学活动的教学”,“数学活动是思维活动,对数学家而言,这是一个发现活动;对于数学教学来说,我们要教给学生的不是死记现成的材料,而是发现数学真理(自己独立的发现科学上已经发现了的东西),学生发现那些在科学上早已被发现的东西的时候,他是像第一次发现者那样去推理的。
”在弗赖登塔尔的论述中也指出:“学生通过自己努力得到的结论和创造是数学教育内容的一部分”。
新课标也在倡导积极主动、勇于探索的学习方式。
基于这样的理念的指导,结合本课的教学内容,本课采用探究发现式教学法,以“如何测量地月之间的距离”来创设问题情境,以问题驱动课堂,使学生的思维始终活跃于如何解决问题的探究活动中,通过师生之间、生生之间的评价来完善对问题的理解和对定理的应用,创造和谐、愉快、平等的学习氛围,体现学生的主体地位,让学生体验快乐学习,同时培养学生学习数学的兴趣和能力。
本课通过引导学生发现直角三角形中的正弦定理,进而探究在任意三角形中是否还成立?将学生带入探索新知的氛围,学生从已有的知识经验出发,探索得出新结论,体验了成功的乐趣,对如何运用定理解决问题也是跃跃欲试,例题教学中,展示学生答案之后,给全体学生一个畅所欲言的机会,互相评价,最终得到完善的答案,在集体交流中感受合作的巨大力量。
这样做,对于不善于表达自己的学生可能会失去和大家交流的机会,但通过老师和学生的鼓励,也可以克服。
这也体现了一个人成长、发展所必须经历的过程,对于培养意志品质起到了重要作用。