燃气轮机装置循环
- 格式:ppt
- 大小:1.32 MB
- 文档页数:29
第2章 燃气轮机循环理论基础§2.1 燃气轮机循环概述与汽轮机装置的循环相比,燃气轮机装置的循环颇具多样性和复杂性。
下面逐次展开作一个简要的介绍。
2.1.1 燃气轮机的理想循环与实际循环单轴燃气轮机简单循环的示意图与温熵图见图2.1理想循环是指构成燃气轮机循环的四个过程都是可逆的,即:压气机的压缩过程是等熵(绝热无损,熵流与熵产都等于零的)压缩过程,燃烧室的燃烧过程是等压(无流动损失,无散热和燃烧损失的)燃烧过程,透平的膨胀过程是等熵(绝热无损,熵流与熵产都等于零的)膨胀过程,排气的放热过程是等压(无流动损失的)放热过程。
实际循环是指构成燃气轮机循环的四个过程都是不可逆的实际过程,即:压气机的压缩过程是不等熵(绝热有损,熵流等于零而熵产不等于零的)压缩过程,燃烧室的燃烧过程是不等压(燃烧室有流动损失,流体流经燃烧室时滞止压力有所降低的)燃烧过程,透平的膨胀过程是不等熵(不绝热(对透平的高温部件进行冷却所致)有损,熵流与熵产都不等于零的)膨胀过程,排气的放热过程是不等压(排气管道有流动损失,流体流经排气管道时滞止压力有所降低的)放热过程。
对于理想过程各计算点的参数计算,有热力学与流体力学中的公式可以使用。
对于实际过程,常常是使用损失模型对理想过程的计算结果加以修正,来获得实际过程各计算点的参数,进而获得实际循环的计算结果。
损失模型是通过实验和生产实际中总结出的经验数据与公式得到的,这一点在下面的讲课过程中会处处遇到。
而且,在对燃气轮机循环进行定性分析时,使用理想循环的模型会使得分析得以简化。
单轴燃气轮机简单理想循环的s T -图和v p -图参见图2.2。
在图2.2(a)中,不计压气机进气管道的流动损失,大气压和压气机第一级入口的滞止压力 相等,即*a p =*1p ,空气在压气机中等熵压缩,压气机出口空气总压为*2p ,滞止温度为*2s T , 之后,空气进入燃烧室与加入燃烧室的燃料进行无燃烧损失和散热损失的定压燃烧,不计燃烧室中的流动损失,则在燃烧室出口,燃气的滞止压力与压气机出口的滞止压力相等, 即*3p =*2p ,而滞止温度为*3T ,然后,燃气进入透平等熵膨胀作功,膨胀到大气压,不计透平排气管道的流动损失,则在透平出口,滞止压力*4p =*a p (=*1p ),滞止温度为*4s T ,排入大气的燃气在大气压力下,定压放热,温度最终降到*1T (=*a T )。
燃⽓轮机及其联合循环运⾏简介燃⽓轮机及其联合循环运⾏简介燃⽓轮机及其联合循环的特点是启动速度快,具有快速加减负荷的能⼒。
它对电⽹的调峰起到了⾮常⼤的作⽤。
我⼚有⼆台9E的燃⽓轮机,⼆台余热锅炉及⼆台汽轮机。
其运⾏⽅式是⼆台燃⽓轮机配⼆台余热锅炉带动⼀台汽机(简称⼆拖⼀⽅式)全⼚总负荷300MW。
作为⼀名电⼚运⾏员⼯在运⾏调度操作上会遇到各种各样的问题。
对于⼀名运⾏员⼯来讲,只有熟练的掌握各种运⾏调度操作以及正确分析各类故障才能保证机组更好的运⾏。
下⾯我简单介绍⼀下燃⽓轮机及其联合循环的运⾏⽅式和⼀些常见的故障。
⼀.燃⽓轮机及其联合循环的运⾏⽅式电⽹的⽇负荷⼀般有两个尖峰,⼀个出现在上午,称为“早峰”;⼀个在下午出现,称为“晚峰”。
通常,晚峰时达到最⾼负荷值。
电⽹的低⾕负荷则出现在凌晨。
峰⾕差甚⾄可以超过总负荷的30%。
可以把它分为三个部分。
⼀个是位于低⾕负荷以下的部分,通称为“基本负荷”;另⼀个是早峰和晚峰部分,称为“尖峰负荷”;位于两者之间的则称为“中间负荷”。
燃⽓轮机及其联合循环的运⾏⽅式可以分为应急型、尖峰负荷型、中间负荷型和基本负荷型四⼤类。
他们的年运⾏时间数、年启动次数、每次的连续运⾏时间以及启动加载时间彼此有很⼤差异,由于联合循环启动时间较长,供电效率⼜很⾼,因⽽,在电⽹中通常⽤来携带基本符合或中间负荷。
应急负荷和尖峰负荷则宜⽤简单循环的燃⽓轮机来承担(简单循环的燃⽓轮机效率低,成本过⼤,应尽量避免)。
⼆.启动过程中点⽕和升速遇到的问题燃⽓轮机及其联合循环的启动成功率在很⼤程度上取决于燃⽓轮机能否正常地启动点⽕和升速。
1.点⽕失败的原因是多⽅⾯的,⼤体上说,有以下⼏个⽅⾯:1)燃油压⼒过低⽽引起的点⽕失败。
对于9E机组来说,造成燃油压⼒不⾜的原因可能是:a.电磁离合器的线圈的绝缘降低或匝数短路⽽⽆法传动主燃油泵;b.燃油流量分配器内因残存粘度较⾼的原油等原因,致使启动时燃油流量分配器的转速增升达不到点⽕要求的额定值;c.燃油调压阀故障,致使燃油压⼒过低。
第12章 气体动力装置循环12-1 某燃气轮机装置理想循环,已知工质的质量流量为15kg/s ,增压比π=10,燃气轮机入口温度T 3=1200K ,压气机入口状态为0.1MPa 、20℃,假设工质是空气,且比热容为定值,c p =1.004kJ/(kg ·K ),k =1.4。
试求循环的热效率、输出的净功率及燃气轮机排气温度。
解:−−4.114.11kk(1)极限回热时 =×===−−4.114.11126615.298kk T T T π497.47K=⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛==−−4.114.113456115.12731kk T T T π763.05K循环吸热量 )(531T T c q p −= 循环放热量 ()162T T c q p −= 循环热效率=−−−=−−−=−=05.76315.127315.29847.497111162T T T T q q t η60.9%t=×===−−4.114.1126515.293kk L T T T π464.30K=⎟⎠⎞⎜⎝⎛×=⎟⎠⎞⎜⎝⎛==−−4.114.11455115.11731kk H T T T π740.71K循环吸热量 ()17.43471.74015.1173004.1)(531=−×=−=T T c q p kJ/kg 循环放热量 ()162T T c q p −=4.114.118−−kk t π12-5 某理想燃气-蒸汽联合循环,假设燃气在余热锅炉中可放热至压气机入口温度(即不再向环境放热),且放出的热量全部被蒸汽循环吸收。
高温燃气循环的热效率为28%,低温蒸汽循环的热效率为36%。
试求联合循环的热效率。
解:假设高温燃气循环中热源提工100kJ热量。
在燃气轮机中作功为 28%281001=×=w kJ燃气在余热锅炉中吸热为 72112=−=w q kJ 在蒸汽轮机中作功为 92.25%36722=×=w KJ 联合循环的热效率为 %92.5310092.2528=+=t η12-6 有人建议利用来自海洋的甲烷气体来发电,甲烷气作为燃气蒸汽联合循环的燃料。
第九章气体动力循环一、选择题1.燃气轮机装置,采用回热后其循环热效率显著升高的主要原因是 CDA.循环做功量增大B.循环吸热量增加C.吸热平均温度升高D.放热平均温度降低2.无回热等压加热燃气轮机装置循环的压气机,采用带中冷器的分级压缩将使循环的BCDA.热效率提高 B.循环功提高C.吸热量提高 D.放热量提高3.无回热定压加热燃气轮机装置循环,采用分级膨胀中间再热措施后,将使BCA.循环热效率提高B.向冷源排热量增加C.循环功增加D.放热平均温度降低4.燃气轮机装置采用回热加分级膨胀中间再热的方法将ACA.降低放热平均温度B.升高压气机的排气温度C.提高吸热平均温度D.提高放热的平均温度的影响因素5. 燃气轮机装置等压加热实际循环中,燃气轮机装置的内部效率i 有ABCDA.燃气轮机的相对内效率B.压气机的压缩绝热效率C.压缩比D.升温比6.采用分级压缩中间冷却而不采取回热措施反而会使燃气轮机装置的循环热效率降低的原因是ABA.压气机出口温度降低B.空气在燃烧室内的吸热量增大C.燃气轮机做功量减少D.燃气轮机相对内效率降低7.采用分级膨胀中间再热而不采用回热措施,会使燃气轮机装置循环热效率降低的原因是BDA.压气机出口温度降低B.循环吸热增大C.循环做功量减少D.循环放热量增加8.目前燃气轮机主要应用于BDA.汽车B.发电站C.铁路轨车D.飞机二、填空题1.最简单的燃气轮机装置的主要设备有压气机,燃烧室,燃气轮机。
2.燃气轮机装置的理想循环由绝热压缩,定压加热,绝热膨胀,定压放热四个可逆过程组成。
3.燃气轮机装置循环中,压气机的绝热压缩过程工质的终态压力与初态压力之比称为增压比。
4.工程上把燃气轮机的实际做功量与理想做功量之比称为相对内效率。
5.燃气轮机装置中,最高温度与最低温度之比称为升温比。
6.工程上,把在回热器中实际吸收的热量与极限回热条件下可获得的热量之比称为回热度。
三、简答题1.实际简单燃气轮机装置循环的热效率与哪些因素有关? t η=1-κκπ11-κ取决于燃料的成分及空气的增压比情况 增压比π越大,热效率越高2.提高燃气轮机装置循环的热效率的措施有哪些? 回热。