函数图像、函数与方程
- 格式:pptx
- 大小:282.37 KB
- 文档页数:13
第7讲函数的图象一、基础梳理1.作图:描点法作图:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性等);④画出函数的图象.2.图象变换法(1)平移变换①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称.②y=-f(x)与y=f(x)的图象关于x轴对称.③y=-f(-x)与y=f(x)的图象关于原点对称.④y=f-1(x)与y=f(x)的图象关于直线y=x对称.(3)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象.②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(4)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)缩(a<1时)到原来的a倍.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)缩(a>1时)到原来的1 a.3.识图:对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.4.用图:函数图象形象地显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题路径,获得问题结果的重要工具,要重视数形结合思想的应用.一条规律对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种方法画函数图象的方法有:(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响;(3)描点法:当上面两种方法都失效时,则可采用描点法.为了通过描少量点就能得到比较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.题型精讲题型一作函数的图象【例1】分别画出下列函数的图象.(1)y=|x2-4x+3|;(2)y=2x+1 x+1;(3)y=10|lg x|.针对训练分别画出下列函数的图象. (1)y =x 2-4|x |+3; (2)y =|log 2(x +1)|.题型二 函数图象的识辨【例2】(1)下列函数图象中不正确的是( ).(2)函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图象大致是(3)设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为A .1B .-1 C.-1-52 D.-1+52针对训练(1)函数f (x )=x +|x |x 的图象是( ).(2)函数y =e x +e -xe x -e-x 的图象大致为( ).题型三 函数图象的应用 【例3】(1)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________. (2)函数y =3x -1x +2的图象关于________对称.(3)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当0<x ≤1时,f (x )=log 12x ,则方程f (x )-1=0在(0,6)内的所有根之和为( ) A .8 B .10 C .12 D .16 针对训练(1)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x-1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1](2)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是(3)已知函数f (x )=⎩⎨⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是______.高考中函数图象的考查题型由解析式找图像【示例】函数y =x2-2sin x 的图象大致是( ).二、图象平移问题【示例】若函数f (x )=ka x -a -x (a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则g (x )=log a (x +k )的图象是( ).三、图象对称问题【示例】y =log 2|x |的图象大致是( ).课时作业7一、选择题1.一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一坐标系中的图象大致是( ).2.函数f (x )=log a |x |+1(0<a <1)的图象大致为( ).3.已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( ).4.函数y =2x -x 2的图象大致是( ).5.方程|x |=cos x 在(-∞,+∞)内( ). A .没有根 B .有且仅有一个根 C .有且仅有两个根 D .有无穷多个根二、填空题6.把函数f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.7.函数f (x )=x +1x 的图象的对称中心为________.8.已知f (x )=⎝ ⎛⎭⎪⎫13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________. 三、解答题9.已知函数y =f (x )的图象关于原点对称,且x >0时,f (x )=x 2-2x +3,试求f (x )在R 上的表达式,并画出它的图象,根据图象写出它的单调区间.10.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ). (1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.。
一次函数的图像和性质一次函数是一个代数函数,也称为线性函数或直线函数。
它是最简单的一种函数形式,在数学和物理等领域中都有广泛的应用。
一次函数的一般形式为y = ax + b,其中a和b是常数,且a≠0。
一次函数的图像是一个直线,在平面直角坐标系中表示为一根斜率为a的直线,并且通过点(0,b)。
斜率a表示函数的变化率,即y随x的变化速度。
当a>0时,表明随着x增大,y也增大;当a<0时,表明随着x增大,y减小;当a=0时,函数是一个常数函数。
一次函数图像的性质包括斜率、截距、与坐标轴的交点等。
1.斜率:一次函数的斜率表示函数图像在x轴方向每单位变化时,y轴方向的变化量。
斜率的计算可以通过选择两个不同的x值,计算对应的y值的差异,然后除以对应x值的差异。
即斜率a=Δy/Δx。
斜率为正的函数图像向上倾斜,斜率为负的函数图像向下倾斜,斜率为零的函数图像是水平的。
2. 截距:一次函数的截距表示函数图像与y轴的交点,它的值可以从函数的形式y=ax+b中得到。
当x=0时,y=b,因此截距为b。
3. 与坐标轴的交点:一次函数的图像与x轴的交点为y=0时的x值,可以通过令y=0,解方程ax+b=0,得到x=-b/a。
图像与y轴的交点已经在上述截距部分提到,为(0, b)。
4.平行:两个斜率相等的一次函数图像是平行的,它们可能在坐标轴上的交点不同,但是平行于同一直线。
5. 垂直平分线:对于一次函数y = ax + b,它的垂直平分线为x =-a/2、如果两个函数的图像关于该直线对称,那么它们是互为反函数。
6. 对称轴:对于一次函数y = ax + b,它的对称轴为x = -b/(2a)。
如果交换a和b的位置,可以得到该函数关于y轴对称函数。
如果交换x和y的位置,可以得到原函数的倒数。
7.等差数列:一次函数的图像可以表示等差数列,其中公差为斜率a。
数列的第一个项为截距b。
8.增长率:一次函数的增长率等于斜率a的绝对值。
函数和方程的区别和联系
函数和方程是数学中常见的概念,它们有一些区别和联系。
首先,函数是一种映射关系,它把一个自变量映射成一个因变量。
函数可以用一个公式或者一张图像来表示,比如 y=x^2 或者一条曲线。
而方程则是一个等式,它表示两个表达式之间的关系,比如 y=x+2。
其次,函数和方程可以相互转换。
一个函数可以被表示成一个方程,比如 y=x^2 可以转换为 x^2-y=0。
同样地,一个方程也可以被
表示成一个函数的形式,比如 x+y=3 可以表示成 y=3-x。
另外,函数和方程的解的含义也有所不同。
一个方程的解是使等式成立的变量值,而一个函数的解则是使函数取到某个特定值的自变量值。
比如,对于方程 x^2=4,它的解是 x=2 或者 x=-2;而对于函数 y=x^2,它的解是使 y=4 的 x 值,即 x=2 或者 x=-2。
总之,函数和方程是数学中基础的概念,它们之间有相互转换的关系,但是解的含义有所不同。
在数学中,我们经常使用这两个概念来描述自然界和社会现象中的规律和关系。
- 1 -。
函数、方程、不等式之间的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。
实际上,他们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。
对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就是原先的函数图像与x 轴交点的横坐标。
这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示:该函数与x 轴的交点坐标为3(,0)2,也就是在函数解析式23y x =-中,令0y =即可。
令0y =也就意味着将一元一次函数23y x =-变成了一元一次方程230x -=,其解和一次函数与x 轴的交点的横坐标是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示:很容易验证,该函数图象与x 轴的交点的横坐标正是方程22520x x -+=的解。
如果右边的函数图象是通过列表、描点、连线的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间的关系,我们可不可以通过利用方程的根来绘制对应的函数图象呢函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。
很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。
函数图像总结函数图像总结函数图像总结一基本函数图像1y=kx(x≠0)2y=kx+b(k≠0)3y4yax2bxc(a0)5yxa6yxk(k0)xk(k0)7yax(a 0,a1)x8ylogax(a0,a1)二抽象图像平移f(x)f(x+1)f(x)f(x-1)f(x)f(x)+1f(x)f(x)-1f(x)f(2x)f(x)2f(x) f(x)f(2x+2)y=f(-x)变成y=f(-x+2)练习:cosxcos2xcos2xcos(2x+4)cosxcos2x+4三图像的变换1f(x)f(|x|)保留y轴右边的,左边关于右边y轴对称2f(x)|f(x)|保留x轴上方的,下方关于x轴对称3f(x)f(-x)y轴对称4f(x)-f(x)x轴对称5f(x)-f(-x)原点对称6f(x)f(|x+1|)先根据1方法变成f(|x|),在向左平移一个单位得到f(|x+1|)7f(x)f(|x|+1)先向左平移一个单位得到f(x+1),再根据1方法变成f(|x|+1)8f(x)与f1(x)的图象关于直线yx对称联想点(x,y),(y,x)9f(x)与f(2ax)的图象关于点(a,0)对称egf(x)= 2x与g(x)=-2x关于对称一、函数yf(x)与函数yf(x)的图象关系函数yf(x)的图象是由yf(x)的图象经沿y轴翻折180°而得到的(即关于y轴对称)。
注意它与函数yf(x)满足f(x)f(x)的图象是不同的,前者代表两个函数,后者表示函数yf(x)本身是关于y轴对称的。
(二)伸缩变换及其应用:函数yaf(bx)的图像可以看作是由函数yf(x)的图像先将横坐标伸长(|b|<1)或缩短(|b|>1)到原来的1倍,再把纵坐标伸长(|a|>1)或缩短(|a|<1)到原来的|a|倍即可得到。
如:|b|1的图像x1要求:1会画y=|x+1|y=-2会画f(x)=lg|x|以及f(x)=|lgx|3会画f(x)=|lg|x+1||以及f(x)=x2-4|x|+5f(x)=|x2-2x-3|二1由图像可知f(x+1)为偶函数对称轴为2由图像可知f(x+1)为奇函数关于点(,)对称Eg、对a,bR,记max{a,b}=(A)0(B) a,ab,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值是b,a<b13(C)(D)3901(选讲)1、yf(x)绕原点顺时针方向旋转;yf(x)12、yf(x);yf (x)绕原点逆时针方向旋转9000yQP(a,b)(yf(x)yQ1xP1(b,a)(yf1(x))P(a,b)(yf(x)0P1(b,a)1(yf(x))0(乙)x(甲)(图五)0说明:关于绕原点旋转180的变换实际上就是关于原点对称的问题。
第七讲:函数图像、函数与方程【考点梳理】 1、函数的图象 (1)平移变换:0,0,||()()a a a a y f x y f x a ><=−−−−−−→=-向右移个单位向左移个单位 0,0,||()()+b b b b y f x y f x b ><=−−−−−−→=向上移个单位向下移个单位(2)伸缩变换:101,11,()()y f x y f x ωωωωω<<>=−−−−−−−−−−−−−→=纵坐标不变,横坐标伸长为原来的倍纵坐标不变,横坐标缩短为原来的倍1,01,()()A A A A y f x y Af x ><<=−−−−−−−−−−−−→=横坐标不变,纵坐标伸长为原来的倍横坐标不变,纵坐标缩短为原来的倍(3)对称变换:()()x y f x y f x =←−−−−→=-关于轴对称()()y y f x y f x =←−−−−→=-关于轴对称()()y f x y f x =←−−−−→=--关于原点对称(4)翻折变换:()(||)y y y y f x y f x =−−−−−−−−−−−→=去掉轴左侧图象,保留轴及右侧图象将轴右侧的图象翻折到左边()|()|x x y f x y f x =−−−−−−−−−→=保留轴及其上方图象将轴下方的图象翻折到上方去2、函数与方程(1)判断二次函数()f x 在R 上的零点个数,一般由对应的二次方程()0f x =的判别式0,0,0∆>∆=∆<来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数()f x 在[,]a b 上的图象是连续不断的一条曲线,且是单调函数,又()()0f a f b ⋅<,则()y f x =在区间(,)a b 内有唯一零点.【典型题型讲解】考点一:函数的图像【典例例题】例1.(多选题)在同一直角坐标系中,函数()()()10,1,xf x a a ag x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC【方法技巧与总结】1.熟练掌握高中八个基本初等函数的图像的画法2.函数的图像变换:平移,对称、翻折变换 【变式训练】1.已知图①中的图象是函数()y f x =的图象,则图②中的图象对应的函数可能是( )A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--【答案】C 【详解】图②中的图象是在图①的基础上,去掉函数()y f x =的图象在y 轴右侧的部分, 然后将y 轴左侧图象翻折到y 轴右侧,y 轴左侧图象不变得来的, ∴图②中的图象对应的函数可能是(||)y f x =-. 故选:C.2.已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,3.若函数()xf x a =(0a >且1a ≠)在R 上为减函数,则函数()log 1a y x =-的图象可以是( )A .B .C .D .【答案】D 【详解】因为函数()xf x a =(0a >且1a ≠)在R 上为减函数.所以01a << .因为函数()log 1a y x =-,定义域为()()11,-∞-+∞,故排除A 、B.当1x >时,函数()()log 1log 1a a y x x =-=-在1,上单调递减.当1x <-时, 函数()()log 1log 1a a y x x =-=--在()1-∞-单调递增. 故选:D.由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.4.函数()ln f x x x =的图象如图所示,则函数()1f x -的图象为( )A .B .C .D .【答案】D 【详解】将函数()f x 的图象作以y 轴为对称轴的翻折变换,得到函数()f x -的图象,再将图象向右平移一个单位,即可得到函数()()()11f x f x -=--的图象. 故选:D .考点二:求函数的零点或零点所在区间判断【典例例题】例1.已知函数()f x 满足()()1f x f x =--,且0x 是()e x y f x =+的一个零点,则0x -一定是下列函数的零点的是( )A .()e 1xy f x =-B .()e 1xy f x =--C .()1e xy f x =+ D .()e xy f x =-【答案】A 【详解】 因为()()1f x f x =--,所以()()f x f x -=-,所以函数()f x 是奇函数.由已知可得()00e 0x f x +=,即()00e x f x =-.所以()00e 1x f x -=-,所以()00e 1x f x --=,故0x -一定是()e 1x y f x =-的零点,故A 正确,B错误; 又由()00e1x f x --=,得()001e x f x --=,所以()0011120e e e e x x x x f x -----+=+=≠,故C 错误;由()()000000e e e e 0x x x x f x f x -----=--=-≠,故D 错误.故选:A .例2.函数()e 26xf x x =+-的零点所在的区间是( )A .()3,4B .()2,3C .()1,2D .()0,1【答案】C 【详解】函数()e 26x f x x =+- 是R 上的连续增函数, 2(1)e 40,(2)e 20f f =-<=->,可得(1)(2)0f f <,所以函数()f x 的零点所在的区间是(1,2). 故选:C【方法技巧与总结】求函数()x f 零点的方法:(1)代数法,即求方程()0=x f 的实根,适合于宜因式分解的多项式;(2)几何法,即利用函数()x f y =的图像和性质找出零点,适合于宜作图的基本初等函数. 【变式训练】1.已知函数()()21,01,0x x f x x x ⎧-≥⎪=⎨+<⎪⎩,则1()2y f x =-的所有零点之和为( )A B C .2 D .0【答案】D 【详解】0x ≥时,由21(1)02x --=得1x =±,0x <时,由1102x +-=得12x =-或32x =-,所以四个零点和为1311022-=. 故选:D .2.已知函数()24x f x x =+-,()e 4x g x x =+-,()ln 4h x x x =+-的零点分别是a ,b ,c ,则a ,b ,c 的大小顺序是( ) A .a b c << B .c b a << C .b a c << D .c a b <<【答案】C 【详解】 由已知条件得()f x 的零点可以看成2x y =与4y x =-的交点的横坐标,()g x 的零点可以看成e x y =与4y x =-的交点的横坐标,()h x 的零点可以看成ln y x =与4y x =-的交点的横坐标,在同一坐标系分别画出2x y =,e x y =,ln y x =,4y x =-的函数图象,如下图所示, 可知c a b >>, 故选:C .3.(2022·广东广州·二模)函数()sin ln 23f x x x π=--的所有零点之和为__________. 【答案】9【详解】由()0sin ln |23|x x f x π=⇔=-,令sin y x =π,ln 23y x =-, 显然sin y x =π与ln 23y x =-的图象都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图象,如图,观察图象知,函数sin y x =π,ln 23y x =-的图象有6个公共点,其横坐标依次为123456,,,,,x x x x x x , 这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=,则1234569x x x x x x +++++=, 所以函数()sin ln 23f x x x π=--的所有零点之和为9. 故答案为:94.若2log 3x x ⋅=,23y y ⋅=,ln 3z z ⋅=,则x 、y 、z 由小到大的顺序是___________. 【答案】y x z << 【详解】依题意,0,0,0x y z >>>,223log 3log x x x x ⋅=⇔=,3232y yy y ⋅=⇔=,ln 3z z ⋅=3ln z z⇔=,因此,2log 3x x ⋅=成立的x 值是函数12log y x =与43y x=的图象交点的横坐标1t , 23y y ⋅=成立的y 值是函数22x y =与43y x=的图象交点的横坐标2t , ln 3z z ⋅=成立的z 值是函数3ln y x =与43y x=的图象交点的横坐标3t , 在同一坐标系内作出函数1223log ,2,ln xy x y y x ===,43y x=的图象,如图,观察图象得:213t t t <<,即y x z <<,所以x 、y 、z 由小到大的顺序是y x z <<. 故答案为:y x z <<6.函数2()log f x x x =+的零点所在的区间为( ) A .11,32⎛⎫ ⎪⎝⎭B .12,23⎛⎫ ⎪⎝⎭C .23,34⎛⎫ ⎪⎝⎭D .3,14⎛⎫ ⎪⎝⎭【答案】B 【详解】2()log f x x x =+为(0,)+∞上的递增函数,222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B考点三:函数零点个数的判断【典例例题】例1.函数()32,03e ,0xx x f x x x ⎧+≤=⎨-+>⎩的零点个数为___________. 【答案】2 【详解】当0x ≤时,令320x +=,解得x =0<,此时有1个零点;当0x >时, ()3e x f x x =-+,显然()f x 单调递增,又1215e 0,(1)2e>022f f ⎛⎫=-+<=-+ ⎪⎝⎭,由零点存在定理知此时有1个零点;综上共有2个零点.故答案为:2.例2.定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【详解】∴()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.2.利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结合图像写出答案3.利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。
初中数学教案:函数图像和方程的关系一、引言函数图像和方程的关系是初中数学重要的内容之一,它涉及到了函数的概念及其图像和方程之间的联系。
了解和掌握函数图像和方程的关系对于初中生来说是非常重要的,不仅可以帮助他们更好地理解函数的性质,还可以提高解决问题的能力。
本教案将介绍函数图像和方程的关系的概念和性质,并提供相应的教学活动和练习,以帮助学生巩固所学知识。
二、函数图像与方程的关系1. 函数的概念函数是一种特殊的关系,它将一个集合中的元素映射到另一个集合中的元素。
在数学中,函数可以表示为y=f(x),其中x是自变量,y是因变量,f(x)表示函数的定义域和值域,即函数的图像。
2. 图像与方程的联系函数的图像可以通过方程来描述。
对于一元函数来说,可以将函数的方程表示为y=f(x),其中x表示自变量的取值范围,y表示对应的因变量值。
函数图像上的每个点都满足函数的方程。
通过观察和分析函数的方程,我们可以得到函数的特性和性质,进而绘制出函数的图像。
三、教学活动1. 导入活动 - 探索函数图像与方程的关系教师可以提供一些简单的函数方程,让学生分析方程与图像之间的联系。
例如,给出y=x+1和y=x^2的方程,让学生画出相应的图像,并观察图像与方程之间的关系。
2. 实验活动 - 用户外运动模型探究函数图像与方程的关系教师可以引导学生进行一个实验活动,通过模拟小车运动的数据来探究速度和时间的关系。
让学生记录小车在不同时间下的位置,并根据数据绘制速度-时间图和位置-时间图。
通过分析图像,学生可以发现速度与位置的关系,并将其表示为函数的方程。
3. 讨论活动 - 探索不同函数图像的方程教师将一些函数图像分发给学生,让他们讨论这些图像的特点,并尝试找出与之对应的方程。
通过讨论,学生可以深入理解函数图像和方程之间的联系,并掌握函数的基本性质。
四、练习1. 基础练习a) 已知函数图像为抛物线,方程为y=ax^2+bx+c,求该抛物线的顶点坐标和对称轴方程。
一次函数与方程一次函数和方程是高中数学中的重要内容,其涉及到直线的方程、斜率、截距等概念。
以下就一次函数和方程进行详细介绍。
一、一次函数一次函数是指函数中只有一项是一次幂的函数,即f(x) = kx + b 的形式,其中k和b是常数。
它的图像为一条直线,称为直线函数,其自变量为x,因变量为y。
其中,k叫做直线的斜率,表示直线的倾斜程度;b叫做直线的截距,表示直线与y轴的交点。
在一次函数中,自变量和因变量通常分别称为x和y,其中x代表自变量,y代表因变量。
1.一次函数的定义域和值域一次函数的定义域是全体实数集,即Df = R。
而一次函数的值域可以通过观察斜率来推断,当k>0时,y的值域为[0,+∞),当k<0时,y的值域为(-∞,0],当k=0时,y的值域为b。
也可以通过求导的方式来确定一次函数的值域。
2.一次函数的性质(1)一次函数是一种线性函数,其图像为一条直线。
(2)斜率为正表示函数单调递增,斜率为负表示函数单调递减。
(3)当斜率k=0时,函数图像为一条水平直线,函数为常函数,截距b为函数的值。
(4)当截距b=0时,函数图像经过原点,称该函数为原点在原处的函数。
(5)当截距b不等于0时,直线与y轴相交于点(0,b),其y坐标为截距b,斜率为k。
二、一次方程一次方程是指方程中只有一项是一次幂的方程,即ax+b=0的形式,其中a和b是常数,且a不等于0。
一次方程的解为x=-b/a,表示方程的解在x轴上的位置。
一次方程中,未知量通常表示为x。
1.一次方程的解法(1)移项法:将方程中已知项移至等式的另一侧,使未知量单独一侧,然后相应地整合方程的两侧,得到未知量的解。
(2)消元法:将方程中含有未知量的项相消,使得未知量单独一项,然后相应地整合方程的两侧,得到未知量的解。
(3)代入法:将方程中一个已知量代入另一个方程中,用代入公式求出未知量的解。
2.一次方程的性质(1)可以通过移项将一次方程变化为确定的形式,形式为x=b/a。
函数、方程和不等式的关系很多学生在学习中把函数、方程和不等式看作三个独立的知识点。
实际上,他们之间的联系非常紧密。
如果能熟练地掌握三者之间的联系,并在做题时灵活运用,将会有事半功倍的收效。
★函数与方程之间的关系。
先看函数解析式:(0)y ax b a =+≠,这是一个一次函数,图像是一条直线。
对于这个函数而言,x 是自变量,对应的是图像上任意点的横坐标;y 是因变量,也就是函数值,对应的是图像上任意点的纵坐标。
如果令0y =,上面的解析式也就变成了0ax b +=,也就是一个一元一次方程了。
我们知道,一般在求一个函数图像与x 轴交点的时候,令0y =(同理求一个函数图像与y 轴交点的时候,令0x =)。
所以上面的意义可以这样表达:将函数解析式中的y 变为0,那么就得到相应的方程。
这个方程的解也就是原先的函数图像与x 轴交点的横坐标。
这就是函数解析式与方程之间的关系,它适用于所有的函数解析式。
举例说明如下:例如函数23y x =-的图像如右所示: 该函数与x 轴的交点坐标为3(,0)2,也就是在函数 解析式23y x =-中,令0y =即可。
令0y =也 就意味着将一元一次函数23y x =-变成了一元 一次方程230x -=,其解和一次函数与x 轴的交 点的横坐标是相同的。
接下来推广到二次函数:例如函数2252y x x =-+的图像如右图所示: 很容易验证,该函数图象与x 轴的交点的横坐标 正是方程22520x x -+=的解。
如果右边的函数图象是通过列表、描点、连线 的方式作出来的,虽然比较精确,但过程十分繁琐。
在实际中,很多时候并不要求我们把函数图象作得 很精准。
有时候只需要作出大致图像即可。
既然上面讲述了函数图象与对应的方程之间 的关系,我们可不可以通过利用方程的根来绘制 对应的函数图象呢?函数2252y x x =-+对应的方程是22520x x -+=,先求出这个方程的两个解。
很容易根据十字相乘法(21)(2)0x x --=得出该方程的两个解分别为12和2。