新人教版八年级数学全册知识点总结
- 格式:doc
- 大小:330.00 KB
- 文档页数:8
人教版初二数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!人教版初二数学知识点总结知识是一座宝库,而实践就是开启宝库的钥匙。
新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
八年级数学上册知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。
定义:满足a +b =c 的三个正整数,称为勾股数。
第二章实数定义:任何有限小数或无限循环小数都是有理数。
无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章图形的平移与旋转定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
人教版八年级上册数学各单元知识点归纳总结人教版八年级上册数学共有6个单元,分别是:
1. 几何基础知识
- 直线、线段、射线的概念
- 角的概念及分类
- 平行线与垂直线的关系
- 圆的概念及要素
- 三角形的分类及特性
2. 一元一次方程与表示法
- 一元一次方程的概念与解法
- 方程的解集与解的判定
- 一元一次方程的应用
3. 几何图形的相似性
- 相似三角形的概念与判定
- 相似三角形的特点
- 相似三角形的性质与应用
4. 数据的描述与处理
- 平均数的概念与求解
- 中位数与众数的概念与求解
- 描述统计与图表分析
5. 线性方程的解与应用
- 二元一次方程组的概念与解法
- 解二元一次方程组的应用问题
6. 几何图形的性质
- 四边形的分类、性质与判定
- 多边形的分类、性质与判定
- 角平分线与垂直平分线的概念与性质
以上是八年级上册数学各单元的主要知识点,具体还需参考教材进行学习。
八年级数学人教版知识点总结八年级数学(人教版)知识点总结。
一、三角形。
1. 三角形的性质。
- 三角形内角和为180°。
- 三角形的外角等于与它不相邻的两个内角之和。
- 三角形三边关系:两边之和大于第三边,两边之差小于第三边。
2. 三角形的分类。
- 按角分类:锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
- 按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形,三边都相等)。
3. 等腰三角形与等边三角形。
- 等腰三角形的性质:两腰相等,两底角相等;三线合一(底边上的高、中线、顶角平分线重合)。
- 等腰三角形的判定:有两边相等的三角形是等腰三角形;有两角相等的三角形是等腰三角形。
- 等边三角形的性质:三边相等,三个角都是60°。
- 等边三角形的判定:三边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
4. 直角三角形。
- 直角三角形的性质:直角三角形两锐角互余;勾股定理a^2+b^2=c^2(a、b 为直角边,c为斜边);直角三角形斜边上的中线等于斜边的一半;30°角所对的直角边等于斜边的一半。
- 直角三角形的判定:有一个角是直角的三角形是直角三角形;勾股定理的逆定理,如果a^2+b^2=c^2,那么这个三角形是直角三角形。
二、全等三角形。
1. 全等三角形的概念。
- 能够完全重合的两个三角形叫做全等三角形,全等用符号“≌”表示。
2. 全等三角形的性质。
- 全等三角形的对应边相等,对应角相等。
3. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
换句话说,全等形就是能够完全重合的图形。
能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
两个三角形全等用符号“≌”表示。
人教版新编八年级上册数学笔记重点归纳在八年级的数学学习中,学生们将接触到许多新的概念和技能,这些内容不仅为后续的学习打下基础,也为日常生活中的实际应用提供了支持。
本文将对八年级上册数学的重点内容进行归纳总结,帮助学生更好地理解和掌握这些知识。
一、代数基础1. 代数表达式代数表达式是由数字、字母和运算符组成的数学表达式。
学生需要掌握如何简化代数表达式,包括合并同类项和使用分配律。
例子:简化(3x + 5x 2) 得到(8x 2)。
2. 方程与不等式学生需要学习如何解一元一次方程和不等式。
解方程的基本步骤包括移项、合并同类项和系数的处理。
例子:解方程(2x + 3 = 11),步骤为:(2x = 11 3) →(2x = 8) →(x = 4)。
3. 函数概念函数是描述变量之间关系的数学工具。
学生需要理解函数的定义、表示方法(如图像、表格和公式)以及如何判断一个关系是否为函数。
例子:函数(y = 2x + 1) 表示每个(x) 值对应一个(y) 值。
二、几何知识1. 平面几何学生需要掌握基本的几何图形及其性质,包括三角形、四边形、圆等。
特别是三角形的内角和、外角和以及相似三角形的性质。
例子:三角形的内角和为180度。
2. 面积与周长学生需要学习如何计算各种图形的面积和周长。
常见图形的公式包括:矩形:面积= 长×宽,周长= 2(长+ 宽)圆:面积= πr²,周长= 2πr3. 立体几何学生需要了解立体图形的基本性质,包括长方体、正方体、圆柱体等的体积和表面积计算。
例子:长方体的体积公式为(V = 长×宽×高)。
三、统计与概率1. 数据收集与整理学生需要学习如何收集、整理和表示数据,包括使用频数表、条形图和折线图等。
例子:通过频数表整理班级学生的身高数据。
2. 平均数、中位数与众数学生需要掌握如何计算一组数据的平均数、中位数和众数,这些统计量能够帮助我们更好地理解数据的特征。
八年级上册数学知识点总结人教版八年级上册数学知识点总结(人教版)数学是一门基础学科,对于学生的学习能力和逻辑思维有着极大的影响。
在八年级上册数学教材中,包含了许多重要的数学知识点,下面将对其中的重点进行总结。
一、代数运算1. 整数运算:整数的加减乘除运算,主要包括整数加法、减法、乘法和除法的运算法则。
2. 小数运算:小数的加减乘除运算,要掌握小数的进位、退位和与整数的运算。
3. 代数式的加减运算:同类项的合并与系数的分配律,要掌握多项式的加减运算,如将同类项合并并进行运算。
4. 括号的运算:通过运用括号进行运算,要掌握括号的展开与因式分解。
二、图形与几何1. 平面图形:包括直线、线段、射线、角、三角形、四边形等常见平面图形,并要理解其性质和分类。
2. 长度、面积和体积:要掌握常见图形的长度计算、面积计算和体积计算方法,包括直角三角形、矩形、正方形等的周长、面积计算。
3. 相似三角形:了解相似三角形的定义,掌握相似三角形的判定方法和性质。
4. 坐标系与图形的位置关系:了解二维直角坐标系的建立和坐标点的表示,掌握图形在坐标系中的位置关系和平移、旋转、翻转等基本变换。
三、函数与方程1. 函数的概念:了解函数的定义、自变量、因变量和函数值的概念,能够根据给定函数的定义域和值域等信息,求解函数值。
2. 线性函数:了解线性函数的定义,能够根据函数的自变量和因变量之间的关系,确定线性函数的解析式。
3. 一元一次方程:掌握一元一次方程的解法,包括等式的简化、移项和消元法等。
4. 反比例函数:了解反比例函数的概念和性质,能够根据给定条件确定反比例函数的解析式。
四、统计与概率1. 数据的收集和整理:了解数据的收集、整理和表示方法,包括频数表、频率表、折线图、直方图等。
2. 统计指标:掌握常见的统计指标,如平均数、中位数、众数和极差等,能够进行数据的分析和比较。
3. 概率的概念:了解随机事件和概率的概念,能够计算简单事件的概率,并掌握事件的排列组合方法。