单片机C语言的延时计算
- 格式:doc
- 大小:43.50 KB
- 文档页数:8
STC12系列单片机C语言的延时程序本举例所用CPU 为STC12C5412 系列12 倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。
共有三条延时函数说明如下:函数调用分两级:一级是小于10US 的延时,二级是大于10US 的延时//====================小于10US 的【用1US 级延时】====================//----------微秒级延时---------for(i=X;i>X;i--) 延时时间=(3+5*X)/12 提示(单位us, X 不能大于255)//================大于10US0;Ms--)for(i=26;i>0;i--);}i=[(延时值-1.75)*12/Ms-15]/4 如想延时60US 则i=[(60-1.75)*12/6-15]/4=25.375≈26; 修改i 的值=26,再调用上面的【10US 级延时函数】Delay10us(6); 则就精确延时60US;如果想延时64US 可以用这二种函数组合来用: Delay10us(6); for(i=9;i>X;i--) 共延时64US//============== 对于大于20Ms 的可用中断来实现程序运行比较好===============中断用定时器0, 1Ms 中断:void timer0(void) interrupt 1{ TL0=(0xffff-1000+2)% 0x100;TH0=(0xffff-1000+2)/0x100; //每毫秒执行一次if(DelayMs_1>0) DelayMs_1--;//大于20Ms 延时程序}函数调用void DelayMs(uint a)//延时 a 乘以1(ms)的时间。
{ DelayMs_1=a; while(DelayMs_1);}如果延时50Ms 则函数值为DelayMs(50)tips:感谢大家的阅读,本文由我司收集整编。
在用C语言写程序时,初学者遇到的一个难题时精确延时程序的设计。
我刚开始用C语言写程序时同样遇到了这个问题,后来参考了一些文章和实际设计后才知道了精确延时程序的设计。
我现在就用两种方法来实现,一种是while()语句,另一种是for()语句,这两种语句均可产生汇编语句中的DJNZ语句,以12MHZ晶振为例(说明:在编写C程序时,变量尽量使用unsigned char,如满足不了才使用unsigned int):1.delay=99;while(--delay);产生的汇编代码为:000FH MOV 08H,#63H0012H DJNZ 08H,0012H这样产生的延时时间为:(99+1)×2us。
最小延时时间为2us,若加上对delay赋值语句,则最小为4us。
2.for(i=delay;i>0;i--);产生的汇编代码同while()语句。
下面来举例几个延时函数:一. 500ms延时子程序void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}产生的汇编代码:C:0x0800 7F0F MOV R7,#0x0FC:0x0802 7ECA MOV R6,#0xCAC:0x0804 7D51 MOV R5,#0x51C:0x0806 DDFE DJNZ R5,C:0806C:0x0808 DEFA DJNZ R6,C:0804C:0x080A DFF6 DJNZ R7,C:0802C:0x080C 22 RET计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us 三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us 循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}三. 10ms延时子程序void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}四. 1s延时子程序void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}以上的这先希望对大家有帮组,如有不足之处请指出,如有更好的方法也可以告诉我,大家一起分享第二部分关于单片机C语言的精确延时,网上很多都是大约给出延时值没有准确那值是多少,也就没有达到精确高的要求,而51hei给出的本函数克服了以上缺点,能够精确计数出要延时值且精确达到1us,本举例所用CPU为STC12C5412系列12倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。
如何利用for循环实现C语言的精确延时C语言最大的缺点就是实时性差,我在网上到看了一些关于延时的讨论,其中有篇文章51单片机Keil C 延时程序的简单研究,他是用while(--i);产生DJNZ 来实现精确延时,后来有人说如果while里面不能放其它语句,否则也不行,用do-while就可以,具体怎样我没有去试.所有这些都没有给出具体的实例程序来.还看到一些延时的例子多多少少总有点延时差.为此我用for 循环写了几个延时的子程序贴上来,希望能对初学者有所帮助.(晶振12MHz,一个机器周期1us.)一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}产生的汇编:C:0x0800 7F0F MOV R7,#0x0FC:0x0802 7ECA MOV R6,#0xCAC:0x0804 7D51 MOV R5,#0x51C:0x0806 DDFE DJNZ R5,C:0806C:0x0808 DEFA DJNZ R6,C:0804C:0x080A DFF6 DJNZ R7,C:0802C:0x080C 22 RET计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us =3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us =3us循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us =5us延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}产生的汇编C:0x0800 7F05 MOV R7,#0x05 C:0x0802 7E84 MOV R6,#0x84 C:0x0804 7D96 MOV R5,#0x96 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET三. 10ms延时子程序程序:void delay10ms(void){ unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}产生的汇编C:0x0800 7F05 MOV R7,#0x05 C:0x0802 7E04 MOV R6,#0x04 C:0x0804 7DF8 MOV R5,#0xF8 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}产生的汇编C:0x0800 7F05 MOV R7,#0x05 C:0x0802 7E04 MOV R6,#0x04 C:0x0804 7D74 MOV R5,#0x74 C:0x0806 7CD6 MOV R4,#0xD6C:0x0808 DCFE DJNZ R4,C:0808C:0x080A DDFA DJNZ R5,C:0806C:0x080C DEF6 DJNZ R6,C:0804C:0x080E DFF2 DJNZ R7,C:0802C:0x0810 22 RET在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响.以下为6MHZ的晶振8051的核心单片机C语言的延时1秒的延时:void delay1s(void){unsigned char h,i,j,k;for(h=3;h>0;h--)for(i=5;i>0;i--)for(j=82;j>0;j--)for(k=19;k>0;k--);}。
C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsi gned char类型具有比un signe d int更优化的代码,在使用时应该使用unsi gned char作为延时变量。
以某晶振为12MHz的单片机为例,晶振为12MH z即一个机器周期为1us。
一. 500ms延时子程序程序:void delay500ms(void){unsign ed char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162usDJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330u s DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333= 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用 2us + 子程序返回 2us + R7赋值1us = 5us延时总时间 =三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsign ed char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--); }三. 10ms延时子程序程序:void delay10ms(void){unsign ed char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--); }四. 1s延时子程序程序:void delay1s(void){unsign ed char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}参考链接:http://www.picav/news/2010-04/2106.htm摘要实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。
C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。
一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--); }三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--); }四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}关于单片机C语言的精确延时,网上很多都是大约给出延时值没有准确那值是多少,也就没有达到精确高的要求,而本函数克服了以上缺点,能够精确计数出要延时值且精确达到1us,本举例所用CPU为STC12C5412系列12倍速的单片机,只要修改一下参数值其它系例单片机也通用,适用范围宽。
51单片机c语言延时51单片机(8051微控制器)是一种广泛使用的嵌入式系统芯片,其编程语言包括C语言和汇编语言等。
在C语言中,实现51单片机延时的方法有多种,下面介绍其中一种常用的方法。
首先,我们需要了解51单片机的指令周期和机器周期。
指令周期是指单片机执行一条指令所需的时间,而机器周期是指单片机执行一个操作所需的时间,通常以微秒为单位。
在C语言中,我们可以使用循环结构来实现延时。
#include <reg51.h> // 包含51单片机的寄存器定义void delay(unsigned int time) // 延时函数,参数为需要延时的微秒数{unsigned int i, j;for (i = 0; i < time; i++)for (j = 0; j < 1275; j++); // 1275个机器周期,约等于1ms}void main() // 主函数{while (1) // 无限循环{// 在这里添加需要延时的代码P1 = 0x00; // 例如将P1口清零delay(1000); // 延时1秒P1 = 0xFF; // 将P1口清零delay(1000); // 延时1秒}}在上面的代码中,我们定义了一个名为delay的函数,用于实现延时操作。
该函数接受一个无符号整数参数time,表示需要延时的微秒数。
在函数内部,我们使用两个嵌套的循环来计算延时时间,其中外层循环控制需要延时的次数,内层循环控制每个机器周期的时间(约为1微秒)。
具体来说,内层循环执行了约1275次操作(具体数值取决于编译器和单片机的型号),以实现约1毫秒的延时时间。
需要注意的是,由于单片机的指令周期和机器周期不同,因此我们需要根据具体的单片机型号和编译器进行调整。
在主函数中,我们使用一个无限循环来不断执行需要延时的操作。
例如,我们将P1口的所有引脚清零,然后调用delay函数进行1秒钟的延时,再将P1口清零并再次调用delay函数进行1秒钟的延时。
单片机C51延时时间怎样计算?C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsigned char类型具有比unsigned int 更优化的代码,在使用时应该使用unsigned char作为延时变量。
以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。
void delay__ms(void) //x,y,z位固定值,故不能接受参数{unsigned char i,j,k;for(i=x;i>0;i--)for(j=y;j>0;j--)for(k=z;k>0;k--);}【Delay_Time=[(2z+3)*y+3]*x+5】一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值 1us = 3us循环外: 5us 子程序调用 2us + 子程序返回 2us + R7赋值 1us = 5us 延时总时间 = 三层循环 + 循环外 = 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}应用单片机的时候,经常会遇到需要短时间延时的情况。
单片机延时计算公式单片机是一种应用广泛的微型计算机系统,它被广泛应用于嵌入式系统、电子设备等领域。
在单片机的编程过程中,经常需要进行延时操作,以控制系统的运行速度或实现特定的功能。
为了准确地控制延时时间,需要使用延时计算公式。
延时时间与单片机的时钟频率有关,通常以秒、毫秒、微秒等单位来表示。
在单片机中,时钟频率是一个基本参数,它决定了单片机每秒钟所执行的指令数。
延时计算公式可以通过时钟频率和所需延时时间来计算出延时所需的指令数。
延时计算公式的一般形式如下:延时指令数 = 延时时间× 时钟频率其中,延时指令数表示需要延时的指令数目,延时时间表示所需延时的时间,时钟频率表示单片机的时钟频率。
在实际应用中,延时时间一般以毫秒或微秒为单位。
为了方便计算,可以将延时时间转换为秒,再根据单片机的时钟频率进行计算。
假设延时时间为T秒,时钟频率为f Hz,则延时指令数可以表示为:延时指令数= T × f延时指令数一般为整数,表示需要延时的指令数目。
在单片机编程中,可以通过循环执行空操作指令或者通过定时器来实现延时操作。
通过控制循环次数或者定时器的设置,可以实现精确的延时时间。
需要注意的是,延时计算公式中的时钟频率必须与实际使用的时钟频率相一致。
在单片机编程中,时钟频率一般通过设置寄存器来进行配置。
如果延时计算公式中的时钟频率与实际使用的时钟频率不一致,将会导致延时时间的不准确。
延时计算公式在单片机编程中具有重要的作用。
通过合理地计算延时指令数,可以实现精确的延时操作,从而实现系统的稳定运行和功能的正常实现。
在实际应用中,需要根据具体的需求和系统的要求,选择合适的延时时间和时钟频率,以确保系统的性能和功能的准确性。
总结起来,单片机延时计算公式是一种根据延时时间和时钟频率来计算延时指令数的方法。
通过合理地计算延时指令数,可以实现精确的延时操作,保证系统的稳定运行和功能的正常实现。
在单片机编程中,合理地应用延时计算公式,可以提高系统的性能和功能的准确性。
单片机C语言延时计算单片机是一种集成电路芯片,内部集成了微处理器、存储器、输入输出接口等主要部件。
C语言是常用的单片机编程语言,可以通过编写C程序来实现单片机的控制和功能。
在单片机编程中,延时是一种常用的操作,用于控制程序执行过程中的时间间隔。
延时的实现方法有多种,可以使用循环遍历、定时器、外部中断等方式。
在循环遍历的延时方法中,可以通过设定一个循环次数来实现延时。
具体的延时时间与循环的次数成正比关系。
例如,在一个8位单片机中,循环一次大约需要4个机器周期,因此可以通过适当设置循环次数来达到需要的延时时间。
但是,使用循环遍历的延时方法会占用CPU资源,可能会影响其他任务的执行。
另一种常用的延时方法是使用定时器。
单片机内部通常集成了一个或多个定时器,可以通过设置定时器的初值和工作模式来实现精确的延时。
例如,可以通过设置定时器的计数值和工作频率来计算出延时的时间。
在定时器工作期间,单片机可以继续执行其他任务,不会占用过多的CPU资源。
除了循环遍历和定时器方法外,还可以使用外部中断的方式来实现延时。
具体的实现方法是通过外部信号触发中断,并在中断处理程序中实现延时功能。
这种方法可以根据外部信号的频率和工作模式来调整延时时间。
在单片机编程中,为了提高代码的可读性和可重用性,可以将延时操作封装成函数。
例如,可以定义一个名为delay的函数,函数的参数为延时的时间(单位为毫秒),函数内部通过循环遍历、定时器或外部中断的方式实现延时。
延时的时间计算可以考虑单片机的工作频率、机器周期以及延时的时间要求。
单片机的工作频率可以由时钟源来决定,一般可以通过设置分频系数来调整。
机器周期是单片机执行一条指令所需的时间,通过单片机的数据手册可以查到相关的数据。
根据单片机的工作频率和机器周期,可以计算出所需的循环次数或定时器计数值。
在使用延时功能时需要注意延时时间的准确性和可调性。
准确性是指延时的实际时间与预期时间之间的误差,通过调整循环次数或定时器计数值可以实现较高的准确性。