第6章光伏并网逆变器控制策略(1)
- 格式:ppt
- 大小:711.50 KB
- 文档页数:44
光伏并网逆变器的控制策略研究光伏并网逆变器是将光伏发电系统产生的直流电转换为交流电并与电网进行连接的设备。
其控制策略的研究对于提高光伏发电系统的发电效率、稳定性和可靠性具有重要意义。
本文将从控制策略的目标、常见的控制策略以及研究中面临的挑战等方面进行综述。
光伏并网逆变器的控制策略的主要目标是实现光伏发电系统与电网之间的安全、稳定地交流功率传输。
为了达到这个目标,控制策略需要同时考虑逆变器的功率输出、电网的频率与电压以及光伏阵列的最大功率点追踪等多个因素。
常见的光伏并网逆变器的控制策略有以下几种:1.基于传统的电压与频率控制策略:该控制策略通过通过调整逆变器的输出电压与频率来实现光伏发电与电网的匹配。
这种控制策略简单直观,但对于电网电压与频率的变化较为敏感,在不稳定的电网条件下可能会导致逆变器输出功率的波动。
2.基于功率调节的控制策略:通过监测逆变器的输出功率与光伏阵列的实际发电功率之间的差异,并调整逆变器的输出电压与频率来实现功率的匹配。
这种控制策略能够实时跟踪光伏阵列的最大功率点,并能够更好地适应电网的变化。
3.基于自适应控制的策略:该控制策略通过建立逆变器与光伏阵列、电网之间的模型,实时调整控制参数以适应系统的变化。
这种控制策略能够提高系统的响应速度与稳定性,但对于逆变器与光伏阵列、电网之间的模型的准确性要求较高。
光伏并网逆变器的控制策略研究面临着一些挑战。
首先,光伏发电系统与电网之间存在的互动关系较为复杂,因此需要建立准确的数学模型进行研究。
其次,光伏发电的输出功率受天气、光照等因素的影响较大,因此对于最大功率点的追踪需要应对这些不确定性。
此外,光伏发电系统的规模不断扩大,需要研究大规模光伏并网逆变器的控制策略。
最后,光伏发电系统与电网之间的交流功率传输需要满足一定的安全性与稳定性要求,因此需要开展相关的安全性与稳定性分析。
在光伏并网逆变器的控制策略研究中,可以采用理论分析、仿真实验以及实际系统的测试等方法进行。
光伏并网逆变器控制策略的研究
光伏并网逆变器作为光伏发电系统中的重要组成部分,其控制策略的合理性直接影响系统稳定性、输出效率及线路积分,因此,研究光伏并网逆变器控制策略至关重要。
一般来说,光伏并网逆变器的控制策略主要包括电压控制、功率控制及谐波抑制等方面。
电压控制主要是保障逆变器输出电压的稳定,避免电压波动过大带来的不良影响。
在此过程中,可以采用PID控制算法等方法进行电压的调节控制,从而实现输出电压的稳定。
功率控制主要是控制逆变器的输出功率,保障其输出功率满足系统需求并充分利用太阳能资源。
在此过程中,需要对太阳能产生的电能进行有效捕捉,同时又要保障逆变器输出的电能对系统的影响最小。
一般可采用MPPT跟踪、脉冲宽度调制等方法进行功率控制。
谐波抑制方面主要是控制光伏并网逆变器输出的谐波,避免谐波对系统稳定性的不良影响。
在此过程中,可采用滤波器等方法进行谐波的抑制处理。
总之,在光伏并网逆变器控制策略研究过程中,需要对光伏发电、逆变器控制及电力系统等方面进行深入研究,以实现光伏发电系统的高效、稳定运行。
光伏并网逆变器控制策略与研究摘要】:能源危机和环境问题是世界各国普遍关注的话题,开发和利用可再生能源在各国能源战略中的地位越来越高。
随着科学技术的发展,光伏发电已经成为一种解决未来能源短缺及环境污染的主要方式。
本文介绍了光伏并网逆变器的拓扑结构,分析了逆变器的控制策略及电流控制技术。
【关键词】:光伏并网逆变器,控制策略,电流控制引言鉴于光伏发电具有间歇性和波动性的特点,随着光伏发电的应用愈来愈广泛、光伏发电并网规模愈来愈大,对电网的稳定运行也带来了愈来愈多的挑战。
并网逆变器是光伏阵列与电网进行电能交互的关键部分,负责将光伏板输出的直流电逆变为符合相关并网要求的交流电并入电网,与电力系统实现安全高效、稳定灵活的互联。
本文基于二极管钳位型三电平光伏逆变器,分析了光伏并网逆变器的控制策略及电流控制技术。
1、光伏并网逆变器的拓扑结构逆变器是光伏并网发电系统的核心部分,决定着整个并网系统的工作性能。
根据光伏阵列输出功率的转换级数可将光伏并网逆变器分为单级式及两级式。
单级式光伏并网逆变器是指将光伏阵列的输出直接通过光伏并网逆变器完成功率直一交的转换,并且由并网逆变器本身实现光伏阵列的最大功率跟踪(Maximum Power Point Tracking, MPPT),但单级式对光伏阵列输出电压大小要求较高。
并网逆变器只有满足一定的启动电压才能正常工作,一般通过多块太阳能电池板串联以满足光伏并网逆变器启动工作的直流母线电压要求。
两级式是在光伏逆变器前增加了一个DC/DC升压环节,用于解决单级式光伏阵列输出电压大小不满足并网逆变器直流母线电压幅值要求的问题。
且一般是采用Boost升压电路,其最关键的是可以在完成升压的同时通过阻抗匹配的原理实现MPPT功能。
光伏并网主要由光伏阵列、Boost升压模块、三电平光伏并网逆变器、系统控制器、锁相环和滤波环节组成。
系统工作原理:太阳能经过光伏阵列转换为直流电压,Boost升压模块将直流电压调节到逆变器直流母线电压幅值要求,从而使逆变器输出的电流满足与电网电压同频同相的要求,即将有功电流注入电网。
光伏并网逆变器的控制策略光伏并网逆变器的控制策略摘要:本文针对使用较多的单相两级非隔离型光伏并网逆变器拓扑和三相单级工频隔离型逆变器拓扑,分别简要分析了其控制策略,包括MPPT原理、电网电压锁相、同步并网正弦电流指令生成、逆变器电流闭环控制、SPWM控制。
分别给出了控制系统结构框图。
1 引言本专题的第一篇论文介绍了作者所在实验室使用的三种光伏并网逆变器的主电路拓扑。
限于篇幅,本文主要介绍“单相两级非隔离型7kW”和“三相单级工频隔离型20kW”两种拓扑的控制策略。
“单相高频隔离型250W微型逆变器拓扑”比较特殊,目前市场上用得较少,其控制策略也不具有一般性。
光伏并网逆变器的控制策略主要包括三大块:最大功率点跟踪(MPPT)、孤岛检测和控制、以及通过逆变器实现单位功率因数并网发电。
本专题中第三篇论文“光伏并网控制系统最大功率点跟踪(MPPT)方法”专门讨论MPPT的相关问题;第四篇论文“光伏并网发电系统的孤岛检测方法”专门讨论孤岛检测问题。
本文中重点介绍单位功率因数并网的相关技术,包括:电网电压锁相、并网电流指令信号的生成、并网电流跟踪控制、SPWM 控制方式等;单相两级变换拓扑还包含一个电压控制外环。
至于MPPT和孤岛检测,本文只介绍它们与其它部分之间的关系。
2 单相并网逆变器控制策略单相并网逆变器的电路拓扑见本专题第一篇论文的图8,其控制系统结构框图示于本文图1。
其中,上半部分通过控制前级Boost电路实现MPPT功能;下半部分实现单位功率因数并网发电,包括孤岛检测功能。
下面分别讨论。
2.1 BOOST电路控制与MPPT图1中,us1和is1分别表示光伏阵列(由PV组件串并联而成)输出的直流电压和电流,us1和is1经ADC进入DSP(或ARM)成为数字信号。
PV板电压us1和电流is1用于MPPT计算,根据MPPT算法实时地求出电压指令u*,u*再与三角载波比较得出PWM控制信号,PWM信号用来控制Boost电路的开关管。
光伏并网逆变器控制策略的研究1. 引言1.1 研究背景由于光伏发电系统的不稳定性和间歇性,逆变器的控制策略对系统整体性能具有至关重要的影响。
目前,虽然已经有一些传统的控制策略应用于光伏并网逆变器,但仍然存在诸多问题和局限性,如功率波动大、电压失调等。
对光伏并网逆变器控制策略的研究具有重要意义,可以提高系统的运行稳定性和效率,同时也有助于推动清洁能源的发展和应用。
本研究旨在通过对光伏并网逆变器控制策略进行深入探讨和优化设计,以实现系统的高效运行和提高发电效率。
结合实验验证和结果分析,为未来光伏并网逆变器的研究和应用提供参考和指导。
1.2 研究意义光伏并网逆变器是光伏发电系统中的核心设备,其控制策略的优劣直接影响着光伏发电系统的发电效率和运行稳定性。
研究光伏并网逆变器控制策略的意义非常重大。
合理的控制策略可以提高光伏发电系统的发电效率,最大限度地利用光伏板转换太阳能的能力。
通过优化逆变器控制策略,可以降低系统的损耗,提高系统的转换效率,从而提高光伏发电系统的整体发电量。
良好的控制策略可以提高光伏发电系统的稳定性和可靠性。
通过合理的控制策略设计,可以有效地降低系统在运行过程中出现的故障概率,保证系统的长期稳定运行,延长设备的使用寿命,降低系统维护成本。
研究光伏并网逆变器控制策略不仅有利于提高光伏发电系统的发电效率和运行稳定性,还对推动光伏发电技术的发展和应用具有重要的意义。
通过不断深入研究和优化控制策略,可以进一步完善光伏发电系统的性能,促进清洁能源的广泛应用。
1.3 研究现状光伏并网逆变器控制策略的研究现状在不断发展和完善。
目前,随着光伏发电系统规模的不断扩大和技术的不断进步,光伏并网逆变器控制策略也日趋多样化和复杂化。
传统的PI控制、PID控制等控制策略已经在实际应用中得到了广泛的应用,但在一些特定条件下存在着性能不佳,动态响应速度慢等问题。
研究人员开始着眼于改进和优化控制策略,以提高光伏并网逆变器的性能和效率。
光伏并网逆变器电流控制策略的研究
光伏并网逆变器电流控制策略是为了实现光伏发电系统与电网之间的
高效能转换和稳定的电能注入而进行的研究。
光伏并网逆变器是将光伏发
电系统输出的直流电能转换为交流电能并注入电网的装置,其电流控制策
略的优化能够提高系统的性能和稳定性。
1.电流控制器的设计:光伏并网逆变器必须能够根据电网的要求控制
输出电流的大小和波形。
传统的电流控制器采用PI控制器或者模糊控制器,但这种控制器在应对光伏输出电流瞬时变化较大的情况下容易产生误差。
因此,当前的研究主要集中在模型预测控制、自适应控制等非线性控
制策略的设计和实现。
2.电流调节策略的研究:为了满足电网对电流波形和功率因数的要求,需要对光伏并网逆变器的电流进行调节。
常见的调节策略有包络控制策略、直接电流控制策略和模糊控制策略等。
这些策略主要通过改变逆变器的控
制参数来实现对电流波形和功率因数的调节。
3.技术经济性的研究:光伏并网逆变器电流控制策略的研究还需要考
虑其对系统的技术经济性的影响。
比如,是否能够降低系统的成本、提高
系统的效率等。
为了实现这些目标,可以利用先进的控制算法和器件设计
来降低系统的能耗,提高系统的效率。
光伏并网逆变器电流控制策略是目前光伏发电系统中一个重要的研究
领域。
通过采用先进的控制策略,可以有效提高光伏并网逆变器的电流控
制性能,实现稳定的电能注入。
同时,可以降低系统运行的成本,提高系
统的技术经济性。
因此,对光伏并网逆变器电流控制策略的研究具有重要
的理论和实际意义。
光伏并网逆变器控制策略的研究光伏并网逆变器是将光伏电池阵列输出的直流电转换为交流电,以并网方式接入电网的装置。
其控制策略的研究对于提高光伏发电系统的性能和效率具有重要意义。
本文将从以下几个方面对光伏并网逆变器的控制策略进行研究。
光伏并网逆变器的MPPT算法的研究。
MPPT(Maximum Power Point Tracking)算法用于寻找光伏电池阵列的最大功率点,即使光伏电池的输出功率达到最大。
常用的MPPT算法有Perturb and Observe(P&O)算法、Incremental Conductance(InCond)算法等。
本文可以通过实验和仿真方法比较不同MPPT算法在不同光照条件下的性能,选取最适合的MPPT算法。
光伏并网逆变器的控制策略研究。
光伏并网逆变器的控制策略包括功率控制策略和电压控制策略两种。
功率控制策略是通过调节光伏阵列的输出功率实现对逆变器输出电流的控制。
常用的功率控制策略有PQ(有功无功)控制策略、Pf(功率因数)控制策略等。
电压控制策略是通过调节光伏阵列的电压实现对逆变器输出电流的控制。
常用的电压控制策略有VQ(电压无功)控制策略、Vf(电压频率)控制策略等。
本文可以通过建立逆变器控制模型,比较不同控制策略在不同工况下的性能,选取最优的控制策略。
光伏并网逆变器的防电气干扰策略的研究。
光伏并网逆变器在工作过程中会产生电气干扰,对电网和其他设备造成干扰。
为了提高光伏并网逆变器的电气兼容性,可以采取一些防电气干扰策略,如滤波器的设计和使用、补偿技术的应用等。
本文可以通过实验和仿真方法研究不同防电气干扰策略的效果,选取最适合的防电气干扰策略。
光伏并网逆变器控制策略的研究涉及到光伏电池阵列的MPPT算法、逆变器的功率控制策略和电压控制策略,以及防电气干扰策略的研究。
通过对这些控制策略进行研究,可以提高光伏发电系统的性能和效率,推动光伏发电技术的发展。
并网逆变器控制策略在光伏发电系统中,逆变器是将直流电转换为交流电的核心设备,起着关键的作用。
并网逆变器作为一种常见的类型,具备将太阳能光伏发电系统产生的直流电能转换为交流电,并将其注入电网的功能。
而并网逆变器的控制策略,则决定了光伏发电系统的工作效率和稳定性。
本文将讨论并网逆变器控制策略的相关问题。
一、传统的在传统的并网逆变器控制策略中,主要采用的是电压源逆变器控制方法。
这种方法通过控制输出电压的幅值和频率,使得逆变器的输出电压与电网电压保持同步,实现无间断地将太阳能发电系统的电能注入电网。
这种控制策略结构简单,控制稳定性较高,但在面对复杂的电网情况时可能存在一些问题。
在电网故障或不稳定的情况下,传统的控制策略可能无法实时调整逆变器的输出电压和频率,导致逆变器无法正常工作。
二、改进的为了提高并网逆变器的工作效率和稳定性,研究者们提出了一系列的改进控制策略。
其中较为常见和有效的策略包括以下几种:1. 频率和电压双闭环控制策略:将传统的电压源逆变器控制策略与频率闭环控制策略相结合,通过控制输出电压和频率的误差信号,调整逆变器的工作参数。
这种策略能够使逆变器在面对电网电压波动和故障时,能够更加灵活地调整输出电压和频率,维持系统稳定运行。
2. 预测控制策略:通过预测电网的电压和频率变化趋势,进行先行控制,使逆变器能够提前调整输出电压和频率,以适应电网变化。
这种策略能够有效降低电网波动对逆变器性能的影响,提高逆变器的稳定性和响应速度。
3. 智能控制策略:利用人工智能和模糊控制等技术,根据电网状态和逆变器工作参数的实时反馈信息,智能地调整逆变器的控制策略。
这种策略能够根据不同的电网情况和工作条件,实时选择最优的控制方式,提高逆变器的工作效率和适应性。
三、并网逆变器控制策略的发展趋势随着太阳能光伏发电技术的不断发展和应用,对并网逆变器的要求越来越高。
未来并网逆变器控制策略的发展趋势主要体现在以下几个方面:1. 多元化控制策略的融合:将传统的控制策略与改进的控制策略相结合,形成更加多元化和灵活的控制方案。