243正多边形和圆-甘肃省永靖县刘家峡中学人教版九年级数学上册教案
- 格式:doc
- 大小:381.50 KB
- 文档页数:4
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
正多边形和圆一、复习引入请同学们口答下面两个问题.1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?老师点评:1.各边相等,各角也相等的多边形是正多边形. 2.实例略.正多边形是轴对称图形,对称轴有无数多条;•正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.二、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、•D、E、F都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.我们以圆内接正六边形为例证明.如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.∵AB=BC=CD=DE=EF∴AB=BC=CD=DE=EF又∴∠A=12BCF=12(BC+CD+DE+EF)=2BC学生口答教师提出的问题教师引导学生分析正六边形与圆的关系。
复习正多边形的概念及正多边形的性质。
教学过程设计教学内容及教师活动学生活动设计意图∠B=12CDA=12(CD+DE+EF+FA)=2CD∴∠A=∠B同理可证:∠B=∠C=∠D=∠E=∠F=∠A又六边形ABCDEF的顶点都在⊙O上∴根据正多边形的定义,各边相等、各角相等、六边形ABCDEF 是⊙O的内接正六边形,⊙O是正六边形ABCDEF的外接圆.一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.例1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,•求正六边形的周长和面积.分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM•中便可求得AM,又应用垂径定理可求得AB的长.正六边形的面积是由六块正三角形面积组成的.三、课堂练习1.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是().A.36° B.60° C.72° D.108°2.已知正六边形边长为a,则它的内切圆面积为_______3.在△ABC中,∠ACB=90°,∠B=15°,以C为学生小组合作探讨例题,并互相交流结合图形让学生理解正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间。
24.3 正多边形和圆教学目标:1.了解正多边形和圆的有关概念.2.理解并掌握正多边形半径、中心角、边心距、边长之间的关系.3.会应用正多边形和圆的有关知识解决实际问题.教学重点:理解并掌握正多边形半径、中心角、边心距、边长之间的关系.教学难点:会应用正多边形和圆的有关知识解决实际问题.教学导入一、知识链接观察下列各图形,并度量各图形的边长和角度,你有什么发现?教学过程二、要点探究探究点1:正多边形的对称性问题1 什么叫做正多边形?问题2 矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?问题3 正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?要点归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形才是中心对称图形.探究点2:正多边形的有关概念及性质问题1 怎样把一个圆进行四等分?问题2 依次连接各等分点,得到一个什么图形?探究归纳把⊙O进行5等分,依次连接各等分点得到五边形ABCDE .(1)填空:①«Skip Record If...»_______=______«Skip Record If...»;②«Skip Record If...»_______=______«Skip Record If...»;③∠A_____∠E.(2)这个五边形ABCDE是正五边形吗?简单说说理由.要点归纳:像上面这样,只要把一个圆分成相等的一些弧,就可以作出这个圆的正多边形,这个圆就是这个正多形的外接圆,这个正多边形也称为这个圆的内接正多边形.问题3 以正四边形为例,根据对称轴的性质,你能得出什么结论?想一想所有的正多边形是不是也都有一个外接圆和一个内切圆?要点归纳:正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距,正多边形每一条边所对的圆心角,.叫做正多边形的中心角,正多边形的每个中心角都等于«Skip Record If...»练一练完成下面表格:正多边形边数内角中心角外角346n探究点3:正多边形的有关计算探究归纳如图,已知半径为4的圆内接正六边形ABCDEF:①它的中心角等于度;②OC BC(填>、<或=);③△OBC是三角形;④圆内接正六边形的面积是△OBC面积的倍.⑤圆内接正n边形面积公式:.典例精析例1 如图,正五边形ABCDE内接于⊙O,则∠ADE的度数是( )A.60°B.45°C.36°D.30°变式题如图,圆内接正五边形ABCDE中,对角线AD和CE相交于点P,则∠APE的度数是( )A.36°B.60°C.72°D.108°例2 (教材P106例题)有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积(精确到0.1 m2).方法总结:圆内接正多边形的辅助线的作法:1.连半径,得中心角;2.作边心距,构造直角三角形.练一练正多边形边数半径边长边心距周长面积324262三、课堂小结正多边形和圆的关系圆内接正n 边形;圆外切正n 边形;任何正多边形都有一个外接圆和内切圆,且这两个圆是同心圆.正多边形的对称性正多边形都是轴对称图形;偶数边的正多边形同时也是中心对称图形,中心就是对称中心.正多边形的性质正多边形的有关计算添加辅助线的方法:连半径,作边心距当堂检测1.一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形( )A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形2.如图,已知⊙O的内接正方形边长为4,则⊙O的半径是( )A.2 B.4 C.«Skip Record If...» D.«Skip Record If...»第2题图第3题图第5题图3.已知⊙O是正六边形ABCDEF的外接圆,P为⊙O上除C.D外任意一点,则∠CPD的度数为( )A.30° B.30°或150° C.60° D.60°或120°4.若正多边形的边心距与半径的比为1∶2,则这个多边形的边数是.5.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为度.(不取近似值)6.要用圆形铁片截出边长为4 cm的正方形铁片,则选用的圆形铁片的直径最小要cm.7.如图,已知点O是正六边形ABCDEF的对称中心,G,H分别是AF,BC上的点,且AG=BH.(1) 求∠FAB的度数;(2) 求证:OG=OH.拓广探索如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案自主学习一、知识链接每个图形中,各边相等,每个角也相等课堂探究二、要点探究探究点1:正多边形的对称性问题1:各边相等,各角也相等的多边形叫做正多边形.问题2:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;问题3:正三角形、正四边形、正五边形、正六边形都是轴对称图形;正四边形、正六边形是中心对称图形,正三角形、正五边形不是中心对称图形.探究点2:正多边形的有关概念及性质问题1:如图①,过圆心作两条互相垂直的直径,分别与圆交于点点A.B.C.D,则点A.B、C.D将圆四等分.问题2:四边形ABCD是一个正方形.探究归纳(1)«Skip Record If...» 3 (2)«Skip Record If...» 3 (3)=(2)五边形ABCDE是正五边形.理由如下:同(1)可得∠A=∠B=∠C=∠D=∠E.由题意得«Skip Record If...»即AB=BC=CD=DE=EA.∴五边形ABCDE是正五边形.问题3 解:如图,EF是边AB.CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD.BC的垂直平分线,∴OA=OD;OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC.CA分别是∠DAB及∠DCB的平分线,BD.DB分别是∠ABC及∠ADC的平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.想一想任何正多边形都有一个外接圆和一个内切圆.练一练典例精析例1 C变式题C利用例2 解:过点O作OP⊥BC于M.在Rt△OPB中,OB=4m,PB=«Skip Record If...»勾股定理,可得边心距«Skip Record If...»亭子地基的面积«Skip Record If...»练一练。
24.3 正多边形与圆教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十四章“圆”24.3 正多边形与圆,内容包括:正多边形的相关概念和画正多边形.2.内容解析正多边形是生活中的常见图形,而且正多边形和圆关系密切,只要把圆分成若干相等的弧,就可以得到这个圆的圆内接正多边形.本节课还需学生理解正多边形半径和中心、边心距、中心角的概念,进而掌握利用等分圆周的方法画出任意正多边形,体现了正多边形与圆的关系.基于以上分析,确定本节课的教学重点是:利用正多边形半径和边长、边心距、中心角之间的关系进行计算.二、目标和目标解析1.目标1)了解正多边形和圆的有关概念.2)理解并掌握正多边形半径和边长、边心距、中心角之间的关系.3)利用等分圆周的方法画出任意正多边形,会利用尺规作图的方法画特殊正多边形.2.目标解析达成目标1)的标志是:理解正多边形和圆的有关概念.达成目标2)的标志是:理解并掌握正多边形半径和边长、边心距、中心角之间的关系,并会用其解决有关问题.达成目标3)的标志是:利用等分圆周的方法画出任意正多边形,会利用尺规作图的方法画特殊正多边形.三、教学问题诊断分析学习本节课时,由于正多边形的相关概念较多,学生容易和之前所学的其它概念相混淆,而且在利用正多边形的相关知识进行计算的时候,学生作为初学者还不能很快地利用所学的知识将正多边形的问题转换成直角三角形的问题进行计算.本节课的教学难点是:利用所学的知识将正多边形的问题转换成直角三角形的问题进行计算.四、教学过程设计(一)探究新知【问题一】观察下面多边形,它们的边、角有什么特点?师生活动:教师提出问题,学生观察图形后得出上述多边形的特点:各边相等,各角相等.【问题二】这些图形在日常生活中经常能看到的,你能找到类似图形吗?师生活动:教师提出问题,学生根据所学知识回答.进而得出正多边形的概念:各边相等,各角也相等的多边形叫做正多边形.【设计意图】感受生活中正多边形,体会正多边形的美.【问题三】下图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?如是轴对称图形,它有几条对称轴;如是中心对称图形,指出它的对称中心.【问题四】简述正多边形的对称性?师生活动:教师提出问题,学生根据所学知识回答.教师引导与总结,最后得出以下结论:1)正多边形都是轴对称图形,一个正n 边形共有n 条对称轴.2)只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.【设计意图】让学生理解正多边形的对称性.师:正多边形和圆的关系非常密切,把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.【问题五】例 如图,把⊙O 分成相等的5段弧,依次连接各分点得到五边形ABCDE. 求证:五边形ABCDE 是圆内接正五边形.师生活动:教师板演,为学生后续学习利用等分圆周的方法画出任意正多边形打基础.【问题六】什么是正多边形的中心、半径、边心距、中心角?师生活动:教师利用多媒体展示正多边形的相关概念,生动形象地展示正多边形的中心、半径、边心距、中心角,便于学生理解与记忆.师:根据所学知识填空:师生活动:教师提出问题,学生根据所学知识回答.师:你发现了什么?师生活动:教师提出问题,学生根据所学知识回答.教师引导与总结,最后得出以下结论:1)正n 边形的一个内角的度数是(n−2)×180°n ;中心角是3600n ;2)正多边形的中心角与外角的大小关系是相等.【设计意图】让学生理解正n 边形的中心角是3600n ,以及正多边形的中心角与外角的大小关系是相等.(二)典例分析与针对训练例1 有一个亭子,它的地基半径为4m 的正六边形,求地基的周长和面积.师生活动:教师板演.通过例题,教师引导学生总结圆内接正多边形常见辅助线作法,让学生理解正多边形的问题可以转换成直角三角形的问题进行计算.【针对训练】1.正八边形的中心角为______.2.一个正多边形的一个外角为30°,则它的内角和为_____.3.若正六边形的边长为3,则其较长的一条对角线长为_____.4.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为_____________.5.正六边形的边心距为√3,则该正六边形的边长是( )A.√3 B.2 C.3 D.2√36.正六边形的边心距为3,则它的周长是()A.6 B.12 C.6√3 D.12√37.如图,有一个直径为4cm的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是()A.1 B.√3C.2 D.48.如图,在圆内接正六边形ABCDEF中,BD,EC交于点G,已知半径为3,则EG的长为()A.√3 B.3 C.2√3 D.6【设计意图】考查正多边形的有关计算.(三)探究新知由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一.【问题一】已知⊙O的半径为2cm,求作圆的内接正三角形.师生活动:教师提出问题,学生根据所学知识尝试画图.教师根据多媒体展示作图方法.【问题二】如何把一个圆分成相等的一些弧,并画出这个圆的内接正多边形?师生活动:学生通过观察刚才多媒体展示的画图过程,尝试回答,得出可以通过以下两种方法画图:1)量角器等分圆 2)用尺规等分圆.【问题三】简述这两种方法的操作步骤及优缺点?师生活动:教师提出问题,学生根据所学知识回答.教学过程中鼓励学生积极发言,允许出现不同的观点,最后由多媒体展示操作步骤及优缺点:用量角器等分圆方法:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角可以等分圆周,从而得到正多边形.采用“先用量角器画一个360°的圆心角,然后在圆上依次截取这个圆心角所对弧的等n弧”.【优缺点】方法简便且可以画任意正多边形、误差小.用尺规等分圆方法:先用尺规作图的方法等分圆,然后依次连接圆上各分点得到正多边形.【优缺点】这种方法有局限性,不是任意正多边形都能用此法作图,同时在作图时较复杂,同样存在作图的误差.【设计意图】让学生掌握利用等分圆周的方法画出任意正多边形的方法.(四)典例分析与针对训练例2 尝试利用尺规画圆内接正四边形、正五边形、正八边形?【针对训练】1.尝试画出圆内接正六边形?【设计意图】会利用尺规作图的方法画特殊正多边形.(五)直击中考1.(2023·上海中考真题)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.2.(2023·安徽·统考中考真题)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE−∠COD=()A.60° B.54° C.48° D.36°3.(2023·浙江台州中考真题)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为().A.√2 B.2 C.4+2√2 D.4−2√24.(2023·陕西中考真题)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为________________ .【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考的内容,进一步了解考点.(六)归纳小结1.通过本节课的学习,你学会了哪些知识?2.简述正多边形和圆的有关概念?3.简述正多边形半径和边长、边心距、中心角之间的关系?4. 简述画正多边形的方法?(七)布置作业P108:习题24.3 第1题,第4题,第5题,第6题五、教学反思。
人教版数学九年级上册24.3.2《正多边形和圆》教案一. 教材分析《正多边形和圆》是人民教育出版社出版的数学九年级上册第24章第三节的内容。
本节内容主要介绍了正多边形的定义、性质以及与圆的关系。
通过学习正多边形和圆,学生能够理解圆的定义,掌握圆的性质,并能够运用圆的知识解决实际问题。
二. 学情分析九年级的学生已经掌握了多边形的基本概念和性质,具备一定的逻辑思维能力。
但是对于正多边形和圆的关系的理解可能存在一定的困难。
因此,在教学过程中,需要通过实例和图形的演示,帮助学生建立直观的认识,引导学生主动探究正多边形和圆的性质。
三. 教学目标1.知识与技能:–能够理解正多边形的定义和性质。
–能够理解圆的定义和性质。
–能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:–通过观察和操作,培养学生的观察能力和动手能力。
–通过小组合作,培养学生的合作能力和沟通能力。
3.情感态度与价值观:–培养学生对数学的兴趣和好奇心。
–培养学生的自主学习能力和解决问题的能力。
四. 教学重难点•正多边形的定义和性质。
•圆的定义和性质。
•正多边形和圆的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究正多边形和圆的性质。
2.通过实例和图形的演示,帮助学生建立直观的认识。
3.采用小组合作的学习方式,培养学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图形和图片,用于演示和解释正多边形和圆的性质。
2.准备练习题和实际问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)–利用图片和实例,引导学生回顾多边形的基本概念和性质。
–提出问题,引导学生思考正多边形和圆的关系。
2.呈现(15分钟)–通过图形和实例,展示正多边形的定义和性质。
–解释正多边形和圆的关系,引导学生理解圆的定义和性质。
3.操练(15分钟)–学生分组合作,进行实际操作,探究正多边形和圆的性质。
–教师引导学生进行讨论和交流,解答学生的疑问。