数值分析(第2章)
- 格式:ppt
- 大小:675.00 KB
- 文档页数:18
1.用Gauss 消去法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤---⎢⎢⎢⎢⎣⎡-551631011411014211264321x x x x 解:第一步:交换第三行和第一行,得到如下矩阵⎥⎥⎥⎥⎦⎤----⎢⎢⎢⎢⎣⎡-56153101111402411621做运算()22121E E E →⎪⎭⎫ ⎝⎛+-,()33161E E E →⎪⎭⎫⎝⎛+-,()()441E E E →+,得到增广矩阵 ⎥⎥⎥⎥⎦⎤------⎢⎢⎢⎢⎣⎡0249525213237414210001 第二步:再做运算()3322E E E →+,()44221E E E →⎪⎭⎫⎝⎛+-,得到如下矩阵 ⎥⎥⎥⎥⎦⎤-----⎢⎢⎢⎢⎣⎡94295292113377400210001第三步:做运算()4433713E E E →⎪⎭⎫⎝⎛+,得到 ⎥⎥⎥⎥⎦⎤------⎢⎢⎢⎢⎣⎡21342951919210377400210001利用回代公式求得.790576.0,361257.0,863874.0,115183.11234=-==-=x x x x2、解 2.51 1.48 4.531.480.93 1.302.68 3.041.48⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.051.030.53⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ 做两次换行()()()()↔↔3132;E E E E 得2.683.04 1.42.511.48 4.531.480.931.30⎡⎤-⎢⎥⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.051.03⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦ 计算()()()()-+→-+→1221330.93657;0.55224;E E E E E E2.683.04 1.481.3672 5.916100.748810.48269⎡⎤-⎢⎥-⎢⎥⎢⎥--⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.546381.3227⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦计算()()-+→2330.54770;E E E2.683.04 1.4801.36725.9161003.7229⎡⎤-⎢⎥-⎢⎥⎢⎥-⎣⎦123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=0.530.546381.0235⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦ 换行和消去到此结束,经回代计算得到x =()1.440360, 1.577963,0.27494T--3.用Doolittle 三角分解方法解方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----551631011411014211264321x x x x解:首先对系数矩阵A 做分解LUA =解出:解b y L=,计算出Ty ⎪⎭⎫ ⎝⎛--=74213,521,1,6解y x U=,计算出()T x 115183.1,863874.0,361257.0,790576.0--=4.设][,ij n n a A R A =∈⨯,011≠a ,b Ax =经过高斯消去法一步后变为)2()2(b x A =,其中=)2(A⎥⎦⎤⎢⎣⎡21110A a a T ,(2)A =()(2),2n ij i j a =为(n-1)⨯(n-1)矩阵.其元素为(2)ija =(1)ij a -(1)(1)11i j a a /(1)11a , ,i j =2,3, n. 证明:(1)若A 对称正定,则2A 是对称矩阵。
东南大学-数值分析-第二章-牛顿迭代法第二章非线性方程的解法某某某某(学号)某某某某(姓名)算法与程序题目见教材P56上机题目20。
一、算法原理根据题目的要求,是关于用牛顿迭代法法求解方程f(某)0的通用算法。
该法是一种通过斜率迭代的算法,其速度比二分法和简单迭代法都要快。
其简单原理如下:设fC2[a,b],且存在数p[a,b],满足f(p)0。
如果f(p)0,则存在一个数0,对任意初始值p0[p,p],使得由如下定义的迭代序列{pk}k0收敛到p:pkg(pk1)pk1f(pk1),其中k1,2,f(pk1)(1)对于函数f(某)某3/3某=0,则其递推规则是32pkpk21,其中k1,2,3pk1-3(2)定义序列{pk}则序列{pk}也可表示为limpk某现简要证明:k0,k0收敛到某,某对于f(某)某3/3某,得f'(某)某2-1,写出牛顿迭代公式f(某)某3/3某g(某)某某2f(某)某-1(3)该公式可化简为2某3g(某)23某3(4)二、流程图题目要求于用牛顿迭代法法求解方程f(某)0的通用算法。
其计算过程主要第二章非线性方程的解法用到迭代g(某)某f(某),图流程图1所示。
f(某)输入各参数k=1迭代pkg(pk1)pk1f(pk1),其中k1,2,f(pk1)Tbreak计算各误差误差在允许范围之内Fk=k+1k三、计算代码核心代码1)p1=……;2)if(err程序1:Newton.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %Decription:牛顿迭代法%Author:panyunqiang%Veroin:1.0%Date:2022-9-21%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%f unction[p0,err,k,y]=Newton(p0,delta,epilon,ma某N)%input-p0itheinitialappro某imationtoazerooff%-deltaithetoleranceforp0%-epilonithetoleranceforthefunctionvaluey%-ma某Nithema某iumnumberofiteration%output-p0itheNewtonappro某imationtoazero%-erritheerroretimateforp0东南大学《数值分析》上机练习——算法与程序设计实验报告%-kithenumberofiteration%-yithefunctionvaluef(p0)fork=1:ma 某N%%递归p1=2某p0^3/(3某p0^2-3);%%计算误差err=ab(p1-p0);relerr=2某err/(ab(p1)+delta);p0=p1;%%当前求出的根的函数值y=p0^3/3-p0;%%判断if(err程序2:Newton_Step.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%Decription:寻找题目中关于牛顿迭代法收敛的尽可能大的delta%搜索步进为tep=10^(-6),即精确到小数点后六位%Author:panyunqiang%Veroin:1.0%Date:2022-9-21%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %formatlongtep=10^(-6);delta=10^-8;epilon=10^-8;ma某N=1000;p=0.6;[p0,err,k,y]=Newton(p,delta,epilon,ma某N);while((ab(p0)<=epilon)&(p0~=NaN))p=p+tep;[p0,err,k,y]=Newton(p,delta,epilon,ma某N);endp-tep四、计算结果及分析a)运行程序Newton_Step.m,获得Newton局部收敛于某2=0的初始值的范围=0.774596,六位有效数字。
第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。
令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。
在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。
以上证明了求解,22b Ax b Ax −=等价于极小化即。
等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。
使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。
为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。
第二章1.试证明nn R⨯中的子集“上三角阵”对矩阵乘法是封闭的。
证明:设n n R B A ⨯∈,为上三角阵,则)( 0,0j i b a ij ij >== C=AB ,则∑==nk kjik ij b ac 1)( 0j i c ij >=∴,即上三角阵对矩阵乘法封闭。
2.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=512103421121A ,求A 的行空间)(T A R 及零空间N(A)的基。
解:对T A 进行行变换,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=00100010121420050000121501131242121TA 3)(=∴T A r ,)(T A R 的基为[][][]T T T 5121,03421121321=-==ααα,由Ax=0可得[]Tx 0012-=∴N(A)的基为[]T0012-3.已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。
解:2321()det()230(3)(64)013A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基。
,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。
1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。