研究生矩阵论期末试题
- 格式:pdf
- 大小:408.66 KB
- 文档页数:1
武汉大学2018-2019第一学期研究生《矩阵论》期末考试题
一、(15分)设W={(x 1,x 2,x 3,x 4)|x 1-x 2+x 3-x 4=0},其中(x 1,x 2,x 3,x 4)∈R 4
(1)证明W 是线性空间;
(2)求W 的一组基和维数;
(3)将W 的基扩充为R 4的基。
二、(15分)设V 是欧氏空间,W 是V 的任意一个子空间,令W ⊥={α∈V|α⊥W}
证明:(1)W ⊥也是V 的子空间;
(2)V=W ⊕W ⊥。
三、(15分)在R 3中定义变换σ(x 1,x 2,x 3)丅=(x 1+x 2,x 1-x 2,x 3)
丅(1)证明σ是线性变换;
(2)求σ的像lmσ和σ的核kerσ;
(3)求σ在基β1=(1.0.0)丅,β2=(1.1.0)丅,β3=(1.1.1)丅下的矩阵表示。
四、(15分)设σ是n 维线性空间,
V (F )上的一个线性变换,关于基α1,α2,...,αn 和基β1,β2,...,βn 的矩阵分别为A 和B 。
证明:存在可逆矩阵P 使得B=P -1AP 。
五、(15分)已知A=⎪⎪⎪⎭
⎫ ⎝⎛0 2 21- 2 21- 1 3(1)求A 的最小多项式;
(2)求A 所有的行列式因子、不变因子和初等因子;(3)求可逆矩阵P 使得P -1AP 为对角矩阵或Jordan 矩阵。
六、(25分)设A ∈R m ×n ,B ∈R n ×p
(1)证明:秩(AB )≤秩(A ),秩(AB )≤秩(B )(2)证明:秩(AB )≥秩(A )+秩(B )-n。
中国矿业大学2014~2015学年第1学期研究生《矩阵论》试卷答题时间:120分钟 考试方式:闭卷姓名_ _____学号____________院系__________任课老师____________得分______ 【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
【二】(15分) 已知矩阵313729214A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(1)求A 的不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=。
【三】(15分)已知矩阵010865A ⎪=- ⎪ ⎪-⎝⎭(1)求A 的特征多项式; (2)求A 的最小多项式;(3)把矩阵Ate 表示成关于A 的多项式。
【四】(10分)已知矩阵111032A ⎪= ⎪ ⎪⎝⎭,求A 的QR 分解。
【五】(10分) 已知矩阵0.20.70.30.6A ⎛⎫= ⎪⎝⎭(1)求1,A A ∞; (2)讨论矩阵幂级数0kk A∞=∑的敛散性;若收敛,求其和。
【六】(15分)已知下面矛盾方程组123131311221x x x x x x x ++=⎧⎪+=⎨⎪+=⎩ (1)求系数矩阵A 的满秩分解; (2)求A 的广义逆矩阵A +;(3)求该方程组的极小范数最小二乘解。
【七】(15分)()n n ij A a R ⨯=∈,证明:2,,max max ij ij i ji ja An a ≤≤⋅【八】(10分)假设A 是n 阶方阵,若A 不与任何对角阵相似,证明:存在多项式()f λ及正整数k ,使得()f A O ≠但[()]k f A O =。
参 考 答 案【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
西安邮电大学研究生课程考试试题
第1页 共3页 西安邮电大学研究生课程考试试题
( — 学年第一学期)
一、填空题(每小题4分,共20分)
1.设T 是线性空间n V )1(>n 的线性变换,若数λ不是T 的特征值,则n V 的子空间{}
n V x x Tx x V ∈==,λλ的维数是 2.已知⎪⎪⎪⎭⎫ ⎝⎛-=5221001i i A ,其中1-=i ,则=1A ,=2A , =F A
3.已知⎪⎪⎪⎪⎭⎫ ⎝⎛--=613
13461A ,矩阵A 是否是收敛矩阵 ,根据是 4.已知⎪⎪⎪⎭
⎫ ⎝⎛=300211101A ,则A 的Jordan 标准形是 5.线性空间n V 中,设由基(Ⅰ):n x x x ,,,21Λ到基(Ⅱ):n y y y ,,,21Λ的过渡矩阵为C ,给定n 阶矩阵B ,线性变换T 满足B x x x Ty Ty Ty n n ),,,(),,,(2121ΛΛ=,则T 在基(Ⅱ)下的矩阵是
二、已知⎪⎪⎪⎭
⎫ ⎝⎛=321043211111A ,求A 的满秩分解.(10分)
三、已知⎪⎪⎪⎭
⎫ ⎝⎛=4021588017190A ,应用n Gerschgori 的特征值估计理论分离A 的特征值,并在复平面上画图表示.(10分)
四、设n m R A ⨯∈,证明在列向量空间m R 中,)(T A N 与)(A R 互补. (10分)。
矩阵论研究生复习题矩阵理论及应用证明题复习题正规矩阵(包括Hermite 矩阵;Hermite 正定矩阵等)1. 设()ij n n A a ?=是n 阶Hermite 矩阵,12,,,n λλλ 是A 的特征值,且12n λλλ≥≥≥ ,证明:(1)1H n H x Axx xλλ≤≤ ;(2){}11max n kk k n a λλ≤≤≤≤.2.假设n 阶Hermite 矩阵A 是正定的。
证明:(1)存在正定矩阵S 使得2A S =;(2)对任意n 维列向量,X Y ,有2HH H Y AXX AX Y AY≤,并且,等号成立当且仅当,X Y 线性相关。
3.证明:设,A B 都是Hermite 矩阵,A 的特征值都大于a ,B 的特征值都大于b ,则A B +的特征值都大于a b +。
4.设A 为n 阶正定Hermite 矩阵,证明(1)Hnn AG a ββ??=是正定的的充分必要条件为1H nn a A ββ->,(2)Hnn AG a ββ=正定时有不等式:nn G a A ≤. 5.A 是n 阶Hermite 矩阵,证明:246A A I -+是正定Hermite 矩阵6.A 、B 都为n 阶正定Hermite 矩阵,且AB BA =,则AB 亦为正定Hermite 矩阵范数1.设?为n nC ?上的矩阵范数,λ为复矩阵A 的特征值,证明:mm A λ≤(m 为正整数)2.设λ是n 阶可逆矩阵A 的特征值,A 是A 的任意一种范数证明:11A λ-≥3.设A 是n 阶可逆矩阵,A 是A 的任意一种范数.证明:A 的谱半径()11A Aρ-≥4.A 是n 阶复矩阵,证明221AA A∞≤5.假设A 是s n ?矩阵,,U V 分别是s s ?、n n ?酉矩阵。
证明:FFAUAV=,22A UAV =。
6.设()ijn nA a ?=为n 阶Hermite 矩阵,证明:(1)2()A A ρ=;(2)()ij aA ρ≤.7.设A 为n 阶方阵,A 是从属于任何向量范数的矩阵范数, 证明:1)1I =; 2) 1A <时,I A -可逆,且()11111I A A A-≤-≤+-.矩阵分解1. A 为秩为r 的半正定Hermite 矩阵,则存在列满秩矩阵P ,使得HA P P =∑,其中1(0,1,2,,),H i r r i r P P λλλ??∑=>== ?I (其中r I 为r 阶单位矩阵) 2.设A 是n 正定Hermite 矩阵,利用矩阵的QR 分解证明:存在一个上三角形矩阵T ,使得H A T T =3.设矩阵,A B 都是m n ?矩阵,利用矩阵的满秩分解证明:()rankA B ran kA rankB +≤+.4.A 为秩为r 的半正定Hermite 矩阵,则存在行满秩矩阵P ,使得HA P P =∑,其中1(0,1,2,,),H i r r i r PP I λλλ?? ?∑=>== ?. 5.A 、B 都为n 阶Hermite 矩阵,其中B 为n 阶正定矩阵,证明:存在可逆矩阵Q ,使=H Q BQ E ,H Q AQ 为对角矩阵(这里E 为n 阶单位矩阵)6.A 是n 阶可逆矩阵,则A 可以分解为一个酉矩阵与一个正定矩阵的乘积7.设m n A C ?∈,证明A 的秩为r 的充分必要条件是存在,m rr m rr F C G C ??∈∈,使得A FG =.8.设A 为n 阶可逆方阵,证明:存在酉矩阵,Q P 使得QAP 为对角线元素都是正数的对角矩阵.。
矩阵分析期末试题及答案矩阵分析是一门重要的数学课程,在科学、工程和经济等领域都有广泛的应用。
期末试题的设置既考查学生对于矩阵分析理论的理解,也测试其应用能力和解决问题的能力。
本文将为您提供一套矩阵分析的期末试题,并附有答案解析。
1. 简答题(每小题2分,共20分)(1) 请简述矩阵的定义和基本术语。
答案:矩阵是由数个数排成m行n列的一个数表。
行数和列数分别称作矩阵的行数和列数。
矩阵的元素用a[i, j]表示,其中i表示所在的行数,j表示所在的列数。
(2) 请解释什么是方阵和对角矩阵。
答案:方阵是行数和列数相等的矩阵。
对角矩阵是除了主对角线上的元素外,其他元素都为零的矩阵。
(3) 请解释矩阵的转置和逆矩阵。
答案:矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。
逆矩阵是满足A * A^(-1) = I的矩阵A的逆矩阵,其中I是单位矩阵。
(4) 请简述特征值和特征向量的定义。
答案:特征值是方阵A满足方程A * X = λ * X的标量λ,其中X是非零的列向量。
特征向量是对应特征值的零空间上的非零向量。
(5) 请解释矩阵的秩和行列式。
答案:矩阵的秩是指矩阵中线性无关的行或列的最大个数。
行列式是将矩阵的元素按照一定规则相乘并相加得到的一个标量。
(6) 请解释正交矩阵和幂等矩阵。
答案:正交矩阵是满足A * A^T = I的矩阵A。
幂等矩阵是满足A *A = A的矩阵A。
(7) 请解释矩阵的特征分解和奇异值分解。
答案:矩阵的特征分解是将一个矩阵表示为特征向量矩阵、特征值矩阵和其逆的乘积。
奇异值分解是将一个矩阵表示为三个矩阵相乘的形式,其中一个是正交矩阵,一个是对角矩阵。
(8) 请解释矩阵的迹和范数。
答案:矩阵的迹是指矩阵对角线上元素的和。
范数是用来衡量矩阵与向量的差异程度的指标。
(9) 请解释矩阵的稀疏性和块状矩阵。
答案:矩阵的稀疏性是指矩阵中大部分元素为零的特性。
块状矩阵是由多个子矩阵组成的一个矩阵。
(10) 请解释矩阵的正定性和对称性。
第一套试题答案一(10分)、证明:(1)设11k x +22k x +33k x =0, ①用σ作用式①两端,有111k x λ+222k x λ+333k x λ=0 ②1λ⨯①-②,有21223133()()0k x k x λλλλ-+-= ③再用σ作用式③两端,有2122231333()()0k x k x λλλλλλ-+-= ④ ③⨯2λ-④,有313233()()0k x λλλλ--=。
由于123,,λλλ互不相等,30x ≠,因此30k =,将其代入④,有20k =,利用①,有10k =。
故1x ,2x ,3x 是线性无关的。
(2)用反证法。
假设1x +2x +3x 是σ的属于特征值λ的特征向量,于是有123123()()x x x x x x σλ++=++即112223123()x x x x x x λλλλ++=++112223()()()0x x x λλλλλλ-+-+-=由于1x ,2x ,3x 线性无关,因此123λλλλ===,这与123,,λλλ互不相等矛盾。
所以,1x +2x +3x 不是σ的特征向量。
二(10分)、解:2312321232()()1;()(2);()(2)()1;()(2);()(2)1()(2)(2)A D D D d d d A λλλλλλλλλλλλλλλλλλλλ==-=-==-=-⎛⎫⎪- ⎪ ⎪-⎝⎭的行列式因子分别为,不变因子分别为,于是的Smith 标准形为.三(10分)、解:11121634E A λλλλ+⎛⎫ ⎪-= ⎪ ⎪---⎝⎭210001000(1)λλ⎛⎫ ⎪≅- ⎪ ⎪-⎝⎭A λλ2矩阵的初等因子为: -1, (-1),100:011001J ⎛⎫⎪= ⎪ ⎪⎝⎭故约当标准形为。
四(12分)、解:令()()()1120,E A λλλλ-=-++=得特征值123112λλλ==-=-,,,解齐次方程组()0,E A x -=()2;Tii α=1得基础解系解齐次方程组()0,E A x --=()101;Tα=-2得基础解系解齐次方程组()20,E A x --=()1;T ii α=-3得基础解系αααααα123123由于,,已两两正交,将,,单位化得()()()11121011623T T Tp i i p p i i --123=,=,= ()1,(2)1.3H U p p p U AU ⎛⎫⎪==- ⎪ ⎪⎝⎭123令分,则五(10分)、解:(){}11(1),01,()TAx o i N A span ξξ===解齐次方程组得基础解系,,;又(){}{}()232323010,,,,100,,00H H R A span o span A o i ξξξξξξ⎛⎫⎪===-= ⎪ ⎪-⎝⎭这里,; 显然(),0,iji j ξξ=≠当时;()().HN A R A ⊥故有()()()()()()()()()333(2)dim dim dim 3dim ,Q H H H H N A R A C N A R A N A R A C N A R A C ++=+==+=是的子空间且故。