14.3 因式分解第2课时
- 格式:ppt
- 大小:682.50 KB
- 文档页数:5
第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
第2课时运用完全平方公式因式分解教学目标1.使学生理解用完全平方公式分解因式的原理。
2.使学生初步掌握适合用完全平方公式分解因式的条件,会用完全平方公式分解因式。
重点难点重点:让学生会用完全平方公式分解因式。
难点:让学生识别并掌握用完全平方公式分解因式的条件。
教学过程一、引入新课我们知道,因式分解是整式乘法的反过程。
倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法;运用平方差公式法。
现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们共学过三个乘法公式:平方差公式:(a+b)(a–b)=a2–b2。
完全平方公式:(a±b) 2= a2±2ab+ b2.这节课,我们就要讲用完全平方公式分解因式。
二、新课讲解1.将完全平方公式倒写:a2+2ab+ b2=(a+b) 2,a2–2ab+ b2=(a–b) 2。
便得到用完全平方公式分解因式的公式。
2.分析上面两个等式的左边,它们都有三项,其中两项符号为“+”是一个整式的平方,还有一项呢,符号可“+”可“–”,它是那两项幂的底的乘积两倍。
凡具备这些特点的三项式,就是一个二项式的完全平方。
将它写成平方形式,便实现了因式分解。
例如x2 + 6x + 9↓↓↘=(x) 2+2(3)(x)+(3) 2=(x+3) 2.4 x2– 20x + 25↓↓↘=(2x) 2– 2(2x)(5) + (5) 2=(2x+5) 2.3.范例讲解例4 把25x4+10x2+1分解因式。
[教学要点]按前面的分析,让学生先找两个平方项,写出这两个二次幂:25x4=(5x2) 2,1=12.再将另一项写成前述两个幂的底的积的二倍:10x2=2•(5x2)•1,原式便可以写成(5x2+1) 2.可以问学生,如果题中第二项前面带“–”好呢?是否可用完全平方公式:仍可用完全平方公式,得出的是(5x2–1)的平方。
例5把–x2–4y2+4xy分解因式。
第十四章 14.3.3公式法(二)知识点1:利用完全平方公式分解因式两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方,即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.归纳整理:利用完全平方公式分解因式时,必须具备以下几点:①首先利用完全平方公式分解因式的式子必须是三项式;②在三项式中必须含有两项是平方的形式,而且这两项的符号相同,另一项是写成平方项的两项的积的2倍;③当要分解的因式中含有公因式时,要先提出公因式,然后再利用公式法分解.知识点2:x2+(p+q)x+pq型式子的因式分解一个含有一个字母的二次三项式,如x2+ax+b=0,若a=p+q,b=pq,则x2+ax+b可以分解为(x+p)(x+q)的形式,即x2+(p+q)x+pq=(x+p)(x+q),利用这个公式可以将某些二次项系数是1的二次三项式分解因式.关键提醒:x2+(p+q)x+pq型的二次三项式的因式分解的关键是合理地将一次项系数拆成两个数的和,而常数项恰好又是这两个数的积,然后直接套用公式即可.考点1:利用完全平方公式法因式分解【例1】分解因式:(1)4x2-20x+25;(2) +ab+a2b2;(3)16(a+b)2+40(a2-b2)+25(a-b)2.点拨:(1)式中2x,5分别为公式中的a,b;(2)中ab,分别为公式中的a,b;(3)中将4(a+b)与5(a-b)看作公式中的a,b.解:(1)原式=(2x)2-2×2x×5+52=(2x-5)2;(2)原式=+2××ab+(ab)2=;(3)原式=[4(a+b)+5(a-b)]2=(4a+4b+5a-5b)2=(9a-b)2.考点2:因式分解的综合题【例2】把多项式x3-2x2+x分解因式结果正确的是( )A.x(x2-2x)B.x2(x-2)C.x(x+1)(x-1)D.x(x-1)2答案:D点拨:x3-2x2+x=x(x2-2x+1)=x(x-1)2,故选D.本题要进行多步因式分解,首先提取公因式,然后再用公式.。
学科:数学授课教师:年级:八年级总第课时课题14.3.2《因式分解--公式法--完全平方公式》课时教学目标知识与技能用完全平方公式分解因式过程与方法1.理解完全平方公式的特点.2.能较熟悉地运用完全平方公式分解因式.3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.4.能灵活应用提公因式法、公式法分解因式.情感价值观通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法创设情境-主体探究-合作交流-应用提高媒体资源多媒体投影教学过程教学流程教学活动学生活动设计意图复习提问1、分解因式:(1)-a2+b2(2)2a-8a22、把下列各式分解因式.(1)a2+2ab+b2 (2)a2-2ab+b2思考解答复习引入完全平方公式1、把整式乘法的完全平方公式:(a+b)2=a2+2a b+b2(a-b)2=a2-2a b+b2反过来,得到:a2+2a b+b2=(a+b)2a2-2a b+b2=(a-b)2注:(1)形如a2±2a b+b2的式子叫做完全平方式,说出它们的特点。
(2)利用完全平方公式可以把形如完全平方式的多项式因式分解。
(3)上面两个公式用语言叙述为:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
尝试独立完成然后与同伴交流总结掌握完全平方公式分解因式特点例题练习1、分解因式:(1)16x2+24x+9 (2)-x2+4xy-4y22、练习:P119页:练习:1、2:(1)--(4)3、分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+364、练习:P119页:练习:2:(5)(6)5下列多项式是不是完全平方式?为什么?(1)a2-2a+1 (2)a2-4a+4 (3)a2+2ab-b 2(4)a2+ab+b2(5)9a2-6a+1 (6)a2+a+1/4 思考动手板演归纳总结巩固知识因式分解的一般步骤1、把下列多项式分解因式,从中你能发现因式分解的一般步骤吗?(1)44yx-;(2)33abba-;(3)22363ayaxyax++;(4)22)()(qxpx+-+;(5)4x2+20(x-x2)+25(1-x)22、分解因式的一般步骤:(1)先提公因式(有的话);(2)利用公式(可以的话);(3)分解因式时要分解到每个多项式因式不能再分解为止.3、练一练:把下列多项式分解因式:(1)6a-a2-9;(2)-8ab-16a2-b2;(3)2a2-a3-a;课堂小结1、完全平方公式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第1课时运用平方差公式因式分解学习目标:1.探索并运用平方差公式进行因式分解,体会转化思想.2.会综合运用提公因式法和平方差公式对多项式进行因式分解.重点:运用平方差公式进行因式分解.难点:综合运用提公因式法和平方差公式对多项式进行因式分解.一、知识链接1.什么叫多项式的因式分解?2.下列式子从左到右哪个是因式分解?哪个整式乘法?它们有什么关系?① a(x+y)=ax+ay;①ax+ay=a(x+y)3. 20162+2016 能否被2016整除?4.计算:(1)(a+5)(a-5)=___________;(2)(4m+3n)(4m-3n)=___________.二、新知预习试一试:观察以上计算结果,并根据因式分解与整式乘法是互逆运算,分解下列因式:(1)a2-25=___________;(2)16m2-9n=___________.做一做:分解因式a2-b2=____________.要点归纳:a2-b2=____________.即两个数的平方差,等于这两个数的_____与这两个数的______的________.三、自学自测填一填:(1)(a+2)(a-2)=_____________;a2-4=___________;(2)(5+b)(5-b)=______________;25-b2=___________;(3)(x+4y)(x-4y)=______________;x2-16y2=___________.四、我的疑惑_______________________________________________________________________________ _______________________________________________________________________一、要点探究探究点1:用平方差公式分解因式想一想:观察平方差公式a2-b2=(a+b)(a-b),它的项、指数、符号有什么特点?要点归纳:(1)左边是____次____项式,每项都是____的形式,两项的符号相反.(2)右边是两个多项式的____,一个因式是两数的____,另一个因式是这两个数的____.练一练:下列各式中,能用平方差公式分解因式的有()①x2+y2;②x2-y2;③-x2+y2;④-x2-y2;⑤1-14a2b2;⑥x2-4.A.2个B.3个C.4个D.5个方法总结:能用平方差公式分解因式的多项式具有以下特征:两数是平方,减号在中央.例1:分解因式:(1)(a+b)2-4a2;(2)9(m+n)2-(m-n)2.方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.例2:分解因式:(1)5m2a4-5m2b4;(2)a2-4b2-a-2b.方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.注意分解因式必须进行到每一个多项式都不能再分解因式为止.例3:已知x2-y2=-2,x+y=1,求x-y,x,y的值.方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.例4:计算下列各题:(1)1012-992; (2)53.52×4-46.52×4.方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.针对训练1.下列因式分解正确的是( )A .a 2+b 2=(a +b)(a +b)B .a 2-b 2=(a +b)(a -b)C .-a 2+b 2=(-a +b)(-a -b)D .-a 2-b 2=-(a +b)(a -b)2.因式分解:(1)a 2-125b 2; (2)x -xy 2;(3)(2x +3y)2-(3x -2y)2; (4)3xy 3-3xy ;3.用简便方法计算:8.192×7-1.812×7.4.已知:|a-b-3|+(a+b-2)2=0,求a 2-b 2的值.二、课堂小结当堂检测 运用平方差公式分解因式 公式:a 2-b 2=______________.步骤:1.一提:提______;二套:套______;三查:检查每一个多项式是否都不能再分解因式.1.下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+92.分解因式(2x+3)2-x2的结果是()A.3(x2+4x+3) B.3(x2+2x+3)C.(3x+3)(x+3) D.3(x+1)(x+3)3.若a+b=3,a-b=7,则b2-a2的值为()A.-21 B.21 C.-10 D.104.把下列各式分解因式:(1) 16a2-9b2=_________________;(2) (a+b)2-(a-b)2=_________________;(3) 9xy3-36x3y=_________________;(4) -a4+16=_________________.5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值是_____________.6.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积.8. (1)992-1能否被100整除吗?(2)n为整数,(2n+1)2-25能否被4整除?第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时运用完全平方公式因式分解学习目标:1.理解并掌握用完全平方公式分解因式.2.灵活应用各种方法分解因式,并能利用因式分解进行计算.重点:掌握用完全平方公式分解因式.难点:灵活应用各种方法分解因式.一、知识链接1.前面我们学习了因式分解的意义,并且学会了一些因式分解的方法,运用学过的方法你能将a2+2a+1分解因式吗?2.(1) 填一填:在括号内填上适当的式子,使等式成立:①(a+b)2=________;②(a-b)2=________.③a2+________+1=(a+1)2;④a2-________+1=(a-1)2.(2)想一想:①你解答上述问题时的根据是什么?②第(1)①②两式从左到右是什么变形?第(1)③④两式从左到右是什么变形?二、新知预习1.观察完全平方公式:____________=(a+b)2;_____________=(a-b)2完全平方公式的特点:左边:①项数必须是________;②其中有两项是________;③另一项是________.右边:________________________________________________.要点归纳:把a²+______+b²和a²-______+b²这样的式子叫作完全平方式.2.乘法公式完全平方公式与因式分解完全平方公式的联系是________.把乘法公式逆向变形为:a2+2ab+b2=________; a2-2ab+b2=________.要点归纳:用完全平方公式因式分解,即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.三、自学自测1.下列式子为完全平方式的是( )A.a2+ab+b2B.a2+2a+2 C.a2-2b+b2D.a2+2a+12.若x2+6x+k是完全平方式,则k=________.3.填空:(1)x²+4x+4= ( )² +2·( )·( )+( )² =( )²(2)m² -6m+9=( )² - 2· ( ) ·( )+( )² =( )²(3)a²+4ab+4b²=( )²+2· ( ) ·( )+( )²=( )²4.分解因式:a2-4a+4=________.四、我的疑惑_______________________________________________________________________________ _______________________________________________________________________二、要点探究探究点1:完全平方式例1:如果x2-6x+N是一个完全平方式,那么N是( )A . 11 B. 9 C. -11 D. -9变式训练如果x2-mx+16是一个完全平方式,那么m的值为________.方法总结:本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.探究点2:用完全平方公式进行因式分解议一议:(1)将一个多项式因式分解的一般步骤是什么?(2)应注意的事项有哪些?(3)分解因式的方法有哪些?要点归纳:(1)利用公式把某些具有特殊形式(如__________,__________等)的多项式分解因式,这种分解因式的方法叫做公式法.(2)分解因式应根据多项式的特征,有公因式的一般先提_________,再套用公式,没有公因式的,则直接套用公式.分解因式应注意最后的结果中,多项式的每一个因式均不能再继续分解.例2:因式分解:(1)-3a2x2+24a2x-48a2;(2)(a2+4)2-16a2.例3:简便计算.(1)1002-2×100×99+99²;(2)342+34×32+162.方法总结:在较为复杂的有理数运算中,通常要先观察式子的特征,利用因式分解将其变形,转化为较为简单的运算.例4:已知x2-4x+y2-10y+29=0,求x2y2+2xy+1的值..方法总结:此类问题一般情况是将原式进行变形,将其转化为非负数的和的形式,然后利用非负数性质求出未知数的值,然后代入,即可得到所求代数式的值.例5:已知a,b,c分别是△ABC三边的长,且a2+2b2+c2-2b(a+c)=0,请判断△ABC的形状,并说明理由.1.下列式子中为完全平方式的是( )A.a2+b2B.a2+2a C.a2-2ab-b2D.a2+4a+42.若x2+mx+4是完全平方式,则m的值是________.3.分解因式:(1)y2+2y+1; (2)16m2-72m+81.4.分解因式:(1)(x+y)2+6(x+y)+9; (2)4xy2-4x2y-y3.A.a2+1 B.a2-6a+9 C.x2+5y D.x2-5y 2.把多项式4x2y-4xy2-x3分解因式的结果是( )A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)3.若m=2n+1,则m2-4mn+4n2的值是________.4.若关于x的多项式x2-8x+m2是完全平方式,则m的值为___________.5.把下列多项式因式分解.(1)x2-12x+36; (2)4(2a+b)2-4(2a+b)+1; (3) y2+2y+1-x2.6.计算:(1)38.92-2×38.9×48.9+48.92. (2)20142-2014×4026+20132.7.分解因式:(1)4x2+4x+1;(2)2123 3x x-+.小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a-b=3,求a(a-2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.。