表面改性技术
- 格式:doc
- 大小:47.50 KB
- 文档页数:6
化学技术中常见材料的表面改性方法引言:在现代科技的推动下,各种材料的表面改性技术得到了迅猛发展。
表面改性是指对材料表面进行物理、化学或生物学的处理,以改变其表面性质,增强其性能或实现特定功能的过程。
本文将介绍化学技术中常见的材料表面改性方法。
一、溶液法溶液法是最常见的表面改性方法之一。
它通过将材料浸泡在特定溶液中,使溶液中的成分与材料表面相互作用,从而改变其表面性质。
比如,将金属材料浸泡在酸性溶液中,可以去除表面的氧化层,获得更干净的表面。
此外,溶液法还可以利用离子交换的原理,将溶液中的某些金属离子沉积到材料表面,形成一层新的保护层,从而增强材料的耐腐蚀能力。
二、氧化法氧化法是一种常用的表面改性方法,适用于金属、陶瓷和非金属材料。
通过在材料表面形成氧化层,可以提高材料的耐热性、耐腐蚀性和绝缘性能。
比如,将铝材料经过氧化处理,可以在表面形成一层致密的氧化铝膜,保护内部铝材料不受环境气体的侵蚀。
三、涂覆法涂覆法是通过将特定材料涂覆在材料表面,形成一层薄膜来改变材料的表面性质。
这种方法广泛应用于涂料、防锈漆等领域。
例如,在汽车产业中,常使用聚合物涂料对汽车表面进行涂覆,以提供良好的耐候性和外观效果。
此外,涂覆法也可以利用功能性材料的特殊性质,如抗菌、防火等,为材料表面赋予特定的功能。
四、离子注入法离子注入是一种将离子注入到材料表面的方法,以改变其物理和化学性质。
这种方法常用于改善材料的表面硬度、抗磨损性和耐腐蚀性等。
通过选择适当的离子种类和注入条件,可以在材料表面形成致密的硬质层,提高材料的使用寿命。
离子注入方法广泛应用于金属、陶瓷、塑料等材料的表面改性。
五、等离子体表面改性法等离子体表面改性法是一种使用等离子体来处理材料表面的方法。
等离子体是由气体或气体混合物在特定条件下通过电离产生的带电粒子的集合体。
等离子体表面改性法可以通过等离子体的强氧化、改性和清洁作用,对材料表面进行物理、化学或生物学的处理。
1.3.3表面改性技术1.喷丸强化:它是在受喷材料的再结晶温度下进行的一种冷加工方法,加工过程由弹丸在很高速度下撞击受喷工件表面而完成。
喷丸可应用于表面清理、光整加工、喷丸校形、喷丸强化等。
其中喷丸强化不同于一般的喷丸工艺,它要求喷丸过程中严格控制工艺参数,使工件在受喷后具有预期的表面形貌、表层组织结构和残余应力,从而大幅度地提高疲劳强度和抗应力腐蚀能力。
2.表面热处理:它是指仅对工件表层进行热处理,以改变其组织和性能的工艺。
主要方法有感应加热淬火、火焰加热表面淬火、接触电阻加热淬火、电解液淬火、脉冲加热淬火、激光热处理和电子束加热处理等。
3.化学热处理:它是将金属或合金工件置于一定温度的活性介质中保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理工艺。
按渗入的元素可分为渗碳、渗氮、碳氮共渗、渗硼、渗金属等等。
渗入元素介质可以是固体、液体和气体,但都要经过介质中化学反应、外扩散、相界面化学反应(或表面反应)和工件中扩散四个过程,具体方法有许多种。
4.等离子扩渗处理(PDT):又称离子轰击热处理,是指在通常大气压力下的特定气氛中利用工件(阴极)和阳极之间产生的辉光放电进行热处理的工艺。
常见的有离子渗氮、离子渗碳、离子碳氮共渗等,尤以离子渗氮最普遍。
等离子扩渗的优点是渗剂简单,无公害,渗层较深,脆性较小,工件变形小,对钢铁材料适用面广,工作周期短。
5.激光表面处理:它是主要利用激光的高亮度、高方向性和高单色性的三大特点,对材料表面进行各种处理,显著改善其组织结构和性能。
设备一般由激光器、功率计、导光聚焦系统、工作台、数控系统、软件编程系统等构成。
主要工艺有激光相变非晶化、激光熔覆、激光合金化、激光非晶化、激光冲击硬化。
6.电子束表面处理:通常由电子枪阴极灯丝加热后发射带负电的高能电子流,通过一个环状的阳极,经加速射向工件表面使其产生相变硬化,熔覆和合金化等作用,淬火后可获细晶组织等。
材料学中的表面改性技术表面改性技术是材料学领域中的重要研究方向,它通过对材料表面的处理,改变其物理、化学性质,以达到增加材料应用性能的目的。
本文将介绍几种常见的表面改性技术,并探讨其在材料学中的应用。
一、溅射技术溅射技术是利用粒子束轰击材料的表面,使得表面原子或分子被剥离并加速沉积到另一个材料表面上的一种方法。
这种方法不仅可以改变材料的物理性质,如硬度、导电性等,还可以改变其化学性质,如增强表面的化学稳定性、腐蚀抗性等。
溅射技术广泛应用于薄膜制备、电子器件制造等领域。
二、化学气相沉积技术化学气相沉积技术是一种利用化学反应在材料表面沉积薄膜的方法。
常见的化学气相沉积技术包括化学气相沉积(CVD)和物理气相沉积(PVD)等。
CVD技术通过气相化学反应在材料表面生成所需的化合物薄膜,而PVD技术则是利用物理方法将材料原子或分子传输到表面形成薄膜。
这些技术可以改变材料的表面形貌、光学性能、磁性等,广泛应用于涂料、光伏等领域。
三、离子注入技术离子注入技术是将高能离子轰击材料表面,使得离子与原子或分子发生碰撞并改变其性质的方法。
离子注入可以改变材料的化学成分、晶体结构、电学性能等,是一种有效的改善材料表面性能的方法。
离子注入技术在半导体、材料改性等领域有着广泛的应用。
四、等离子体处理技术等离子体处理技术是利用由高能粒子或辐射激发产生的等离子体处理材料表面的方法。
等离子体处理技术可以改变材料的表面形貌、化学成分和性能。
例如,等离子体诱导的表面改性可以增强材料的耐磨性、耐腐蚀性,提高其生物相容性等。
等离子体处理技术在航空航天、医疗器械等领域得到了广泛应用。
五、表面涂层技术表面涂层技术是利用一种或多种材料覆盖在材料表面以改变其性质的方法。
常见的表面涂层技术包括喷涂、热喷涂、电镀等。
这些技术可以提高材料的耐磨性、耐腐蚀性、耐高温性等,并且还可以调整其颜色和光学特性。
表面涂层技术广泛应用于汽车、航空航天、家电等领域。
材料科学中的表面改性技术表面改性技术是材料科学中一项重要的技术。
它通过改变材料表面的化学、物理特性来改变其性能。
目前,表面改性技术在国家经济、环保、卫生、医疗、能源和其他应用领域中发挥着越来越重要的作用。
表面改性技术可以分为化学表面改性和物理表面改性两类。
化学表面改性是指通过在表面上化学反应形成一层分子膜,改变其化学性质,从而改变其表面特性和性能的方法。
物理表面改性则是指通过物理方法如激光处理,电子束处理等来改变表面的形态和结构。
在实际应用中,表面改性技术的方法有很多种。
其中最常见的有等离子体表面改性、复合离子束表面改性、离子交换等技术。
等离子体表面改性技术是通过等离子体的作用使表面产生化学反应,形成一层分子膜以改善材料的表面性质。
等离子体表面改性技术在橡胶、塑料、陶瓷、金属等材料的加工过程中,并能有效改善表面的性能。
复合离子束表面改性技术是指将合适的离子束等方法在材料表面强制打入一些异质原子,从而改变其表面的结构、相位和化学性质,改善其特性和性能。
该技术可广泛应用于新材料的开发,在纳米材料、催化材料、涂料和涂层领域中具有广泛的应用前景。
离子交换技术是指通过离子交换树脂或石墨等材料在表面吸附与离子交换,改变材料表面离子分解的能力和酸碱性质,改善其性能的方法。
离子交换技术被广泛应用于环保、通讯和新能源等领域的新型材料的开发和生产过程中。
表面改性技术不仅可以改善材料本身的特性和性能,从而改善其应用的关键技术,而且还有利于新型材料的开发。
同时,表面改性技术在环保、卫生和医疗等领域应用也日益增多。
通过表面改性技术,材料的应用范围将会更加广泛,为社会和人类的发展做出更大的贡献。
总之,表面改性技术作为一项重要技术,不仅在材料科学领域有着广泛的应用前景,还对人类的工业生产和社会发展具有极其重要的意义。
随着新型材料的不断涌现,我们相信表面改性技术在未来的发展中将会有更广泛的应用和发展前景。
表面改性技术班级:材料092姓名:朱光辉学号:109012042 课程: 现代表面技术表面改性技术概述:表面技术是指采用某种工艺手段使材料表面获得与其基体材料的组织结构、性能不同的一种技术。
材料经表面改性处理后,既能发挥基体材料的力学性能,又能使材料表面获得各种特殊性能(如耐磨,耐高温,合适的射线吸收、辐射和反射能力,超导性能,润滑,绝缘,储氢等)表面改性技术可以掩盖基体材料表面的缺陷,延长材料和构件的使用寿命,节约稀、贵材料,节约能源,改善环境,并对各种高薪技术的发展具有重要作用。
表面改性技术的研究和应用已有多年。
70年代中期以来,国际上出现了表面改性热,表面改性技术越来越受到人们的重视。
表面改性的特点是:(1)不必整体改善材料,只需进行表面改性或强化,可以节约材料。
(2)可以获得特殊的表面层,如果超细晶粒、非晶态、过饱和固溶体,多层结构层等,其性能远非一般整体材料可比。
(3)表面层很薄,涂层用料少,为了保证涂层的性能、质量,可以采用贵重稀缺元素而不会显著增加成本。
(4)不但可以制造性能优异的零部件产品,而且可以用于修复已经损坏、失效的零件。
表面改性技术应用:表面改性技术广泛应用于机械工业、国防工业及航空航天领域,通过表面改性可以使材料性能提高,产品质量提高,降低企业成本。
表面技术的应用,在提高零部件的使用寿命和可靠性,提高产品质量,增加产品的竞争力,以及节约材料,节约能源,促进高科技技术的发展等方面都有着十分重要的意义。
表面改性技术方法:1、金属表面形变强化方法及其应用常用的金属材料表面形变强化方法主要有喷九、滚压和内孔挤压等强化工艺。
喷丸强化是当前国内外广泛应用的一种表面强化方法,即利用高速弹丸强烈冲击零件表面,使之产生形变硬化层并引进残余压应力。
已广泛用于弹簧、齿轮、链条、铀、叶片、火车轮等零部件,可显著提高金属的抗疲劳,抗应力腐蚀破裂、抗腐蚀疲劳、抗微动磨损、耐点蚀等的能力。
喷丸强化原理:(1)形成形变硬化层,在此层内产生两种变化:一是亚晶粒极大的细化,位错密度增高,晶格畸变增大;二是形成了高的宏观残余压应力。
材料学中的材料表面改性技术引言材料表面改性技术是材料学中的重要研究领域,它涉及到对材料表面性能的调控和改善,从而提高材料的功能和应用范围。
本文将以材料学中的材料表面改性技术为主题,探讨其原理、分类和应用,并介绍一些典型的表面改性技术。
一、表面改性技术的原理材料的性能往往受到其表面的影响,因此改善材料表面的性能是提高整体材料性能的有效途径。
表面改性技术的原理主要包括两个方面:一是通过改变表面化学成分实现性能的改善,二是通过改变表面形貌和结构实现性能的改善。
1. 改变表面化学成分表面化学成分的改变是表面改性技术中常用的手段之一。
通过在材料表面引入新的元素或化合物,可以改变表面的化学性质,从而改善材料的耐腐蚀性、抗氧化性等性能。
例如,通过在金属表面形成氧化膜或硝化层,可以提高材料的耐腐蚀性能;通过在聚合物表面引入亲水基团,可以提高材料的润湿性能。
2. 改变表面形貌和结构表面形貌和结构的改变是表面改性技术中另一个重要的手段。
通过改变表面的形貌和结构,可以调控材料的摩擦性能、光学性能等。
例如,通过表面微纳米结构的设计和制备,可以实现超疏水表面或超亲水表面的构建,从而具有自清洁、自润湿等特殊性能。
二、表面改性技术的分类表面改性技术根据其作用机制和实现方式的不同,可以分为物理方法和化学方法两大类。
1. 物理方法物理方法是通过物理手段对材料表面进行改性的技术。
常见的物理方法包括激光处理、等离子体处理、溅射沉积等。
这些方法主要通过改变表面形貌和结构来实现性能的改善。
例如,激光处理可以通过局部加热和熔融来改变材料的表面形貌和结构,从而提高材料的硬度和耐磨性。
2. 化学方法化学方法是通过在材料表面引入新的化学成分来改性的技术。
常见的化学方法包括化学气相沉积、溶胶-凝胶法、离子注入等。
这些方法主要通过改变表面化学成分来实现性能的改善。
例如,化学气相沉积可以在材料表面形成薄膜,从而改变材料的表面化学性质和光学性能。
三、表面改性技术的应用表面改性技术在材料学中有着广泛的应用。
材料表面改性技术及其应用引言:在现代科技发展的背景下,材料表面改性技术成为了各个领域中不可或缺的重要工程技术。
通过对材料表面进行改性处理,可以使其具有特定的性能和功能,从而提高材料的附加值和应用范围。
本文将探讨材料表面改性技术的基本原理、常见方法以及在各个领域中的应用案例。
一、表面改性的基本原理材料的表面改性是指对材料的表面进行物理、化学或机械等方式的改变,以获得特定的性能或功能。
改性的基本原理是改变表面的化学组成或物理结构,从而改变材料的性质。
常用的改性手段包括表面改性剂、涂层技术、等离子体处理、离子注入等。
二、常见的表面改性方法1. 表面改性剂表面改性剂是指通过在材料表面形成一层附着的物理或化学改性剂,改变表面性质的方法。
常见的表面改性剂有溶剂、硅烷、含氟表面活性剂等。
这种方法简单易行,适用于多种材料,可以提高材料的耐热性、耐腐蚀性等。
2. 涂层技术涂层技术是对材料表面进行覆盖一层薄膜的方法,以改变材料的表面性能。
常见的涂层技术包括溅射法、沉积法、喷涂法等。
涂层技术可以提高材料的耐磨性、耐腐蚀性,同时还可以实现防水、防尘、隔热等功能。
3. 等离子体处理等离子体处理是利用高能等离子体作用于材料表面,从而改变表面性质的方法。
等离子体处理可以产生高能离子束,使表面发生化学反应或物理结构改变,从而提高材料的附着力、耐磨性等。
这种方法适用于金属、陶瓷等材料,广泛应用于电子、航空航天等领域。
4. 离子注入离子注入是通过将离子注入材料中,改变其表面性质的方法。
离子注入可以增强材料表面的硬度、抗腐蚀性能,并且可以在材料表面形成新的物理结构层。
这种方法被广泛应用于半导体、光学器件等领域。
三、表面改性技术的应用案例1. 汽车制造在汽车制造领域,通过表面改性技术可以提高汽车的安全性和气候适应性。
例如,采用防腐涂层可以提高车体的耐腐蚀性,增加其使用寿命;利用氟化处理可以使车窗具有防雨效果,提高行车安全性;通过表面硬化技术,增强发动机缸体的强度和耐磨性。
化学催化剂的表面改性技术化学催化剂是在化学反应中起到加速反应速率的关键材料。
为了提高催化剂的催化效率和稳定性,科学家们一直在不断探索新的表面改性技术。
本文将介绍几种常见的化学催化剂表面改性技术,包括合金化、覆盖层修饰和纳米结构调控。
一、合金化技术合金化是一种常见的化学催化剂表面改性技术。
通过将催化剂与其他金属或化合物形成合金,在表面上形成新的晶格结构和化学性质。
合金化可以改变催化剂的活性位点结构和电子状态,从而显著提高催化剂的催化性能。
例如,将铂催化剂与镍合金化,可以使金属颗粒之间形成更高的协同效应,增强催化剂对氢气的吸附和解离,提高氢气的催化活性。
二、覆盖层修饰技术覆盖层修饰是一种常用的催化剂表面改性技术。
通过在催化剂表面形成一层覆盖层,可以增加催化剂的稳定性和选择性。
覆盖层可以阻止催化剂与反应物之间的不必要相互作用,减少副反应的发生,并且可以提供新的反应路径,提高产物的选择性。
例如,在金属催化剂表面形成一层氧化物覆盖层,可以增加催化剂的氧化活性,并提高氧化反应的选择性。
三、纳米结构调控技术纳米结构调控是一种先进的催化剂表面改性技术。
通过调控催化剂的纳米结构和形态,可以精确控制催化剂的表面活性位点和晶格结构,从而实现对催化剂活性和选择性的调控。
纳米结构调控技术可以通过溶剂热法、溶剂热力学等方法实现。
通过纳米结构调控技术,可以提高催化剂的催化活性和稳定性,改善催化剂的反应选择性。
总结:化学催化剂的表面改性技术对于提高催化效率和稳定性至关重要。
合金化技术可以改变催化剂的活性位点结构和电子状态,提高催化活性。
覆盖层修饰技术可以增加催化剂的稳定性和选择性,降低副反应的发生。
纳米结构调控技术可以精确调控催化剂的表面活性位点和晶格结构,实现对催化剂活性和选择性的调控。
这些表面改性技术的应用为化学催化领域的发展提供了新的思路和途径,有望在未来实现更高效和可持续的催化反应。
高分子材料的表面改性技术高分子材料作为一类具有广泛应用价值的材料,拥有诸如重量轻、力学性能好、绝缘性能好等特点,广泛应用于电子、医疗、航空、汽车、建筑等领域。
然而,高分子材料本身也存在众所周知的问题,如容易老化、耐磨性能差等。
为了提高高分子材料的使用寿命及性能,表面改性技术应运而生。
一、表面改性技术简介表面改性技术是对材料表面进行物理、化学或生物改性,从而改变材料表面性质(如亲/疏水性、化学稳定性等),实现对材料性能的优化。
在高分子材料领域中,表面改性技术是一种有效的方法,可以改变高分子材料表面的化学、物理结构,提高高分子材料的性能。
二、表面改性技术的分类表面改性技术主要分为物理方法和化学方法两大类。
1.物理方法物理方法是利用外力来改变高分子材料表面性质的方法,包括光刻、电解、喷砂、电子束等。
其中,电子束法是一种常用的表面改性技术,它通过利用高能电子束照射高分子材料表面,使其表面产生化学和物理结构改变,改变表面性质,提高材料耐用性。
2.化学方法化学方法是指利用化学试剂对高分子材料表面进行改性的方法,包括化学清洗、化学修饰、浸渍基质改性、表面接枝等技术。
其中化学清洗是一种温和的表面改性技术,可以去除表面污染物、氧化皮层等物质,减少材料表面的异物,提高高分子材料的表面性质。
三、表面改性技术的应用表面改性技术的应用非常广泛,包括材料的吸附、催化、传感、分离等领域。
在高分子材料中,表面改性技术的应用同样非常重要。
例如,在高分子材料的表面上接枝特定的功能基团或者粘结一定的物质,从而改变其表面性质,提高其化学、力学等性能。
这些表面修饰后的高分子材料可以被应用于传感器、生物医学材料、纳米材料等多个领域。
四、表面改性技术的挑战与发展虽然表面改性技术在高分子材料领域中取得了许多重要进展,但是仍然存在一些挑战。
例如,现有的表面改性技术仍然存在一定的局限性,无法实现对高分子材料表面性质的精确调控。
此外,当前表面改性技术的成本较高,需要使用一定的化学试剂和条件,同时也存在环境问题。
第八章表面改性技术1:表面改性:是指采用某种工艺手段使材料表面获得与其机体材料的组成结构性能不同的一种技术。
2:表面形变强化原理:通过机械手段(滚压、内挤压、喷丸等)在金属表面产生压缩变形,使表面形成形变硬化层,此形变硬化层的深度可达0.5~1.5mm。
3:形变硬化层中产生的两种变化:组织结构上,亚晶粒极大地细化;形成了高的宏观残余压应力。
4:感应加热的物理过程:当感应线圈通以交流电后,感应线圈内即形成交流磁场,置于感应线圈内的被加热零件引起感应电动势,所以在零件内将产生闭合感应电流即涡流。
5:硬化层深度:由于工件内部传热能力较大,硬化层深度总小于感应电流投入深度,频率越高,涡流分布越陡,接近电流透入深度处的电流越小。
6:淬火后的组织和性能:感应加热表面淬火获得的表面组织是细小隐晶马氏体,碳化物呈弥散分布。
表面硬度比普通淬火时高2~3HRC。
提高疲劳强度,感应加热表面淬火工件表面氧化、脱碳小,变形小,质量稳定。
7:选择功率密度要根据零件尺寸及淬火条件而定。
8:金属表面化学热处理过程:活性原子被工件表面吸附并溶入表面,溶入表面的原子向金属表面层扩散渗入形成一定厚度的扩散层,从而改变工件表层的成分、组织和性能。
渗层与基体之间冶金结合,渗层不容易脱落,可承受高载荷,高冲击。
9:气体渗碳:气体渗碳是目前生产中应用最广的一种渗碳方法,工业上一般有井式炉滴注式渗透和贯通式气体渗碳两种,它是在含碳的气体介质中通过调节气体渗碳气氛来实现渗碳的目的,按渗碳介质气氛中的基本渗剂可分为甲烷、丙烷和丁烷。
10:一般气体渗碳多用930℃的高温处理,C在高温中才能发生显著的扩散。
11:渗碳层的性能指标:表面硬度;渗层深度;心部硬度。
12:渗金属:渗金属方法是使工件表面形成一层金属碳化物的一种工艺方法,即渗入元素与工件表层中的碳结构形成金属碳化物的化合物层,此类工艺方法适用于高碳钢。
13:渗金属形成的化合物层一般很薄,约0.005~0.02mm。
先进制造技术课程论文论文题目:[高速齿轮表面改性工艺方法研究]系部:机械工程系专业:机械制造与制动化班级:机制103学生姓名:学号:1001143142012年10 月10 日摘要齿轮表面改性技术对于齿面强化,延长齿轮的使用寿命和发展新型齿轮加工技术具有重要的意义.齿轮传动具有传动比准确,传递运动工作可靠,传动平稳效率高,机构紧凑,使用寿命长等优点,在许多行业得到广泛使用.齿轮工作时的运动和受力情况非常复杂,由此产生的损伤形式多样,比较常见且对其能影响较严重的损伤有3种:断齿、破坏性胶合和破坏性点蚀_l .因此,要求齿轮的整体具有高的弯曲疲劳强度,心部要求高的强度和冲击韧性,齿面要求高硬度、高耐磨性和一定的耐腐蚀性.德国权威机构曾对涉及各行各业的齿轮传动失效实例进行过调查研究,发现因齿轮表面失效而引起的齿轮传动副失的数量约占所调查对象总数的.因此,提高齿轮表面强度已成为提高齿轮传动副的可靠性和延长其使用寿命的有效途径.为了达到这一目的,必须对齿轮进行表面强化处理.除采用常规表面热处理手段外,日益成熟的各种表面强化新技术也获得了广泛应用.目前,齿轮表面强化处理技术主要有渗碳、渗氮、碳氮共渗、渗金属、激光表面强化、热喷涂等关键字:齿轮表面改性现代表面技术一、表面改性技术:表面技术是指采用某种工艺手段使材料表面获得与其基体材料的组织结构、性能不同的一种技术。
材料经表面改性处理后,既能发挥基体材料的力学性能,又能使材料表面获得各种特殊性能(如耐磨,耐高温,合适的射线吸收、辐射和反射能力,超导性能,润滑,绝缘,储氢等)表面改性技术可以掩盖基体材料表面的缺陷,延长材料和构件的使用寿命,节约稀、贵材料,节约能源,改善环境,并对各种高薪技术的发展具有重要作用。
表面改性技术的研究和应用已有多年。
70年代中期以来,国际上出现了表面改性热,表面改性技术越来越受到人们的重视。
表面改性的特点是:(1)不必整体改善材料,只需进行表面改性或强化,可以节约材料。
(2)可以获得特殊的表面层,如果超细晶粒、非晶态、过饱和固溶体,多层结构层等,其性能远非一般整体材料可比。
(3)表面层很薄,涂层用料少,为了保证涂层的性能、质量,可以采用贵重稀缺元素而不会显著增加成本。
(4)不但可以制造性能优异的零部件产品,而且可以用于修复已经损坏、失效的零件。
表面改性技术应用:表面改性技术广泛应用于机械工业、国防工业及航空航天领域,通过表面改性可以使材料性能提高,产品质量提高,降低企业成本。
表面技术的应用,在提高零部件的使用寿命和可靠性,提高产品质量,增加产品的竞争力,以及节约材料,节约能源,促进高科技技术的发展等方面都有着十分重要的意义。
二、一般传统齿轮的处理方式1、金属表面形变强化喷丸强化是当前国内外广泛应用的一种应用广泛的表面强化方法,即利用高速弹丸强烈冲击零件表面,使之产生形变硬化层并引进残余压应力。
喷丸强化原理:(1)形成形变硬化层,在此层内产生两种变化:一是亚晶粒极大的细化,位错密度增高,晶格畸变增大;二是形成了高的宏观残余压应力。
(2)表面粗糙度略有增大,但却使切削加工的尖锐刀痕圆滑。
2、表面热处理表面热处理是指采用快速加热,使钢件表层奥氏体化并立即快冷获得马氏体,而心部仍保持原始组织的一种淬火工艺。
表面热处理工艺有多种,如感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火等。
其中最常用的是火焰加热表面淬火和感应加热表面淬火两种。
(1)感应加热表面淬火后零件的表面性能①高额感应淬火时,在零件表层中产生较大的压应力,抗疲劳性能增强;②感应淬火时马氏体组织细小,碳化物弥散细小,硬度高。
③感应淬火时零件经受激烈的喷水冷却,使残余奥氏体量较少,硬度高。
④氧化、脱碳小,组织性能稳定。
(2)火焰加热表面淬火火焰加热表面淬火设备简单,成本低,但易使钢件表面过热,质量控制比较困难。
因此,它主要适用于大型齿轮的表面淬火。
3、金属表面化学热处理(1)化学热处理原理将工件置于含有欲渗元素的活性介质中加热到一定温度,使活性介质分解出欲渗元素的活性原子,活性原子被工件表面吸附并向工件内部扩散,以改变工件表层的化学成分。
通常,在工件表层获得高硬度、耐磨损和高强度的同时,心部仍保持良好的韧性,使被处理工件具有抗冲击载荷的能力。
(2)化学热处理方法主要包括:渗碳、渗氮、渗硼、渗硫、渗硅、渗铝、渗铬、渗锌(钛、铌、钽、钒、钨),以及其他多元共渗工艺,例如铝硅共渗、硼铬共渗、碳氮和氮碳共渗、硫氮和硫氮碳共渗等。
(3)化学热处理目的每一种化学热处理工艺都各有其特点,如果需要分别或同时提高耐磨、减摩、抗咬死、耐蚀、抗高温氧化和耐疲劳性能,则根据工件的材质和工作条件选择相应的化学热处理工艺。
三、特殊用途齿轮的处理方式对于具有特殊高性能要求的齿轮,如航空航天用途齿轮,单一的处理方式已不能满足其高疲劳强度、高弯曲强度、高硬性、低摩擦磨损以及承受高速重载的性能要求,因此,一些新的现代表面强化技术被应用于齿轮研究领域,以适应发展的要求1、激光便面强化采用激光束、电子束、离子束对材料表面进行改性或合金化的技术,是近十几年迅速发展起来的材料表面新技术,是材料科学的最新领域之一,属高能密度表面处理技术。
这三种技术的特点是可以对材料表面快速加热和冷却。
激光表面处理工艺: 激光相变硬化、激光熔覆、激光合金化、激光非晶化、激光冲击硬化等。
(1)激光束表面相变硬化激光束表面相变硬化,又称激光淬火,是以激光束快速照射工件,使表面形成奥氏体,此后急冷形成马氏体。
激光表面强化适用的材料为珠光体灰铸铁、铁素体灰铸铁、球墨铸铁、合金钢和马氏体型不锈钢等。
此外,还对铝及铝合金、铜及铜合金等进行了成功的研究和应用。
(2)激光涂覆激光涂覆就是用激光在基体表面覆盖一层薄的具有特定性能的涂覆材料,这类涂覆材料可以是金属或合金,也可以是非金属、化合物。
激光表面涂覆工艺可分为两种。
一种是预涂覆法,即先把熔覆合金通过粘结、喷涂、电镀等方法预置在材料表面上,而后用激光束将其熔覆;另一种是气相送粉法,即在激光束照射基体材料表面产生熔池的同时,用惰性气体将涂层粉末直接喷到激光熔池内实现熔覆。
激光涂覆的一个特征就是覆层和基材之间实现了冶金结合。
(3)激光表面非晶化利用激光束连续快速扫描金属表面,使表层金属熔化,并以大于临界冷却速度激冷至其晶化温度以下,防止晶体成核和生长,从而在金属表面形成非晶,也称金属玻璃。
激光非晶化又称激光上釉。
激光非晶化层在金相及电镜下呈均匀的亮白色。
激光非晶层的显微硬度远高于相应成分的晶体相。
此外,非晶态处理可减少表层成分偏析,消除表层缺陷,具有很好的韧性、耐磨性、耐蚀性。
(4)激光合金化利用激光束将一种或多种合金元素快速熔入基体表面,从而使基体表层具有特定的合金成分的技术。
方法是预先在基体表面涂敷一层所需合金元素,采用激光照射,将涂敷层合金元素与基体表面薄层同时熔化、混合,形成新的表层成分、组织、性能。
激光合金化的主要优点是:激光能使难以接近的和局部的区域合金化;利用激光的深聚焦,在不规则的零件上可得到均匀的合金化深度;能准确地控制功率密度和控制加热深度,从而减小变形;可以节约大量的贵重元素。
2、化学气相沉积法化学气相沉积是近几十年发展起来的制备无机材料的新技术。
化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。
这些材料可以是氧化物、硫化物、氮化物、碳化物也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。
目前化学气相淀积已成为无机合成化学的一个新领域。
1、化学气相沉淀法的特点:1)在中温或高温下通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。
2)可以在常压或者真空条件下(负压“进行沉积、通常真空沉积膜层质量较好)。
3)采用等离子和激光辅助技术可以显著地促进化学反应使沉积可在较低的温度下进行。
4)涂层的化学成分可以随气相组成的改变而变化从而获得梯度沉积物或者得到混合镀层。
5)可以控制涂层的密度和涂层纯度。
6)绕镀件好。
可在复杂形状的基体上以及颗粒材料上镀膜。
适合涂覆各种复杂形状的工件。
由于它的绕镀性能好所以可涂覆带有槽、沟、孔甚至是盲孔的工件。
7)沉积层通常具有柱状晶体结构不耐弯曲但可通过各种技术对化学反应进行气相扰动以改善其结构。
8)可以通过各种反应形成多种金属、合金、陶瓷和化合物涂层。
2、化学气相沉积的优点:1) 沉积成膜装置简单2) 与直接蒸发法相比可在大大低于其熔点或分解温度的沉积温度下制造耐熔金属和各种碳化物、氮化物、硼化物、硅化物和氧化物薄膜3) 成膜所需的反应源材料一般比较容易获得而且制备通一种薄膜可以选用不同的化学反应有意识的改变和调节反应物的成分又能方便的控制薄膜的成分和特性因此灵活性较大4) 特别适用于在形状复杂的零件表面和内孔镀膜。
3、物理气相沉积法物理气相沉积技术表示在真空条件下采用物理方法将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子并通过低压气体(或等离子体)过程在基体表面沉积具有某种特殊功能的薄膜的技术。
物理气相沉积的主要方法有真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜及分子束外延等。
发展到目前物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。
真空蒸镀基本原理是在真空条件下使金属、金属合金或化合物蒸发,然后沉积在基体表面上蒸发的方法常用电阻加热高频感应加热电子柬、激光束、离子束高能轰击镀料使蒸发成气相然后沉积在基体表面历史上真空蒸镀是PVD法中使用最早的技术。
溅射镀膜基本原理是充氩气的真空条件下使氩气进行辉光放电这时氩原子电离成氩离子,氩离子在电场力的作用下加速轰击以镀料制作的阴极靶材靶材会被溅射出来而沉积到工件表面。
如果采用直流辉光放电称直流溅射射频辉光放电引起的称射频溅射。
磁控辉光放电引起的称磁控溅射。
电弧等离子体镀膜基本原理是在真空条件下用引弧针引弧使真空金壁(阳极)和镀材(阴极)之间进行弧光放电阴极表面快速移动着多个阴极弧斑不断迅速蒸发甚至“异华”镀料使之电离成以镀料为主要成分的电弧等离子体。
并能迅速将镀料沉积于基体。
因为有多弧斑所以也称多弧蒸发离化过程。
离子镀基本原理是在真空条件下用某种等离子体电离技术使镀料原子部分电离成离子同时产生许多高能量的中性原子在被镀基体上加负偏压。
这样在深度负偏压的作用下离子沉积于基体表面形成薄膜。
4、等离子体表面处理1、离子氮化工艺原理离子氮化是在密闭的真空炉内,将清洗后的被渗工件放置在阴极盘上(或吊挂在阴极挂具上)。
将真空炉抽真空至一定的真空度(6Pa)后,充入一定流量的含氮气体,如氨气、氨热分解气或以一定比例混合的氮氢混合气,并将气压保持在1.33×102~1.33×103Pa左右,在阴极(工件)和阳极(真空室壳)之间施加400~1000V左右的直流电压,将含氮气体电离成N+、H+和电子,并产生辉光放电现象。