CMW GPS测试应用指南
- 格式:pdf
- 大小:758.73 KB
- 文档页数:11
GPS 接收机测试应用手册Issue 01 (2011-10-30)SpreadtrumCommunications Inc.iGPS 接收机测试应用手册Version: 1.0.0 Date: 2012-04-16S p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试DescriptioniiSpreadtrumCommunications Inc.Issue 01 (2011-10-30)Important NoticeCopyright NoticeCopyright © 2011, Spreadtrum Communications, Inc. All rights reserved.TrademarksSpreadtrum Communications, Inc. and Spreadtrum Communications, Inc.'s products are exclusively owned by Spreadtrum Communications, Inc. References to other companies andtheir products use trademarks owned by the respective companies and are for reference purpose only.Warranty DisclaimerSpreadtrum Communications, Inc. makes no representations or warranties, either expressed or implied, by or with respect to anything in this document, and shall not be liable for any implied warranties of merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.ConfidentialityThe information contained herein (including any attachments) is confidential. The recipienthereby acknowledges the confidentiality of this document, and except for specific purposes, this document shall not be disclosed to any third party.S p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试应用手册Issue 01 (2011-10-30)SpreadtrumCommunications Inc.iii Contents简介 .............................................................................................................................. 1-1 1 测试仪器及测试方法介绍 ....................................................................................... 1-21.1 E4438C-409 GPS 模拟器 .............................................................................................................. 1-2 1.2 测试环境....................................................................................................................................... 1-32 测试项目 .................................................................................................................. 2-42.1 载噪比(C/N0)测试 ........................................................................................................................ 2-4 2.2 Acquisition sensitivity —捕获灵敏度 .............................................................................................. 2-4 2.3 Tracking sensitivity —跟踪灵敏度 .................................................................................................. 2-5 2.4 Cold start time to first fix ................................................................................................................ 2-5 2.5 Warm start time to first fix .............................................................................................................. 2-63 简易测试流程 ........................................................................................................... 3-7S p r e a d t r u mC o n f i d e n ti a lS p r e a d t r u mC o n f i d e n ti a lGPS 接收机测试应用手册Issue 01 (2011-10-30)SpreadtrumCommunications Inc.1-1简介文章主要描述了GPS 接收机的测试方法,这些测试主要用来确认手持设备上GPS 接收机的功能和RF 指标。
R&S ®CMW-KC2xx GSM A-GPS Test Cases User ManualUserM anua l1176.7790.02 ─ 04(;ÚÛè2)Te st&M e a s u re m e n tThis manual contains information needed prior to perform the test cases in:●R&S®CMW-KC208, GSM CS TC Pack8 (Sections 70.x): Location based ser-vices (1203.3750.xx)●R&S®CMW-KC214, GSM MIN. PERF. TC PACK (Sections 70.11.x): A-GPSMinimum Performance tests (1208.7202.xx)© 2015 Rohde & Schwarz GmbH & Co. KGMühldorfstr. 15, 81671 München, GermanyPhone: +49 89 41 29 - 0Fax: +49 89 41 29 12 164E-mail: info@Internet: Subject to change – Data without tolerance limits is not binding.R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.Trade names are trademarks of the owners.Contents1Preface (5)1.1Chapter Overview (5)1.2Documentation Overview (5)1.3Conventions (7)1.4Product Licensing (8)1.5Software Update and Installation (8)2Uncertainty Requirements (10)3Test Setup (11)3.1Assigning Trigger Functionality on R&S CMW500 (14)4Calibration Procedure (17)5Uncertainty Analysis (21)5.1R&S FSU Absolute Uncertainty (21)5.2R&S NRP-Z81 Absolute Uncertainty (21)5.3R&S NRV-Z4 Absolute Uncertainty (21)5.4R&S NRP-Z81 Combined Standard Uncertainty (24)5.5R&S SMBV Absolute Level Uncertainty (24)5.6Standard Deviation of Uncertainty Within the R&S SMBV (25)5.7Relative Uncertainty Between Different GPS Satellites (25)5.8Position Error (25)5.9RX Timing Measurement Uncertainty (26)5.10GSM - GPS Synchronization Accuracy (27)5.11Uncertainty due to Changing of Temperature (27)5.12Uncertainty due VSWR (28)5.13Worst Case Level Uncertainty of GPS Simulator (29)6Summary of Uncertainties (30)Glossary: Abbreviations and Terms (31)Glossary: References (32)Index (33)Chapter Overview 1PrefaceThis manual describes the calibration procedure needed for all R&S CMW-KC2xx A-GPS test cases, the theoretical uncertainty calculations and the signal level and tolerances according to 3GPP for the Rohde&Schwarz A-GPS minimum per-formance test cases for GSM (2G) mobile stations.1.1Chapter OverviewThis document is divided in the following parts:●The "Preface" (this chapter)provides organizational information, such as chapter and documentation over-view, typographic conventions and licensing information.●The chapter 2, "Uncertainty Requirements", on page 10summarizes the uncertainty requirements for A-GPS minimum performance tests.●The chapter 3, "Test Setup", on page 11describes the test setup that is required for running the R&S CMW-KC2xx A-GPS test cases and performing the uncertainty measurements.●The chapter 4, "Calibration Procedure", on page 17describes the calibration procedure for the GPS signal path between R&S SMBV100A and DUT.●The chapter 5, "Uncertainty Analysis", on page 21describes the uncertainty analysis within the GPS signal path in detail.●The chapter 6, "Summary of Uncertainties", on page 30summarizes all uncertainties in a table.●At the end of the manual you will find a number of chapters containing liststhat make it easier for you to work with the manual.1.2Documentation OverviewThis document is part of the "R&S CMW500 protocol testing" documentation set. Here you will find further information:Documentation Overview Printed documentationPrinted documentation provides necessary information on how to securely unpack, setup and connect instruments. In addition, they introduce you to deliv-ered Rohde & Schwarz products. Step-by-step procedures will help you getting familiar with the products.Online help●Protocol testing applicationsThe graphical user interfaces are shipped together with a context-sensitive help system. Press the F1 key to access the help. The help also providesinformation on how to obtain context-sensitive help, if available.Examples: CMWtools including CMWmars, CMWcards; Project Explorer●Instrument's help system (R&S CMW500 Wideband Radio Communica-tion Tester part)The context-sensitive help system is embedded in the "CMW" application.When working with the firmware applications, for example, LTE Signaling, press the "Help" button or the F1 key to access context-sensitive help. Documentation CD-ROMsDocumentation CD-ROMs for the R&S CMW500 Wideband Radio Communica-tion Tester and the "R&S CMW500 for protocol testing" provide advanced naviga-tion functions that allow quick and efficient access to a comprehensive set of user manuals in different formats, such as Adobe®PDF, CHM or HTML help format.The content of the documentation CD-ROM is also available on your sys-Array tem after you have installed an "MCT Tools" or CMWtools component, for example, the Project Explorer or CMWmars. To view the documentation,click "Start > All Programs > R&S MCT > Protocol Testing Documentation"or "Start > All Programs > R&S CMWtools > Documentation".Installation DVD-ROMsThe installation DVD-ROMs for protocol tests contain the software products andthe release notes with the most current product information. Specific documentsare directly installed with the software products, such as help systems or refer-ence documentation.Information on the InternetRohde & Schwarz provides registered users access to GLORIS. In the "CMW Customer Web" section you can find the latest R&S CMW500 news, software and documentation:https://Release notesRefer to the product's release note for the most current information. You can find the release notes on the installation DVD-ROMs or on GLORIS, "CMW Customer Web" section.1.3ConventionsThis document uses the following typographic conventions to make information easier to access and understand.Table 1-1: Typographic conventionsConvention Description"Reference""GUI element" "Menu name > com-mand""Quotation-marks" enclose references or graphical user interface citations to other documentation parts.The > symbol indicates a path or an order to follow for making selec-tions on the GUI.Example: On the taskbar, click "Start > All Programs > ...".KEY CAPITAL letters indicate key names. Example: CTRL key.Input Letters in italic indicate a value you must type in as shown. Example:5400.code Letters in fixed-width font indicate file names, commands,or program code.Link Letters in blue font indicate links that you can follow (underlined).Links to the Glossaries are not underlined.emphasis Letters in boldface indicate emphasized words.<variable>Angle brackets enclose variable values. Example: <release>.[a]Square brackets enclose optional values, that is, values you canomit.|Vertical bar indicates alternate selections - the bar means "or".{x | y | z}Braces indicate content that you must specify, that is, x or y or z.ConventionsConventionDescription ...Ellipsis indicates nonessential information omitted from the example.Function B ← Function A Function B is a child function of function A. This notation is used in GUI reference descriptions.Screen capturesScreen captures generally serve as examples and for illustration. Actual screens and required settings may differ from the examples.1.4Product LicensingThe conformance tests are subject to license conditions. To use the software, you will require the license keys for the products listed on the verso of the title page.Additional license requirementsA test case can require additional licenses for test-specific functions during test run. If the licenses for the functions are not installed, the scenario is skipped during test run. The names of the missing product options areshown in the "Results" tab of the R&S Project Explorer.For more information on specific license dependencies and required prod-uct options, see the product's release note.1.5Software Update and InstallationThe Version Manager program helps you to manage your Rohde & Schwarz pro-tocol testing software installations on various mobile communication tester instru-ment types, controller, and personal computers.The Version Manager provides the following features, among others:●Verifying and resolving dependencies to other software units by using a com-patibility database●Reading the content of a software repository which contains the software unitsto be installed●Indicating the software installation statusProduct LicensingSoftware Update and Installation Rohde & Schwarz recommends that you always use the Version Manager Array for installing or uninstalling protocol testing software.Software downloadYou can download required software from the following resources (registration required):●The "Support&Services > CMW Customer Web" section on GLORIS, theGlobal Rohde&Schwarz Information System:https://●The Rohde&Schwarz FTP site which contains a software repository forR&S CMW500 protocol testing:ftp:///cmw_protocol_download/Related information●For an introduction to updating and installing software with the Version Man-ager, see the "R&S CMW500 Protocol Testing" quick start guide.●For details about using the Version Manager, see the "Version Manager" help.This document assumes that all required software units are properly installed unless otherwise mentioned.Uncertainty Requirements R&S®CMW-KC2xx2Uncertainty RequirementsThe test system uncertainty requirements for A-GPS minimum performance tests are specified in TS 51.010-1, table A5.5.1. The requirements for the R&S CMW-KC214 test cases are summarized in the following table.Table 2-1: Test system uncertainty requirements for A-GPS minimum performance tests Requirement Maximum UncertaintyCoarse time assistance±200 msFine time assistance±1 μsAbsolute GPS signal level±1 dBRelative GPS signal level±0.2 dBPosition error±0.05 mResponse time±300 ms3Test SetupThe file visaconf.ini mentioned below can be selected for editing in theR&S CMW500 Windows All Programs menu, under R&S-VISA / Configuration. The physical location on the harddrive is:C:\Documents and Settings\All Users\Application Data\ Rohde-Schwarz\RsVisa\visaconf.iniThe minimum R&S SMBV100A Firmware version is:2.20.360.328The following figure illustrates the test setup used for GSM (2G) assisted GPS testing.An R&S CMW500 provides the GSM network simulation, the master reference clock and executes the test cases and calibration routines.An R&S SMBV100A signal generator simulates the GPS scenario.Fig. 3-1: Test setup for A-GPS testingThe instrument control from R&S CMW500 to R&S SMBV100A is done via a LAN connection, and using the R&S VISA instrument control library. The IP address of the R&S SMBV100A has to be known to the R&S CMW500. This is achieved by adding the R&S SMBV VISA ID (SMBV100) to the visaconf.ini file on theR&S CMW500:Example:Example of an entry to the file:[RSVXI11-RSRCS]SMBV100 = "TCPIP::172.22.1.199::INSTR"Instruments that are used for automatic calibration of the GPS RF path shall also be added to the file with same format as the above example (calibration instru-ments IP address).Recognized R&S-VISA calibration instrument ID's are the following: FSU, FSQ, FSMR, NRP.Example:So an example entry could be:FSU = "TCPIP::172.22.1.200::INSTR"Another option for automatic calibration is to attach a R&S NRP-Zxx Power Sen-sor directly to the R&S CMW500 front panel. This configuration is automatically detected if none of the above calibration instruments are found on the LAN.The output of the R&S SMBV100A is attenuated using a fixed attenuator of a value between 30 and 50 dB. This is required to keep the overall RF output power from the R&S SMBV100A above -120 dBm where the generator has sufficient level accuracy to meet the requirements. Below -120 dBm the instrument has derated level accuracy.The reference oscillator of the R&S CMW500 defines the timing of the GSM simu-lation. It also generates a 10 MHz reference clock output to which the R&S SMBV100A is synchronized by selecting an external reference input on the R&S SMBV100A. The GPS baseband and RF generator are hereby locked to the same reference source as the GSM timing and, once a timing relationship is established between the GSM and GPS domains, the timing and frequency off-sets between the two signals remain static for the duration of the positioning pro-cedure.The timing relationship between the GSM and GPS scenarios is established by the use of a "scenario trigger"” signal. This signal is generated by theR&S CMW500 at a defined state of the GSM subsystem’s timebase (TDMA frame number, timeslot number and quarter bit number).Prior to the generation of the scenario trigger, the R&S SMBV100A is primed to start generation of a GPS ranging signal at a defined point in the GPS scenario (GPS week, GPS time of week). On the occurrence of a timing edge of the sce-nario trigger, the R&S SMBV100A begins advancing the GPS simulation and thus a defined relationship between the GSM and GPS scenarios is established. Where the test procedure calls for a random offset to be simulated in the GPS system timing, this is achieved by synchronizing the system as described above,and then, when generating the reference time information element for transmis-sion to the device under test, offsetting the value of GPS TOW communicated to the mobile by means of a random number generated by the test script.Where the test procedure calls for a frequency offset between the GPS and GSM domains, this is achieved by offsetting the carrier frequencies of the two RF gen-erators in the R&S CMW500 by the specified amount.3.1Assigning Trigger Functionality onR&S CMW500Before running the R&S CMW-KC214 test cases, it is required to specify an external trigger in the R&S Project Explorer's System Configuration on theR&S CMW500 as described in the following procedure.The trigger functionality is used for GPS/GSM synchronization. Details can be found in chapter 5.10, "GSM - GPS Synchronization Accuracy", on page 27.To specify the external trigger1.Start the R&S Project Explorer and open the test project description (.tpd)file. The file is located here:<test_packages>\TestCases\GSM\TCAPI\xx.xx.xxxx\APPLCOMM\ yy.yy.y\TC_Pack\CMW-KC214-zz.zz.zWhere <test_packages> defaults to the following locations:●All operating systems: %RSCommonDocuments%●Windows7/8.1 (32-/64-bit): %Public%\Documents\Rohde-Schwarz●Windows XP: %AllUsersProfile%\Documents\Rohde-SchwarzAnd where:●xx.xx.xxxx: is the version number of the used GSM TCAPI stack●yy.yy.y: is the version number of the used Common Code (ACC)●zz.zz.z: is the version number of the used test case package2.Click the "Open System Configuration" button (2), see the following figure.Fig. 3-2: Open the System Configuration3.Select the "General Settings" tab (3), see the following figure.Fig. 3-3: Specify and save the trigger configuration4.Under "External Trigger CMW1", set "TRIG B" to "Protocol Testing: Trigger 1"(4).5.Under "Configuration Files", click "Save As" (5), and save the system configu-ration file.For example, save the configuration under 2G.6.Click "Close" (6).7.Close the R&S Project Explorer.ResultThe external trigger is specified as required by the R&S CMW-KC214 test cases.For more information about system configuration, see the R&S ProjectExplorer help.4Calibration ProcedureThe A-GPS signal path between R&S SMBV100A and DUT is calibrated by the AGPSPathCalib program.Fig. 4-1: Calibration setup using a LAN-based RF Power measurement instrumentFig. 4-2: Calibration setup using a R&S NRP-Zxx Power Sensor on R&S CMW500 SENSOR inputFig. 4-3: Calibration setup using a R&S NRP-Zxx Power Sensor on GPS Sim. SENSOR input.To calibrate the A-GPS signal pathSpecial handling in case a R&S NRP-Zxx Power Sensor is used:a. Connected to R&S CMW500 SENSOR input and testing on a R&S CMW-CU: add a VISA device line to the RS-VISA configuration file, as : "NRZ = "TCPIP:: 172.22.1.199::INSTR" (IP address being the one of the R&S CMW500).b. Connected to R&S SMBV100A SENSOR input: add a VISA device line to the RS-VISA configuration file, as : "NRZ = "TCPIP::172.22.1.199::INSTR" (IP address being the one of the GPS SIM).1. A power measuring device is connected at the end of the cable to which theDUT is to be connected. All cables to be used in the testing along with the attenuator of 30 to 50dB are included in the signal path.2. A CW carrier at the GPS system L1 carrier frequency of 1575.42 MHz is auto-matically generated by the R&S SMBV100A at a level of +10dBm.3.The resulting signal level at the power measuring device is recorded, theattenuation calculated and stored in a file on the hard drive of theR&S CMW500.4.During test case execution, the attenuation is read from the hard drive andapplied to correct the R&S SMBV100A total output level such that the speci-fied satellite signal levels are achieved at the DUT.5.Rohde&Schwarz recommends calibrating the GPS RF path whenever thecabling, attenuators or connectors are replaced.The calibration file is located here:<test_packages>\TestCases\GSM\CTConfig\2G_AGPS.CALWhere <test_packages> defaults to the following locations:●All operating systems: %RSCommonDocuments%●Windows7/8.1 (32-/64-bit): %Public%\Documents\Rohde-Schwarz●Windows XP: %AllUsersProfile%\Documents\Rohde-SchwarzR&S FSU Absolute Uncertainty 5Uncertainty AnalysisThis chapter describes the analysis of uncertainties within the GPS signal path for the R&S CMW-KC214 test cases.5.1R&S FSU Absolute UncertaintyOverall measurement uncertainty of R&S FSU for frequencies below 3.6 GHz:U FSU = 0.3 dBVSWR < 1.5 -> ρ < 0.20For more information, see R&S FSU Spectrum Analyzer – Product Brochure.5.2R&S NRP-Z81 Absolute UncertaintyOverall measurement uncertainty of R&S NRP-Z81 power head for frequencies between 700 MHz and 4 GHz:U NRP-Z81 = 0.13 dBVSWR < 1.2 -> ρ < 0.091For more information, see the R&S NRP-Z Power Sensors product page. Under "Downloads" on the right, click "Brochures and Data Sheets" to start theRohde&Schwarz common library search. Open the R&S NRP Power Meter Family data sheet from the list of documents.5.3R&S NRV-Z4 Absolute UncertaintyOverall measurement uncertainty of R&S NRV-Z4 power head for frequencies below 4 GHz:U NRV-Z4 = 0.06 dBFor more information, see the R&S NRV-Z Power Sensors - Data sheet.R&S FSU standard deviationFor relative measurements with R&S FSU only the standard deviation (remains as uncertainty):σFSU = 0.1 dBFor more information, see the R&S NRP-Z Power Sensors product page. Under "Downloads" on the right, click "Brochures and Data Sheets" to start the Rohde&Schwarz common library search. Open the R&S NRP Power Meter Family data sheet from the list of documents.R&S NRV-Z4 combined standard uncertaintyThe combined standard uncertainty with R&S NRV-Z4 is according to Measure-ment Uncertainty Analysis NRV-Z tool (revision 1.0):Fig. 5-1: Measurement Uncertainty Analysis for NRV-Z user interfaceDownload the tool and the application note from the following resource: Program for Measurement Uncertainty Analysis with Rohde & Schwarz Power Meters.σNRV-Z4 = 0.094 dBR&S NRP-Z81 Combined Standard Uncertainty 5.4R&S NRP-Z81 Combined Standard Uncertainty The combined standard uncertainty with R&S NRP-Z81 is calculated from the available data sheet values (R&S NRP Power Meter Family - Data sheet) similar to the calculations shown for R&S NRV-Z4 (see "R&S NRV-Z4 combined stand-ard uncertainty"on page 22). Since there is no tool available, the following table shows the values from that data sheet and the results of the combination of all these parameters.Table 5-1: Excerpt from R&S NRP Power Meter Family - Data sheetInfluence Quantity Standard UncertaintyCalibration Uncertainty0.065 dBDisplay Noise (continuous average, 128 k0.058 dBaveraging, 5 MHz bandwidth)0.002 dBZero Offset (continuous average, 10 µs sam-pling window)0.036 dBMismatch UncertaintySWR 1.20 for range 2.4 GHz ≤ f < 8 GHz used(worst case)range 50 MHz ≤ f < 2.4 GHz is better0.094 dBCombined Standard Uncertainty (RSS ofthe above)Expanded Uncertainty of Level (k=2)0.19 dBFor more information, see the R&S NRP-Z Power Sensors product page. Under "Downloads" on the right, click "Brochures and Data Sheets" to start theRohde&Schwarz common library search. Open the R&S NRP Power Meter Family data sheet from the list of documents.5.5R&S SMBV Absolute Level UncertaintyOverall expanded level uncertainty (expansion factor K = 1.96) of the R&S SMBV100A for frequencies below 3 GHz and powers above -120 dBm:U SMBV = 0.5 dB (expanded -> 0.5 / 1.96 = 0.255 unexpanded)VSWR < 1.8 -> ρ < 0.2857Standard Deviation of Uncertainty Within the R&S SMBV For more information, see R&S SMBV100A Vector Signal Generator - Data sheet, page 6.In order to achieve total GPS signal powers of -120 dBm and higher, it is Array mandatory to use an external attenuator of 30 to 50 dB. That attenuator is compensated for, during pathloss compensation.5.6Standard Deviation of Uncertainty Within theR&S SMBVThis chapter lists the standard deviation of uncertainty due to changes of gain/ attenuation within the R&S SMBV.The repeatability of the R&S SMBV100A isσSMBV = 0.05 dBFor more information, see R&S SMBV100A Vector Signal Generator - Data Sheet, diagram on page 9.5.7Relative Uncertainty Between Different GPS Sat-ellitesAll simulated GPS signals are on the same frequency and sent through the same analogue components. As such the relative uncertainty between all generated GPS satellite signals is defined solely by the resolution of the digital signal pro-cessing components inside the R&S SMBV.σSat = 0.01 dB5.8Position ErrorAll simulated GPS signals are on the same frequency and sent through the sameanalogue components. The internal resolutions of the GPS signal generator are chosen such that the position error is at mostRX Timing Measurement Uncertainty U Pos-Max = 0.05 m5.9RX Timing Measurement Uncertainty Transmissions between the DUT and the R&S CMW500 use an FACCH/F dedi-cated channel type. Reference to TS 45.002, section 7, table 1, shows that this channel type fits into the GSM system TDMA frame structure in such a way that either device has the opportunity to transmit a signaling message every 4 GSM TDMA frames (every 4x 60/13 ms = 18.4615 ms). An FACCH/F message is spread over 8 TDMA frames by the interleaving process.When a device becomes ready to transmit a message it must wait until the next opportunity occurs before it may commence transmission.When the R&S CMW500 sends a message over the FACCH/F the TDMA frame number, during which the final burst containing a contribution from the message was transmitted, is recorded in the signaling log and made available to the test case software.When the R&S CMW500 receives a message the TDMA frame number, during which the final burst containing a contribution from the message was received, is recorded in the signaling log, however, the test case software determines the frame number during which the first burst contributing to the message was received.The interleaving and protocol stack structure used in a GSM system are such that it is not possible for a device to begin decoding and acting on a received mes-sage until the final burst containing part of that message has been received nor can a device transmit outside the TDMA channel structure. We can therefore say that the earliest opportunity during which the device under test is able to act on a MEASURE POSITION REQUEST from the R&S CMW500 is at the end of the GSM frame reported to the test script following transmission of the message. When the device under test is ready to transmit a response to the CMW it must first wait for the next opportunity to transmit a FACCH/F message and then send the message spread over 8 frames. In most cases, the response will be longer than the 20 bytes of information that can be carried by a single FACCH I frame. For each segment of 20 bytes required to fully transmit the message a further 8 GSM frames are required, in addition to the time required for an RR frame acknowledging the previous I frame to be sent to the device under test. Since the test case is able to determine the frame number of transmission of the first burstGSM - GPS Synchronization Accuracy forming part of a MEASURE POSITION RESPONSE any potential error is elimi-nated.We can therefore summarize that the maximum uncertainty in measurement of the response time is equal to the 4 GSM frame latency between the Device Under Test becoming ready to transmit the response and the device transmitting the first burst carrying part of the RRLP MEASURE POSITION RESPONSE. This is increased by 1 TDMA frame in the case that a GSM idle or SACCH frame occurs during this period making the total uncertainty as follows:U Rx≤ 5 GSM frames = 5·(60/13) ms = 20.08 ms5.10GSM - GPS Synchronization Accuracy Synchronization between R&S CMW500 as GSM simulator and R&S SMBV100A GPS simulator is achieved using a combination of two means:1. A scenario trigger signal is generated by the physical layer of theR&S CMW500 with an accuracy of a quarter of a GSM symbol period. That trigger is used to start the GPS scenario in the R&S SMBV. Trigger delays are compensated internally in both cases to eliminate additional delays between the trigger signal and RF interfaces.2.After the trigger, the R&S SMBV is maintained synchronous to theR&S CMW500 by using the 10 MHz reference clock. The R&S CMW500 pro-vides the reference clock signal to the R&S SMBVDue to the previous two statements, at any time after sending the trigger to start the GPS simulation, it is possible to map a GSM TDMA frame number, timeslot number and symbol number to the corresponding GPS TOW with an accuracy of: U Sync≤ 0.25 GSM symbols = 12/13 µs = 0.923 µs5.11Uncertainty due to Changing of TemperatureThe temperature uncertainty is calibrated during the production of the R&S SMBV. During the calibration process different frequency and temperature correc-。
gps测量仪器使用方法GPS测量仪器是一种利用全球定位系统技术进行测量和定位操作的设备。
它能够准确测量地面、海洋和空中的实时位置和速度等信息。
在工程测量、地理测量、军事导航、车辆追踪等领域有着广泛的应用。
下面将介绍GPS测量仪器的使用方法。
首先,在使用GPS测量仪器之前,需要确认仪器是否处于正常工作状态。
这包括检查设备的电源是否开启,电池电量是否充足,并确保其与卫星的连接正常。
接着,选择一个空旷开阔的地方,以保证GPS信号的接收质量。
避免在高楼大厦、树木茂密或山谷等信号受阻的地方进行测量,以免影响测量的准确性。
在开始测量之前,需要对GPS测量仪器进行设定和校准。
首先,设置测量单元和时间单位。
然后,选择所需的坐标系和地球椭球体模型。
在校准方面,可以通过求解基准站的坐标或使用已知控制点进行校准。
接下来,进行实际测量操作。
根据测量需求,可以选择单点测量、连续测量或差分测量等不同的测量模式。
单点测量适用于对某一点进行单次测量的情况。
连续测量可以实时获取测量数据,并进行轨迹记录。
差分测量则能够提高测量的准确性,通过与基准站进行数据差分,减小误差。
在进行测量时,需要注意测量仪器的摆放和悬挂。
一般情况下,应将GPS天线尽量抬高,避免遮挡影响信号接收。
同时,要保持仪器的稳定,避免震动和移动导致测量误差。
在测量过程中,还可以通过设置测量参数来提高测量效果。
例如,可以选择连续观测时间,增加数据采样率,提高测量数据的精度。
完成测量后,可以将测量数据进行存储和导出。
GPS测量仪器通常配备有数据存储功能,可以将测量数据保存在内部存储器或外部存储卡中。
此外,也可以通过连接电脑或移动设备,将数据导出到其他软件进行后续处理和分析。
最后,在使用完GPS测量仪器后,需要注意对仪器进行及时的清洁和维护。
保持仪器的干燥、清洁和防尘,避免长时间暴露在恶劣环境中。
定期检查和更换电池,以确保设备的正常运行。
总结起来,使用GPS测量仪器需要进行设定、校准和摆放等操作,并根据实际需求选择不同的测量模式和参数。
cmw100手册欢迎使用CMW100,本手册将为您提供CMW100的详细信息和使用说明,帮助您更好地使用和了解CMW100。
第一章 CMW100概述CMW100是一款智能通讯设备,具有多种功能和特点,包括通讯、娱乐、健康监测等功能。
CMW100采用先进的技术设计,拥有稳定可靠的性能和丰富的功能,为用户提供便捷的使用体验。
CMW100的主要功能包括:1.通讯功能:CMW100支持语音通话、短信、邮件等通讯方式,实现与他人的便捷沟通。
2.娱乐功能:CMW100内置丰富的娱乐应用,包括音乐播放、视频播放、游戏等,为用户提供丰富多彩的娱乐体验。
3.健康监测功能:CMW100配备了健康监测传感器,可实时监测用户的健康数据,包括心率、血压、步数等,帮助用户实时了解自身健康状况。
4.智能助手功能:CMW100内置智能助手,可为用户提供日常生活中的便捷服务,包括天气预报、日程提醒、导航等功能。
5.定位功能:CMW100支持GPS定位功能,可以实时记录用户的位置信息,帮助用户更好地定位自身位置。
第二章 CMW100外观和按键说明CMW100采用精致的设计,外观简洁大方,具有良好的手感和视觉效果。
其按键布局合理,操作便捷,为用户提供良好的使用体验。
1.外观设计:CMW100的外观采用优质材料,经过精心设计和打磨,具有流线型的外形,线条流畅,手感舒适,给人以美观大方的感觉。
2.按键说明:CMW100的按键布局合理,操作便捷。
主要按键包括电源按键、音量调节按键、菜单导航按键等,在使用时可根据需要合理操作。
3.显示屏:CMW100配备了高清的显示屏,显示效果清晰,色彩鲜艳,可满足用户对画面的高要求。
第三章 CMW100的使用方法CMW100的使用方法简单易学,下面将介绍CMW100的基本使用方法,帮助用户更好地了解和使用CMW100。
1.开机与关机:长按电源按键,待屏幕亮起并显示欢迎界面后,即表示设备已开机。
想要关闭设备时,长按电源按键,选择关机即可完成关机操作。
高精度GPS测量技术的使用方法与技巧导语:全球定位系统(GPS)是一种基于卫星技术的定位系统,它广泛应用于测绘、导航、农业等领域。
随着技术的不断发展,高精度GPS测量技术成为一种重要的测量方法。
本文将介绍高精度GPS测量技术的使用方法与技巧,以期帮助读者更好地掌握这一技术。
一、高精度GPS测量技术的基本原理高精度GPS测量技术是利用卫星信号进行测量,通过对接收到的多个卫星信号进行解算,得到具有厘米级别精度的测量结果。
这种技术主要包括以下几个环节:1. GPS接收机的选择高精度GPS测量需选用精度更高、更稳定的GPS接收机。
目前市场上有许多高精度GPS接收机可供选择,如Leica、Trimble、Topcon等品牌,用户可以根据自己的需求和预算选择适合的接收机。
2. 基准站的布设高精度GPS测量需要设置一个基准站,该站点必须处于开阔地区,远离建筑物和树木,以减少多径效应对测量结果的干扰。
同时,基准站应具备稳定的电源和通信设备,以确保数据的传输和存储。
3. 数据采集与处理在实际测量中,需要同时记录基准站和流动站的GPS接收机数据,并进行差分处理。
差分处理可以通过无线电、互联网或无线局域网等方式进行数据传输,准确计算得到流动站的坐标。
二、高精度GPS测量的注意事项使用高精度GPS测量技术时,需要注意以下几个方面:1. 信号遮挡与干扰由于GPS信号容易受到建筑物、树木和地形等因素的干扰,因此在选择测量点和设置基准站时,要尽量避免这些干扰。
同时,还要注意避开大型金属结构物,以免对信号的接收产生干扰。
2. 测量时间与位置测量时间和位置是影响高精度GPS测量精度的重要因素。
要选择天气晴朗、云量低的日子进行测量,并在接收到的卫星信号质量好的情况下开始测量。
同时,选择尽可能接近基准站的位置进行测量,以减少信号传输误差。
3. 数据处理与分析数据处理与分析是高精度GPS测量的关键环节。
要选择适当的数据处理软件,如RTKLIB、TEQC等,对接收到的数据进行差分处理,并进行质量评估和误差分析。
CMW500信令测试需要准备的材料:1.主板:1块儿2.支持全网通的信令CMW500一台3.Cable:一根4.sim卡:卡要支持全网通的测试,或者分为两张卡5.模组:一个信令测试StepByStep将待测试主板放进去模组后,将相应FPC连接后开机,完全开机之后就可以进行相关的信令测试了。
1GSM●测试前先点击Reset按钮,将仪表preset一下,有助于后面的注册。
另外,测试那个模块儿,就点击按钮SIGNAL GEN 选择需要测试的模块儿打钩,如图1:图1●点击右侧TASKS按钮,选择GSM Signaling,打开如下界面:修改channel号以及相应制式的PCL功率等级;点击右侧Routing按钮,修改线损;点击右侧ON 按钮,打开小区。
如图2:图2图3:正在打开GSM小区图3待小区打开后,手机端输入暗码,选择GSM ONLY,等待注册(也可以不输入暗码,注册时间会稍长一些),图4表示注册成功,如果长时间不注册可以先打开飞行模式,在关闭飞行模式。
图4●注册成功后点击下方CS Connect按钮,给手机拨电话,如图5。
手机端接听电话即可。
图5●电话接通后,点击右侧GSM1 Multi Eval按钮,跳转到测试界面,如图6,读取当前测试关注指标。
图6●切换同band中的channel,点击界面下方Frequency/Channel按钮,将新的信道输入,回车即可,如图7:图7●切换不同band的channel,点击界面右方GSM Signaling 按钮,点击下方handover按钮,弹出对话框如图8,输入新的band以及channel以及对应的PCL功率等级,点击handover按钮即可。
图8●需要注意的几条;⏹band间handover时,需要注意线损是否需要更改。
⏹测试尽量按照GSM900→GSM1800→GSM850→GSM1900的这个顺序来,不容易出现掉话。
⏹测试哪个band BCCH就需要调整到相应band,不然注册不上。
gps测量操作流程GPS(Global Positioning System)是一种通过卫星定位来确定地理位置的技术。
在现代社会中,GPS已经成为了一种非常重要的测量工具,广泛应用于地理测量、导航、地图制作等领域。
下面将介绍GPS测量的操作流程。
首先,进行前期准备工作。
在进行GPS测量之前,需要确保GPS设备的正常运行。
检查设备的电量是否充足,卫星信号是否良好,以及设备的设置是否正确。
同时,还需要确定测量的目的和范围,选择合适的测量方法和参数。
接着,选择合适的测量点。
在进行GPS测量时,需要选择一些具有代表性的测量点,以确保测量结果的准确性和可靠性。
通常情况下,需要选择至少3个以上的测量点来进行测量。
然后,设置GPS设备。
在选择好测量点之后,需要将GPS设备放置在一个稳定的位置,并确保设备能够接收到足够的卫星信号。
根据测量的要求,设置好测量参数,如测量时间间隔、数据采集频率等。
接下来,进行数据采集和记录。
一旦设置好GPS设备,就可以开始进行数据采集了。
在数据采集的过程中,需要确保设备的稳定性和准确性,同时还需要及时记录测量数据,以便后续的数据处理和分析。
最后,进行数据处理和分析。
在完成数据采集之后,需要对采集到的数据进行处理和分析,以得出最终的测量结果。
通常情况下,需要使用专业的地理信息系统(GIS)软件来处理数据,并生成相应的测量报告和图表。
总的来说,GPS测量是一项复杂而精密的工作,需要进行周密的计划和准备。
只有在严格遵循操作流程的情况下,才能够获得准确可靠的测量结果。
希望以上介绍对您有所帮助。
<CMW WLAN非信令射频测试>应用指南相关产品:1. R&S CMW5002. R&S CMW2803. R&S CMW270Options:● R&S®CMW-KW650● R&S®CMW-KW651● R&S®CMW-KW656● R&S®CMW-KW010● R&S®CMW-KM650● R&S®CMW-KM651● R&S®CMW-KM652● R&S®CMW-KM653● R&S®CMW-KM656目录1CMW基本使用 (6)1.1产品和选件说明 (6)1.1.1产品选择 (6)1.1.2硬件和软件选件选择 (8)2CMW WLAN非信令射频测试流程 (9)2.1基本测试流程 (9)2.1.1初始化操作 (10)2.1.1.1测试环境搭建 (10)2.1.1.2仪表初始化操作 (10)2.1.1.3待测件初始化操作 (12)2.1.2发射机测试 (13)2.1.2.1设置待测件工作属性 (13)2.1.2.2设置CMW Multi Evaluation功能 (14)2.1.2.3设置待测件进入发射模式 (15)2.1.2.4设置CMW Multi Evaluation进行采样分析 (16)2.1.2.5设置待测件停止发射 (17)2.1.3接收机测试 (18)2.1.3.1设置待测件工作属性并开始接收信号 (19)2.1.3.2设置General Purpose RF Generator功能 (19)2.1.3.3读取待测件接收测试结果 (20)3常见射频测试项目 (21)3.1 2.4GHz ISM应用频段直接序列扩频技术物理层规范【第15章】 (23)3.1.1常用参数设置 (23)3.1.2发射要求 (24)3.1.2.1发射功率等级【15.4.7.1】 (24)3.1.2.2最小输出功率等级【15.4.7.2】 (25)3.1.2.3发射功率控制【15.4.7.3】 (25)3.1.2.4发射频谱模板【15.4.7.4】 (26)3.1.2.5发射中心频率容限【15.4.7.5】 (27)3.1.2.6码片频率容限【15.4.7.6】 (28)3.1.2.7发射功率上升沿和下降沿【15.4.7.7】 (28)3.1.2.8载波抑制【15.4.7.8】 (29)3.1.2.9发射调制准确性【15.4.7.9】 (30)3.1.3接收机要求 (31)3.1.3.1最小接收电平灵敏度【15.4.8.1】 (31)3.1.3.2最大接收电平【15.4.8.2】 (33)3.1.3.3接收邻信道抑制【15.4.8.3】 (33)3.25GHz 频段正交频分复用技术物理层规范【第17章】 (34)3.2.1常用参数设置 (34)3.2.2发射要求 (35)3.2.2.1发射功率等级【17.3.9.1】 (36)3.2.2.2发射频谱模板【17.3.9.2】 (37)3.2.2.3发射杂散【17.3.9.3】 (38)3.2.2.4发射中心频率容限【17.3.9.4】 (38)3.2.2.5符号时钟频率容限【17.3.9.5】 (39)3.2.2.6调制准确性【17.3.9.6】 (40)3.2.2.7发射中心频率泄漏【17.3.9.6.1】 (40)3.2.2.8发射机的频谱平坦度【17.3.9.6.2】 (41)3.2.2.9发射机的星座误差【17.3.9.6.3】 (42)3.2.3接收要求 (43)3.2.3.1最小接收灵敏度【17.3.10.1】 (43)3.2.3.2抗邻道干扰能力【17.3.10.2】 (45)3.2.3.3抗非邻道干扰能力【17.3.10.3】 (45)3.2.3.4最大接收电平【17.3.10.4】 (46)3.3高速率直接序列扩频技术物理层规范【第18章】 (47)3.3.1常用参数设置 (47)3.3.2发射要求【18.4.7】 (48)3.3.2.1发射功率等级【18.4.7.1】 (48)3.3.2.2发射功率控制【18.4.7.2】 (48)3.3.2.3发射频谱模板【18.4.7.3】 (49)3.3.2.4发射中心频率容限【18.4.7.4】 (50)3.3.2.5码片时钟频率容限【18.4.7.5】 (50)3.3.2.6发射功率上升沿和下降沿【18.4.7.6】 (51)3.3.2.7载波抑制【18.4.7.7】 (52)3.3.2.8发射调制精度【18.4.7.8】 (53)3.3.3接收机要求【18.4.8】 (55)3.3.3.1接收灵敏度【18.4.8.1】 (55)3.3.3.2接收最大输入功率【18.4.8.2】 (56)3.3.3.3接收机邻道抑制【18.4.8.3】 (56)3.4增强速率技术物理层规范【第19章】 (57)3.4.1常用参数设置 (57)3.4.2发射要求 (58)3.4.2.1发射功率等级【19.4.7.1】 (58)3.4.2.2发射中心频率容限【19.4.7.2】 (59)3.4.2.3符号时钟频率容限【19.4.7.3】 (60)3.4.2.4发射及调制精度【19.7.2.7】 (61)3.4.2.5发射频谱模板【19.5.4】 (62)3.4.3接收机要求 (64)3.4.3.1接收机灵敏度【19.5.1】 (64)3.4.3.2接收机邻道抑制【19.5.2】 (66)3.4.3.3接收最大输入电平【19.5.3】 (66)3.5高速率技术传输物理层规范【第20章】 (66)3.5.1常用参数设置 (67)3.5.2发射要求 (75)3.5.2.1发射频谱模板【20.3.21.1】 (76)3.5.2.2频谱平坦性【20.3.21.2】 (78)3.5.2.3发射功率【20.3.21.3】 (79)3.5.2.4发射中心频率容限【20.3.21.4】 (80)3.5.2.5符号时钟频率容限【20.3.21.6】 (80)3.5.2.6发射中心频率泄露【20.3.21.7.2】 (81)3.5.2.7发射机星座误差【20.3.21.7.3】 (82)3.5.3接收机要求 (83)3.5.3.1接收机灵敏度【20.3.22.1】 (83)3.5.3.2邻道抑制【20.3.22.2】 (85)3.5.3.3非邻道抑制【20.3.22.3】 (85)3.5.3.4接收最大输入电平【20.3.22.4】 (86)4相关资源 (87)1CMW基本使用1.1 产品和选件说明目前使用CMW来做WLAN测试有两种测试方案:信令方案和非信令方案。