第一章质点动力学2
- 格式:ppt
- 大小:1.49 MB
- 文档页数:8
学生整理,时间有限,水平有限,仅供参考,如有纰漏,请以老师、课本为主。
第一章质点力学(1)笛卡尔坐标系 位置:k z j y i x ++=r速度:k z j y i x dtr d ...v ++== 加速度:k z j y i x dtv d ......a ++== (2)极坐标系坐标:j i e r θθsin cos += j i e θθθcos sin +-= r e r =r 速度:r r .v = .v θθr =加速度:2...θr r a r -= .....2θθθr r a += (3)自然坐标系(0>θd ) 坐标:ds r d e t =θd e d e t n = θρd ds = 速度:t e v v = 加速度:n t e v e v ρ2.a +=(4)相对运动(5)牛顿运动定律 牛顿第一定律:惯性定律 牛顿第二定律:)(a m v m P dtP d dt v d m F ==== 牛顿第三定律:2112F F -= (6)功、能量vF dt rd F dt dW P rFd dA ⋅=⋅=== (7)(7)有心力第二章 质点动力学的基本定理知识点总结: 质点动力学的基本方程质点动力学可分为两类基本问题:. (1) .已知质点的运动,求作用于质点的力; (2) 己知作用于质点的力,求质点的运动。
动量定理 动量:符号动量定理微分形式动量守恒定律:如果作用在质点系上的外力主失恒等于零,质点系的动量保持不变。
即:质心运动定理:质点对点O 的动量矩是矢量mv r J i ⨯= 质点系对点0的动量矩是矢量i ni nii i i v m r J J ∑∑=⨯==1若z 轴通过点0,则质点系对于z 轴的动量矩为∑==ni z z z J M J ][若C 为质点系的质心,对任一点O 有 c c c J mv r J +⨯=02. 动量矩定理∑∑=⨯=⨯=nie i i n i i i i M F r v m r dt d dt dJ )()( 动量矩守恒:合外力矢量和为零,则动量矩为常矢量。
2 质点力学的运动定律守恒定律2.1直线运动中的牛顿运动定律1. 水平地面上放一物体A,它与地面间的滑动摩擦系数为μ.现加一恒力F如图所示.欲使物体A有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sinθ =μ.(B) cosθ =μ.(C) tgθ =μ.(D) ctgθ =μ.答案:(C)参考解答:按牛顿定律水平方向列方程:,)sin(cos amFgmFAA=--μθθ显然加速度a可以看作θ的函数,用高等数学求极值的方法,令,0dd=θa,有.μθ=tg分支程序:凡选择回答错误的,均给出下面的进一步讨论:1.一质量为m的木块,放在木板上,当木板与水平面间的夹角θ由00变化到090的过程中,画出木块与木板之间摩擦力f随θ变化的曲线(设θ角变化过程中,摩擦系数μ不变).在图上标出木块开始滑动时,木板与水平面间的夹角θ0,并指出θ0与摩擦系数μ的关系.(A) 图(B)正确,sinθ0 =μ.(B) 图(A)正确,tgθ 0=μ.FθA答案: (B)参考解答:(1) 当θ较小时,木块静止在木板上,静摩擦力;sin θmg f =(正确画出θ为0到θ 0之间的f -θ 曲线)(2) 当θ=θ 0时 (tg θ 0=μ),木块开始滑动; (3) 0θθ>时,滑动摩擦力,cos θμmg f =(正确画出θ为θ 0到90°之间的f -θ曲线) .2.2曲线运动中的牛顿运动定律1. 如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 答案: (E)参考解答:根据牛顿定律法向与切向分量公式:.dtd ,2υυm F R m F t n == .cos ,sin θθmg F mg N F t n =-= 物体做变速圆周运动,从A 至C 的下滑过程中速度增大,法向加AROθC速度增大。
1、 质点运动量的描述(1) 位置矢量r:运动方程: k t z j t y i t x t r )()()()(++=;模为 222z y x r ++=位移矢量:)()(t r t t r r -∆+=∆;注意:一般r r ∆≠∆(2) 速度:x y z dr v v i v j v k dt ==++,分量式:x y z v ,v ,v dx dy dzdt dt dt===; 速度的大小:222x y z dr ds v v v v v dt dt==++=≡,v 为速率。
速度方向沿曲线切线指向运动的前方。
平均速度:x y z r v v i v j v k t ∆==++∆,分量式:,,x y z x y zv v v t t t∆∆∆===∆∆∆ (3) 加速度:22x y z dv d r a a i a j a k dt dt===++,加速度大小:222xy z a a a a =++ 分量式:222222,,y x z x y z dv dv dv d x d y d za a a dt dt dt dt dt dt ======; 自然坐标系:t e v v =,n n t t e a e a a+=,t dv a dt =(有正负!),2n v a ρ=,此处v 为速率,ρ为曲率半径。
2、 圆周运动:角位置θ,角速度d dt θω=,角加速度:d dtωα=; 角量与线量的关系:θR s =,R v ω=,t dv a R dt α==,22n va R Rω==3、 抛体运动:0000200000cos 1sin 2x x x x y y y y a v v v x v ta g v v gt v gt y v t gt θθ=→==→=⎧⎪⎨=-→=-=-→=-⎪⎩其中0θ为起抛角。
22t n a a g += 4、 相对运动速度变换: AB AC CB v v v =+ 或表示为 AB AC BC v v v =- 加速度变换:AB AC CB a a a =+ 或 AB AC BC a a a =-(注意:这是矢量加法,用平行四边形作图或分解为分量计算;注意下标的规律。
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。