北理工理论力学第9章-9.2(14-2)2013-11-27(2学时)
- 格式:pdf
- 大小:1.05 MB
- 文档页数:33
本资料由理硕教育整理,理硕教育是全国唯一专注于北理工考研辅导的学校,相对于其它机构理硕教育有得天独厚的优势。
丰富的理工内部资料资源与人力资源确保每个学员都受益匪浅,确保理硕教育的学员初试通过率89%以上,复试通过率接近100%,理硕教育现开设初试专业课VIP一对一,初试专业课网络小班,假期集训营,复试VIP一对一辅导,复试网络小班,考前专业课网络小班,满足学员不同的需求。
因为专一所以专业,理硕教育助您圆北理之梦。
详情请查阅理硕教育官网848 理论力学(1)考试要求①了解:点的运动描述,刚体的平移、定轴转动和平面运动的描述,约束和自由度的概念,力系的两个特征量及力系简化的四种最简形式,二力构件的特点,静摩擦力应满足的物理条件,刚体的质心和规则刚体(均质细长直杆、圆盘、圆环等)对中心惯性主轴的转动惯量,动力学三个基本定理及其守恒定律,达朗贝尔原理与动量原理的关系,利用虚位移原理求解平衡问题的特点,利用动力学普遍方程求解动力学问题的优势。
②理解:用弧坐标表示点的速度、切向加速度和法向加速度,平面运动刚体的角速度和角加速度,平面运动刚体的速度瞬心,平面运动刚体的加速度瞬心,平面运动刚体上点的曲率中心,绝对运动、相对运动和牵连运动(尤其是动点的相对速度和相对加速度,动点的牵连速度和牵连加速度,动点的科氏加速度),常见约束的约束力特点,纯滚动圆盘的运动描述和所受摩擦力特性,物体平衡与力系平衡的差别,刚体转动惯量的平行轴定理,刚体的平移、定轴转动、平面运动的动能、动量、对某点的动量矩及达朗贝尔惯性力系的简化结果的计算,动静法的含义,虚位移概念和虚位移原理,动力学普遍方程的本质。
③掌握:用速度瞬心法、速度投影定理,两点速度关系的几何法或投影法对平面运动刚体系统进行速度分析,用两点加速度关系的投影法或特殊情况下加速度瞬心法对平面运动刚体系统进行加速度分析,用点的速度合成公式的几何法或投影法以及加速度合成公式的投影法对平面运动刚体系统进行运动学分析,力系的主矢和对某点的主矩的计算,最简力系的判定,物系平衡问题的求解(尤其要掌握通过巧妙选取研究对象和平衡方程对问题进行快速求解),带摩擦物系平衡问题的求解,物系动力学基本特征量(动能、动量、对某点的动量矩、达朗伯惯性力)的计算,动能定理的积分或微分形式的应用,动量守恒、质心运动守恒和质心运动定理的应用,对定点的动量矩定理、相对于质心的动量矩定理及其守恒定律的应用,用达朗贝尔原理(动静法)求解物系的动力学问题(包括动力学正问题:已知主动力求运动和约束力,以及动力学逆问题:已知运动求未知主动力和约束力),用虚位移原理求解物系的平衡问题(特别是利用虚位移原理求解作用于平衡的平面机构上主动力之间应满足的关系,会利用虚位移原理求解平面结构的某个外部约束力或求解其中某根二力杆的内力),用动力学普遍方程快速求解物系动力学问题中某点加速度或某刚体角加速度。
北理工《工程力学(1)》FAQ(九)第九章动量原理1、A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则 []A.经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同B.A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下C.三个小球运动过程的动量变化率大小相等,方向相同D.三个小球从抛出到落地过程中A球所受的冲量最大【分析】A选项要判定三球的动量变化.若直接应用△p=p2-p1比较麻烦,因为动量是矢量,它们的方向并不是在同一直线上,不易求出矢量差.考虑到他们所受的合力均为重力,并都是相同的,由动量定理△p=F合t可知,A选项正确.B选项是判定A球从抛出到落地过程中动量变化.由△p=p2-p1,可得△p=mv1+mv0,方向竖直向下,故B选项是错误的.对C选项,由F合=△p/t知是正确的.因为竖直上抛的A球在空中持续时间最长,故A球受到的冲量mgt也是最大,因此D选项也是正确的.【答】ACD。
2、动量相等的甲、乙两车,刹车后沿两条水平路面滑行.若[]A.1:1B.1:2C.2:1D.1:4【分析】两车滑行时水平方向仅受阻力f作用,在这个力作用下使物体的动量发生变化.当规定以车行方向为正方向后,由牛顿第二定律的动量表述形式:所以两车滑行时间:当p、f相同时,滑行时间t相同.【答】A。
【说明】物体的动量反映了它克服阻力能运动多久.从这个意义上,根据p、f相同,立即可判知t相同.若把题设条件改为“路面对两车的动摩擦因数相同”,则由f=μmg,得3、某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了0.5m.在着地过程中地面对他双脚的平均作用力估计为[]A.自身所受重力的2倍B.自身所受重力的5倍C.自身所受重力的8倍D.自身所受重力的10倍【分析】下落2m双脚刚着地时的速度触地后,速度从v降为v'=0的时间可以认为等于双腿弯屈又使重心下降△h=0.5m所需的时间.在这段时间内,可把地面对他双脚的力简化为一个恒力,因而重心下降△h=0.5m的过程可以认为是一个匀减速过程,因此所需时间在触地过程中,设地面对双脚的平均作用力为N,取向上的方向为正方向,由动量定理。
习 题9-1 如图9-9所示,一质量为700kg 的载货小车以v=1.6m/s 的速度沿缆车轨道下降,轨道的倾角a=15°,运动总阻力系数f =0.015;求小车匀速下降时缆索的拉力。
又设小车的制动时间为t=4s ,在制动时小车作匀减速运动,试求此时缆绳的拉力。
图9-90sin 1T =-+αmg F F)cos (sin cos sin sin 1T αααααf mg fmg mg F mg F -=-=-=N 1676)15cos 015.015(sin 8.9700=︒⨯-︒⨯⨯=2m/s 4.0406.1=-=amamg F F =-+αsin 2TN19564.07001676sin 1T 2T =⨯+=+=+-=ma F ma F mg F α9-2 小车以匀加速度a 沿倾角为a 的斜面向上运动,如图9-10所示。
在小车的平顶上放一重W 的物块,随车一同运动,试问物块与小车间的摩擦因数μ应为多少?图9-10y 方向0s i n c o s c o s N =--αααF W Fαμαt a n t a n N N F W F W F +=+= αμt a n 1N -=W Fx 方向ma W F F =-+αααsin cos sin NmaW F F =-+ααμαsin cos sin N N a g W W F =-+ααμαsin )cos (sin N a g W W W=-+-ααμααμsin )cos (sin tan 1 g a=--+ααμαμαsin tan 1cos sing a=-+-+αμααμααμαtan 1sin tan sin cos sin g a =-+αμαααμtan 1sin tan cos g a =-αμαμtan 1cos /1 g a =-αμαμsin cos 1 )sin (cos αμαμ-=g ag a a +=ααμsin cos 分析得 g a a +≥ααμsin cos9-3 如图9-11所示,在曲柄滑道机构中,滑杆与活塞的质量为50kg ,曲柄长300mm ,绕O 轴匀速转动,转速为n=120r/min 。
请统考生答一、三、四、五、六题请单考生答一、二、三、五、六题一、基本概念题(共40分)1)长方体的边长分别为a、b、c。
在顶点A上作用如图所示的已知力F,求该力对图示x、y、z轴的矩。
(6分)2)在图示四面体的三个顶点A、B、C上分别作用着三个力F1、F2、F3,它们的大小均为F,方向如图所示,已知OA=OB=OC=a。
试问:(a)、(b)两种情况下力系的最简形式分别是什么?(合力、合力偶、力螺旋、平衡)。
(6分)3)图示平面机构,杆OA绕O轴作定轴转动,通过连杆AB带动圆轮C在水平面上作纯滚动。
已知杆OA的角速度转向如图所示,试画出图中D、E两点的速度方向。
(5分)4)曲柄OA以角速度w 绕O轴作顺时针转动,借助滑块A带动折杆BCD在图示平面内绕B轴转动。
若取OA上的A点为动点,动系与折杆BCD固连,试画出图示瞬时动点的科氏加速度的方向。
(5分)5)均质细杆AB,长为l,质量为m,中点为C。
杆AB的两端点分别沿水平地面和铅垂墙面滑动。
已知图示瞬时A点速度为V A,求此时系统的动能、动量以及分别对O、C两点的动量矩。
(8分)6)半径为r,质量为m的均质圆轮O在水平面上作纯滚动,从而带动长为l,质量为m1的均质杆OA的A端在同一水平面上滑动。
已知圆轮的角速度、角加速度分别为w 、e ,转向如图所示。
试分别写出圆轮、杆的达朗伯惯性力系的简化结果。
(5分)7)图示机构中杆OA以光滑铰链B与杆BC相连接。
在图示位置时,当杆OA有一虚转角d q 时,试分别计算图示主动力偶矩M,主动力F的虚功。
(5分)二、在图示结构的AD杆上作用着力偶矩为m的力偶,在节点C上作用着铅垂力P。
AD、CD、BC的杆长均为a 。
若不计各杆自重和各连接处摩擦,试求:(1)CD杆的内力;(2)固定端B处的反力。
(15分)三、已知平面四连杆机构ABCD的尺寸和位置如图所示。
若杆AB以等角速度w =1rad/s在绕A轴转动,试求此时C点的加速度的大小。
清华大学版理论力学课后习题答案大全(免费下载)(第9章动量矩第9章动量矩定理及其应用9-1在下列条件下计算系统的动量矩。
1.圆盘以ω的角速度绕o轴转动,质量为m的小球m可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度vr运动到om=s处(图a);求小球对o点的动量矩。
2.图中质量为m的偏心轮在水平面上作平面运动。
车轮中心为a,质心为C,AC=E;车轮半径为R,车轮中心a的惯性矩为JA;c、 a点和B点位于同一铅垂线上(图B)。
(1)当车轮仅滚动而不滑动时,如果VA已知,则计算车轮的动量和到B点的动量矩;(2)当车轮滚动和滑动时,如果VAω已知,求车轮的动量和B点的动量矩。
解:1。
瞧?MS2(逆)2,(1)vrωmoωab(a)crvaep?mvc?m(va??e)?mva(1?)(逆)rv(r?e)2lb?mvc(r?e)?jc??mva?(ja?me2)arr(b)(2)p?mvc?m(va??e)图9-1lb?mvc(r?e)?jc??m(va??e)(r?e)?(ja?me2)??m(r?e)va?(ja?mer)?9-2在图中所示的系统中,已知滚筒绕O轴旋转的角速度ω,其大半径和小半径分别为R和R,相对于O轴的惯性矩为Jo;a区和B区的质量分别为ma和MB;试着找出系统相对于O轴的动量矩。
ω或解:Rlo?(jo?mar2?mbr2)?练习a的图9-2bθ9-3图中所示的均质细杆OA和EC的质量分别为50kg和100kg,它们在a点焊接在一起。
如果结构在图中所示的位置从静态状态下释放,计算刚释放时杆的角加速度和铰链o处的约束力。
没有铰链摩擦。
解:令m=moa=50kg,则mec=2m质心d位置:(设l=1m)d?od?l255l?m66foxfoymgd2mg刚体作定轴转动,初瞬时ω=0jo??mg??2mg?ljo?ml2?即3ml2??131?2m?(2l)2?2ml2?3ml212习题20-3图D习题20-3解图5mgl2??5g?8.17rad/2s6l525tad?lg636由质心运动定理:3m?ad?3mg?foyt2511g?mg?449n(↑)3612n?0,福克斯?0,阿德福?3毫克?3米-1-9-4绞车机构如图所示,能绕固定轴旋转的B轮和C轮的半径分别为R和R,各自旋转轴的惯性矩分别为J1和J2。