结构化建模方法
- 格式:pdf
- 大小:622.23 KB
- 文档页数:10
结构化与面向对象的建模谢新华对于软件,可以有几种建模方法,最普通的方法是从算法的角度建模和从面向对象的角度建模。
传统的软件开发是从算法的角度建模,所有的软件都用函数作为构造块,这种建模方法使设计人员把精力放在控制流程和对应的算法进行分析上,这种方法建立的模型是脆弱的,因为当需求发生变化的时候,这种模型将难以维护。
现代的软件开发采用面向对象的方式建模,所有的软件系统都用对象作为它的主要构造块,对面向对象系统进行可视化、评述和文档化,正是统一建模语言的(UML)的目的所在。
为了更好的理解UML和应用UML,我们必须对面向对象的语言体系有的比较好的理解。
1、面向对象的设计方法产生背景在90年代初,主要有结构化分析与设计方法和面向对象的方法, 而结构化分析与设计方法主要是以数据为中心的方法(如采用实体关系图、数据流图等);而面向对象设计方法则以对象为中心。
(1)结构化方法z使用系统结构图来表达功能间的关系结构化方法是一种基于功能分解的分析方法,并且自上向下的分解或分层。
在结构化方法中首先要定义出需要哪些功能程序,每个程序应该实现哪些功能,然后按照某种方式把程序组织成一张图,该图称为结构图。
结构化分析与设计方法所具有的特点:自顶向下的分析和自底向上的开发实施;强调用户和用户参与的重要性;严格区分工作阶段。
结构化方法实际上就是按功能分解系统,比如设计一个工资系统,可以按功能划分成录入系统、打印系统、查询系统等等,这大约是传统程序员用得最多的一种方法。
2,面向对象设计方法z结构化方法的特性由于表达需求的系统结构图会按照业务功能领域逐层分解一个大的组织机构的业务功能到小的组织机构和个人的功能。
最后就成了“系统功能模块”或“子系统划分”的需求了。
接下来会为每个模块或子系统进行功能实现的设计,通过画数据流图,把模块之间的数据接口和内部处理逻辑表达出来,并且用模块的功能及其对数据的使用关系的链来表达对外部请求的响应过程和给外界的反馈信息。
软件工程建模的方法
软件工程建模的方法有以下几种:
1. 面向过程的建模方法:这种方法主要关注软件系统的输入、处理和输出过程,通过绘制数据流图、结构图、状态转换图等图形化方式来描述系统的结构和功能。
2. 面向对象的建模方法:这种方法主要关注软件系统中的对象及其相互关系,通过绘制类图、对象图等图形化方式来描述系统的结构和行为。
3. 数据库建模方法:这种方法主要用于描述软件系统中的数据模型,通过绘制实体关系图、关系模式、数据流程图等图形化方式来描述数据库的结构和关系。
4. 结构化建模方法:这种方法主要关注软件系统的组织结构和模块划分,通过绘制模块图、层次结构图等图形化方式来描述系统的组织关系和模块之间的调用关系。
5. UML(统一建模语言)建模方法:这种方法是一种标准化
的建模方法,通过使用UML语言规范来描述软件系统的各个
方面,包括需求、设计、实现、测试等,通过绘制用例图、类图、时序图、活动图等图形化方式来描述系统的结构和行为。
这些建模方法可以根据具体的需求和情况灵活选择和组合使用,以达到对软件系统的准确描述和全面分析的目的。
一种结构化道路建模方法一种结构化道路建模方法的目的是通过定义一套规则和方法,使得道路模型的构建更加系统和有条理。
下面将介绍一种具体的结构化道路建模方法。
在建模之前需要明确道路建模的目标,例如道路交通仿真、交通规划分析等。
根据实际需求和目标,确定所需的道路属性和参数,如道路的长度、宽度、车道数、最大速度、交叉口的类型等。
然后,根据实际道路的形状和地理信息,利用地理信息系统(GIS)等工具获取道路的基本几何形状和拓扑关系。
这些信息包括道路的起点和终点坐标、道路的转弯曲率、道路的坡度等。
还可以通过现场调查、空中拍摄等方式获得更加详细和准确的道路数据。
接下来,使用计算机辅助设计(CAD)软件或专业的建模软件,根据实际道路的形状和参数,绘制道路的几何形状和布局。
在绘制道路的过程中,需要按照一定的比例、精度和规则进行绘制,以确保道路模型的准确性和可靠性。
根据实际道路的参数,设置相应的道路属性和参数,如道路的宽度、车道数、最大速度等。
然后,根据道路的属性和参数,进行道路的拓扑建模。
道路的拓扑关系包括道路之间的连接关系、道路的交叉口、道路的连接方向等。
通过对道路的拓扑建模,可以准确地描述道路的整体布局和结构。
根据道路建模的目标,进行道路模型的参数化和优化。
通过调整道路的属性和参数,如道路的长度、宽度、车道数等,可以实现道路模型的优化和改进。
还可以利用优化算法和仿真方法对道路模型进行评估和验证,以确保道路模型的可靠性和有效性。
这种结构化道路建模方法具有以下优点:1. 道路模型的绘制和构建更加系统和有条理,有利于后续的分析和应用。
2. 道路模型的几何形状和布局更加精确和准确,可以满足不同场景下的需求。
3. 道路模型的属性和参数可以灵活调整和优化,以适应不同的应用场景。
4. 通过应用优化算法和仿真方法,可以对道路模型进行评估和验证,提高道路模型的可靠性和有效性。
软件系统的建模的方法和介绍软件系统建模是将现实世界中的问题抽象表示为计算机能够理解和处理的形式的过程。
它是软件开发过程中的关键步骤之一,可以帮助开发团队更好地理解问题领域,并以一种可视化的方式来描述系统的结构和行为。
下面将介绍几种常见的软件系统建模方法。
1. 面向对象建模方法:面向对象建模是一种基于对象的方法,它将问题领域分解为多个独立的对象,并描述它们之间的关系和行为。
常用的面向对象建模方法包括UML(统一建模语言)和领域模型(Domain Model)等。
UML是一种广泛应用的面向对象建模语言,它提供了用于描述系统结构、行为和交互的图形符号和语法规则。
2. 数据流图(Data Flow Diagram, DFD)建模方法:数据流图是描述软件系统中数据流动的图形化工具。
它将系统分解为一系列的功能模块,通过数据流和处理过程之间的关系来描述系统的结构和行为。
数据流图主要包括外部实体、数据流、处理过程和数据存储等基本元素。
3.结构化建模方法:结构化建模是一种基于流程的建模方法,它主要通过流程图和结构图来描述系统的结构和行为。
流程图用于描述系统中的控制流程和数据流动,结构图用于描述系统中的数据结构和模块关系。
常见的结构化建模方法包括层次图、树形图和PAD(程序设计语言图)等。
4.状态图模型:状态图是一种描述系统状态和状态转换的图形化工具。
它主要包括状态、转移和事件等元素,用于描述系统中的各种状态及其变化过程。
状态图可以帮助开发团队清晰地理解系统的状态转换规则和事件响应机制。
5.时序图和活动图:时序图和活动图是UML中的两种重要建模方法。
时序图主要用于描述对象之间的交互和消息传递顺序,而活动图主要用于描述系统中的活动和操作流程。
这两种图形化表示方法可以帮助开发团队更好地理解系统的动态行为和操作流程。
除了上述几种常见的建模方法,还有很多其他的建模方法可供选择,如数据建模、用例建模、业务流程建模等。
不同的建模方法适用于不同的场景和应用需求,开发团队可以根据具体情况选择最合适的建模方法进行系统建模。
行为级建模和结构化建模解读一、行为级建模行为级建模是一种系统建模方法,它主要关注系统的动态行为和交互。
这种建模方法特别适合于模拟和分析实时、嵌入式系统。
行为级建模具有以下几个主要特点:1. **重点在动态行为**:行为级模型的主要目标是捕获系统的动态行为,例如系统的响应时间和性能等。
这使得它成为对实时和嵌入式系统进行模拟和性能分析的理想选择。
2. **关注交互**:行为级建模强调系统各部分之间的交互,以及这些交互如何影响系统的整体行为。
这种交互可以包括硬件与硬件、硬件与软件、软件与软件之间的交互。
3. **抽象层次高**:虽然行为级模型详细描述了系统的动态行为,但它通常在一个相对高的抽象层次上工作,以便更有效地理解和分析系统。
这意味着模型可能会忽略一些细节,以简化模型并突出主要的行为特性。
4. **支持多种分析**:由于行为级模型关注动态行为,它可以支持多种分析,如性能分析、可靠性分析、控制系统分析和能源消耗分析等。
二、结构化建模结构化建模是一种更传统的系统建模方法,其重点是系统结构和组成部分之间的关系。
结构化建模主要基于自上而下的设计原则,将系统分解为更小的、更易于管理的部分。
以下是结构化建模的一些关键特点:1. **关注系统结构**:结构化模型强调系统的组成和各部分之间的关系。
这有助于更好地理解系统的整体结构和功能。
2. **分解和模块化**:结构化建模通常将系统分解为多个模块或组件,每个模块执行特定的功能。
这有助于简化设计和分析过程。
3. **顺序和流程**:在这种方法中,通常强调模块之间的顺序和流程关系,而不是并行或并发关系。
4. **强调因果关系**:结构化模型强调事件之间的因果关系,而不是实时交互或并发行为。
5. **易于理解和分析**:由于结构化模型通常更简单、更直观,因此更容易理解和分析。
这对于初步的系统设计阶段尤其有用。
总结:行为级建模和结构化建模是两种不同的系统建模方法,各有其优点和适用场景。
结构化建模方法结构化建模方法是一种用于描述和分析系统结构的方法。
它将系统划分为不同的组成部分,并定义它们之间的关系和行为。
本文将介绍结构化建模方法的基本概念、常用的建模技术以及其在软件开发和系统设计中的应用。
结构化建模方法强调系统的结构和组成部分之间的关系。
它使用一种层次化的方式将系统划分为不同的模块或组件。
每个模块都有特定的功能,并与其他模块进行交互。
这种模块化的设计使系统更易于理解和维护。
在结构化建模方法中,常用的建模技术包括结构图、数据流图和状态转换图等。
结构图用于表示系统中各个模块之间的关系,包括层次关系、依赖关系和调用关系等。
数据流图则用于描述系统中数据的流动方式和处理过程。
状态转换图则用于描述系统中不同状态之间的转换过程。
在软件开发中,结构化建模方法可以帮助开发人员更好地理解系统的需求和设计。
通过使用结构化建模方法,开发人员可以将系统拆分为多个模块,并定义模块之间的接口和交互方式。
这样可以提高系统的可维护性和可扩展性。
在系统设计中,结构化建模方法可以帮助设计人员更好地理解系统的整体结构和组成部分。
通过使用结构化建模方法,设计人员可以清晰地描述系统的各个模块及其之间的关系。
这样可以确保系统的设计满足需求,并且易于实现和测试。
除了在软件开发和系统设计中的应用之外,结构化建模方法还可以应用于其他领域。
例如,在项目管理中,可以使用结构化建模方法来描述项目的工作流程和组织结构。
在业务流程分析中,可以使用结构化建模方法来描述业务流程的各个环节和关系。
结构化建模方法是一种用于描述和分析系统结构的方法。
它通过将系统划分为不同的组成部分,并定义它们之间的关系和行为,帮助开发人员和设计人员更好地理解和实现系统。
这种方法在软件开发、系统设计以及其他领域都有广泛的应用。
通过使用结构化建模方法,可以提高系统的可维护性和可扩展性,确保系统的设计满足需求,并且易于实现和测试。
结构化方法有哪些结构化方法是一种基于形式化和系统化的方法,用于解决复杂问题。
它通过将问题划分为各个组成部分,并建立它们之间的关系来分析和解决问题。
结构化方法可以应用于各个领域,包括工程、管理、计算机科学等。
下面将介绍几种常见的结构化方法。
1. 系统分析方法(Systems Analysis)系统分析方法是一种用于分析和理解复杂系统的方法。
它通过对系统的各个组成部分进行分析,识别系统的功能、数据和过程,并建立它们之间的关系模型。
系统分析方法可以帮助我们理解系统的运作机制,识别系统中的问题,并提出改进方案。
2. 数据流程图(Data Flow Diagram)数据流程图是一种图形化工具,用于描述系统中数据的流动和处理过程。
数据流程图通过绘制各个模块、数据流和处理过程之间的关系,帮助我们理解系统的结构和功能。
数据流程图可以用于分析和改进现有系统,也可以用于设计新的系统。
3. 结构化流程图(Structured Flowchart)结构化流程图是一种图形化工具,用于描述程序的执行流程和控制结构。
结构化流程图通过绘制各个模块、判断和循环结构之间的关系,帮助我们理解程序的逻辑和控制流程。
结构化流程图可以用于分析和设计算法、编写程序和调试代码。
4. 数据库建模方法(Database Modeling)数据库建模方法是一种用于描述和设计数据库的方法。
它通过建立实体、属性和关系之间的模型,帮助我们理解数据库的结构和功能。
数据库建模方法可以用于分析和设计数据库,定义数据表和关系,以及优化数据库的性能。
5. 状态机方法(State Machine)状态机方法是一种用于描述系统的状态和转换的方法。
它通过定义系统的状态(如开始、中间和结束状态)和转换(如事件和条件),帮助我们理解系统的行为和响应。
状态机方法可以用于分析和设计控制系统、自动机和协议。
6. 对象建模方法(Object Modeling)对象建模方法是一种用于描述和设计对象的方法。