液压基本回路及液压系统教案DOC
- 格式:pdf
- 大小:47.84 KB
- 文档页数:3
液压传动系统基本回路液压传动系统是一种通过液体介质传递能量的系统,广泛应用于工程机械、航空航天、冶金、石化等领域。
其基本回路是实现液体在不同部件之间传递能量和控制的重要组成部分。
本文将介绍液压传动系统基本回路的组成和工作原理。
一、液压传动系统基本回路组成液压传动系统基本回路由液压泵、油箱、液压马达、液压阀等组成。
液压泵通过压力油将液体送入液压马达,驱动其旋转或直线运动,从而输出功。
液压阀则用于调节和控制液体流量、压力等参数。
二、液压传动系统基本回路工作原理液压传动系统的工作原理可以用下面的流程进行描述:1. 液压泵抽油:当液压泵启动时,它的齿轮、齿条等运动部件开始运转,使泵腔内形成破真空状态,油液从油箱被抽入泵腔。
2. 油液送入液压马达:随着泵腔内部的容积增大,压力油被抽进泵腔,然后在泵的工作行程中被迫出来,进入液压马达的油缸或油腔。
3. 液压马达工作:当压力油进入液压马达的油腔后,液压马达开始工作。
如果液压马达是液压马达,油液的压力和流量将驱动液压马达转动或直线运动。
4. 油液返回油箱:液压泵将通过压力油送入液压马达的油液压力升高,流动速度增加,从而形成驱动力,使马达得以运转。
马达工作时,压力油将被排出液压马达,并返回油箱。
在液压传动系统的工作中,液压阀发挥着重要的作用。
液压阀可以根据需要控制和调节液体流量、压力,以满足系统的工作要求。
同时,液压阀还可以实现流量方向的控制,将压力油导向不同的液压执行元件,从而实现系统的运动控制。
三、液压传动系统基本回路的应用液压传动系统基本回路的应用广泛。
在工程机械领域,液压传动系统被用于操纵各类工程机械的液压动力系统,包括挖掘机、铲车、起重机等。
在航空航天领域,液压传动系统被应用于飞机、导弹等飞行器的液压传动系统,实现操纵用、起落架、襟翼等功能。
在冶金、石化领域,液压传动系统被应用于高温高压环境下的各种液压机械和液压设备。
液压传动系统基本回路的优点在于具有稳定、平稳、可控性好、传动效率高等特点。
液压传动系统基本回路液压传动系统是一种常用的力传递和控制装置,其基本组成部分是液压元件、液压控制阀和液压能源单元。
而液压传动系统的基本回路则是指通过液压元件将液压能源转化为机械能的系统。
液压传动系统的基本回路可以分为两大类:单向回路和双向回路。
单项回路又可分为单向控制回路和单向控制回路。
下面将详细介绍这两类液压传动系统的基本回路。
一、单项回路单项回路是指通过液压元件将液压能源转化为机械能的系统。
单项回路中的液压元件通常包括液压缸和液压马达。
1. 单向控制回路单向控制回路是指通过单向阀控制液压元件的液压油流的流向,从而实现工作机构的单向运动。
单向控制回路通常由液压泵、阀组、液压缸和单向阀等组成。
液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸则利用压力油液来驱动工作机构。
单向阀的作用是使液压油只能在一个方向上流动,从而控制液压缸的单向运动。
2. 单向反控制回路单向反控制回路是指通过单向阀和控制阀控制液压元件的液压油流的流向,从而实现工作机构的反复往复运动。
单向反控制回路通常由液压泵、阀组、液压缸、双向控制阀和单向阀等组成。
液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸利用压力油液来驱动工作机构。
而双向控制阀的作用是控制液压油液的流动方向,使液压缸能够实现反复往复的运动。
二、双向回路双向回路是指通过液压元件将液压能源转化为机械能的系统,能够实现工作机构的双向运动。
双向回路通常由液压泵、阀组、液压缸和双向阀等组成。
液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸则利用压力油液来驱动工作机构。
双向阀的作用是使液压油可以在两个方向上流动,从而实现液压缸的双向运动。
总结:液压传动系统的基本回路包括单向回路和双向回路。
单向回路可以分为单向控制回路和单向反控制回路,通过控制液压油流的流向实现工作机构的单向运动和反复往复运动。
而双向回路则能够实现工作机构的双向运动。
通过合理选择和布置液压元件、液压控制阀和液压能源单元,可以设计出不同类型和功能的液压传动系统,满足不同工况下的力传递和控制需求。
1、液压系统回路设计1.1、 主干回路设计对于任何液压传动系统来说, 调速回路都是它的核心部分。
这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度, 但它的主要功能却是在传递动力(功率)。
根据伯努力方程: 2d v p q C x ρ∆= (1-1)式中 q ——主滑阀流量d C ——阀流量系数v x ——阀芯流通面积p ∆——阀进出口压差ρ——流体密度其中 和 为常数, 只有 和 为变量。
液压缸活塞杆的速度:q v A= (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积一般情况下, 两调平液压缸是完全一样的, 即可确定 和 所以要保证两缸同步, 只需使 , 由式(1-2)可知, 只要主滑阀流量一定, 则活塞杆的速度就能稳定。
又由式(1-1)分析可知, 如果 为一定值, 则主滑阀流量 与阀芯流通面积成正比即: ,所以要保证两缸同步, 则只需满足以下条件:, 且此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。
图1-1 三位四通的电液比例方向流量控制阀它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。
比例阀一般都具有压力补偿性能, 所以它输出的流量可以不受负载变化的影响。
与手动调节的普通液压阀相比, 它能提高系统的控制水平。
它和电液伺服阀的区别见表1-1。
表1-1 比例阀和电液伺服阀的比较项目 比例阀 伺服阀低, 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制, 但对控制精度和动态特性要求不太高的液压系统中。
又因为在整个举身或收回过程中, 单缸负载变化范围变化比较大(0~50T), 而且举身和收回时是匀速运动, 所以调平缸的功率为, 为变功率调平, 为达到节能效果, 选择变量泵。
综上所可得, 主干调速回路选用容积节流调速回路。
容积节流调速回路没有溢流损失, 效率高, 速度稳定性也比单纯容积调速回路好。
为保证值一定, 可采用负荷传感液压控制, 其控制原理图如图1-2所示。
项目7:液压回路项目目标:掌握典型基本液压回路的组成、工作原理和性能。
教学任务:典型基本液压回路的组成、工作原理和性能。
学时数:10教学重点:典型基本液压回路的组成、工作原理和性能。
难点:同上教学方法:讲授法教学媒体:多媒体教学过程:第7章液压回路掌握典型基本液压回路的组成、工作原理和性能,是设计和分析液压系统的基础。
基本液压回路按功用可以分为方向控制、压力控制、速度控制和多缸工作控制等四类回路。
7.1方向控制回路在液压系统中,工作机构的启动、停止或变换运动方向等都是利用控制进入执行元件液流的通、断及改变流动方向来实现的。
实现这些功能的回路称为方向控制回路。
常见的方向控制回路有换向回路和锁紧回路。
7.1.1换向回路换向回路用于控制液压系统中的液流方向,从而改变执行元件的运动方向。
1.换向阀组成的换向回路(1)由电磁换向阀组成的换向回路图7-1所示为利用行程开关控制三位四通电磁换向阀动作的换向回路。
按下启动按钮,1YA通电,阀左位工作,液压缸左腔进油,活塞右移;当触动行程开关2ST时,1YA 断电、2YA通电,阀右位工作,液压缸右腔进油,活塞左移;当触动行程开关1ST时,1YA 通电、2YA断电,阀又左位工作,液压缸又左腔进油,活塞又向右移。
这样往复变换换向阀的工作位置,就可自动改变活塞的移动方向。
1YA和2YA都断电,活塞停止运动。
(2)液动换向阀组成的换向回路图7-2所示为由电液换向阀组成的换向回路。
当1YA通电、2YA断电时,三位四通电磁换向阀左位工作,控制油路的压力油推动液动换向阀的阀芯右移,液动换向阀处于左位工作状态,泵输出的液压油经液动换向阀的左位进入缸左腔,推动活塞右移;当1YA 断电、2YA通电时,三位四通电磁换向阀换向(右位工作),使液动换向阀也换向,主油路的液压油经液动换向阀的右位进入缸右腔,推动活塞左移。
图7-1由电磁换向阀组成的换向回路图7-2由电液换向阀组成的换向回路2.双向变量泵换向回路双向变量泵换向回路是利用双向变量泵直接改变输油方向,以实现液压缸和液压马达的换向,如图7-3所示。
目录1液压基本回路的原理及分类2换向回路3调压回路4减压回路5保压回路、6调速回路7卸荷回路8缓冲回路9平衡回路液压基本回路及原理由一些液压元件组成的,用来完成特定功能的典型回路称为液压基本回路。
常见液压回路有三大类:1方向控制回路:它在液压系统中的作用是控制执行元件的启动,停止或运动方向!2压力控制回路:他的作用是利用压力控制阀来实现系统的压力控制,用来实现稳压、减压、增压和多级调压等控制,以满足执行元件在力或转矩及各种动作对系统压力的要求3速度控制回路:它是液压系统的重要组成部分,用来控制执行元件的运动速度。
换向回路1用电磁换向阀的换向回路路:用二位三通、二位四通、三位四通换向阀均可使液压缸或液压马达换向!A1_1D 如A1-1是采用三位四通换向阀的换向回路,在这里的换向回路换向阀换向的时候会产生较大的冲击,因此这种回路适合于运动部件的运动速度低、质量较小、换向精度要求不高的场所。
A1-2电液换向阀的换向回路:图A1-2为用电液换向阀的换向回路。
电液换向阀是利用电磁阀来控制容量较大的液动换向阀的,因此适用于大流量系统。
这种换向回路换向时冲击小,因此适用于部件质量大、运动速度较高的场所。
调压回路负载决定压力,由于负载使液流受到阻碍而产生一定的压力,并且负载越大,油压越高!但最高工作压力必须有定的限制。
为了使系统保持一定的工作压力,或在一定的压力范围内工作因此要调整和控制整个系统的压力.1.单级调压回路o在图示的定量泵系统中,节流阀可以调节进入液压缸的流量,定量泵输出的流量大于进入液压缸的流量,而多余油液便从溢流阀流回油箱。
调节溢流阀便可调节泵的供油压力,溢流阀的调定压力必须大于液压缸最大工作压力和油路上各种压力损失的总和。
为了便于调压和观察,溢流阀旁一般要就近安装压力表。
3.多级调压回路在不同的工作阶段,液压系统需要不同的工作压力,多级调压回路便可实现这种要求。
o图(a)所示为二级调压回路。
图示状态下,泵出口压力由溢流阀3调定为较高压力,阀2换位后,泵出口压力由远程调压阀1调为较低压力。
第二章液压基本回路【课程性质】理论课【教学目标】掌握压力控制回路、速度控制回路、方向控制回路的基本构成与原理【教学重点】重点:1、各元件符号识别2、基本回路的分析3、简单系统的设计及其应用【教学难点】难点:1、基本回路的分析2、简单系统的设计及其应用【教学课时】10课时【教学策略】采用多媒体动画的教学方式,进行直观教学【教学方法】讲授法,多媒体教学法【教学过程】环节教学内容师生互动设计意图导入液压基本回路任何一种液压系统都是由一些基本回路组成。
因此熟悉和掌握这些基本回路的组成、工作原理和性能,是分析、维护、安装调试和使用液压系统的重要基础。
新课一、压力控制回路的分析与组建主要类型有调压回路、减压回路、增压回路、卸荷回路、平衡回路等。
1、调压回路当液压泵一直工作在系统的调定压力时,就要通过新课溢流阀调节并稳定液压泵的工作压力。
在变量泵系统中或旁路节流调速系统中用溢流阀(当安全阀用)限制系统的最高安全压力。
当系统在不同的工作时间内需要有不同的工作压力,可采用二级或多级调压回路。
(2) 二级调压回路1-液压泵 2-先导式溢流阀 3-二位二通换向阀 4-调压阀(溢流阀)(3) 多级调压回路1-先导式溢流阀 2、3-调压阀(溢流阀)图48 多级调压回路2、减压回路1-先导式减压阀 2-溢流阀图49 减压回路一、速度控制回路的分析与组建分别组装各类节流调速回路、容积调速回路、容积1-液压泵 2-溢流阀图46 单级调压回路4、卸荷回路(1) 换向阀卸荷回路图51 M型中位机能卸荷回路(2) 用先导型溢流阀远程控制口的卸荷回路1-液压泵 2-先导式溢流阀 3-二位二通电磁换向阀图52 溢流阀远控口卸荷节流调速回路、快速回路及速度换接回路。
1、调速回路 (1) 节流调速回路(2) 采用调速阀、溢流阀的节流调速回路vFA 1A 2p 1p 2q 1q pp pΔqvFA 1A 2p 1p 2q 1q pp pΔqq 2(a ) (b )vFA 1A 2p 1p 2q 1q pp pΔq vFA 1A 2p 1p 2q 1q pp pΔq(c ) (d )快速运动回路 (1) 差动连接回路1-液压泵2-溢流阀 3-三位四通电磁换向阀 4-液压缸5-二位二通机动阀6-调速阀 7-外控顺序阀图61 差动连接快速运动回路(2) 双泵供油回路1、2-液压泵 3-卸荷阀 4-单向阀 5-溢流阀图62 双泵供油快速运动回路(3) 充液增速回路2、调速回路的比较和选用表5 调速回路的比较三、方向控制回路的分析与组建方向控制回路有换向回路和锁紧回路。
课题液压基本回路及液压系统课型新授授课日期2013.11.22 授课时数 4
教学目标1、掌握液压基本回路的工作原理和工作特点;
2、熟悉液压基本回路的功能和应用范围;
3、能分清回路的组成形式和液压元件在回路中的作用;
4、能按图示位置和按各工作位置,分析油路及其工作循环状态。
教学重点液压基本回路的工作原理和工作特点;功能和应用范围;
回路的组成形式、液压元件在回路中的作用、及其工作循环状态。
教学难点回路的组成、液压元件在回路中的作用、及其工作循环状态。
板书设计
液压基本回路及液压系统
一、基本回路概述2、升降缸缓冲装置的液压系统
1、定义3、Z6312D型抛沙机液压系统
2、类型4、YT4543型液压滑台的液压系统
(1)方向控制回路三、举例分析
(2)压力控制回路
(3)速度控制回路
(4)顺序动作回路
3、回路特点
4、核心元件
二、液压传动系统应用实例
1、机械手液压传动系统
教学程序教学内容教学方法与教学手段
课前复习新课导入泵、缸、阀的图形符号、工作原理和应用特点;液压辅助件的图形符号和功能;
泵的型号的选择;
缸的速度和推力的计算。
由应用实例导入新课
教后记。