《工业大数据》内容梳理
- 格式:ppt
- 大小:12.62 MB
- 文档页数:8
工业大数据的分析和应用由于互联网和物联网的爆发性发展,工业大数据正在成为很多企业的存留和迭代的核心竞争力。
工业大数据的应用范围从产品的全生命周期到生产的整体过程,包括产品的研发、制造、使用、维护、销售等各个环节。
利用工业大数据,企业可以迅速识别市场趋势,及时调整生产计划,提升产品质量和品牌形象,从而创造更大的价值。
一、工业大数据的来源和特点工业大数据的特点是海量、多样、快速、高精度。
海量数据可由工业物联网或监控设备收集而来,多样数据指数据类型的多样性,例如文本、图像、视频等,快速数据指实时获取数据和处理数据的速度,高精度数据指数据的准确性和可信度。
工业大数据源自工厂的各种生产信息和环境信息,包括工序、工艺参数、设备运行数据、生产计划等。
在制造业中,各个设备和流程都可以生成大量的数据,这些数据可以用于监测和调整生产效率、预测故障和维护设备等。
二、工业大数据的分析方法工业大数据的分析方法包括统计学、机器学习、数据挖掘和深度学习等。
统计学是利用大量数据来推断总体特征的一种方法,主要用于分析数据之间的关系和趋势。
机器学习是一种人工智能算法,可以基于数据来构造预测模型和分类器。
数据挖掘是对数据进行探索性分析的过程,可以发现规律和趋势。
深度学习则是一种用于模拟人类智能的技术,可以用于图像处理、自然语言处理等领域。
三、工业大数据的应用1.生产过程优化工业大数据可以用于监测生产过程,及时发现异常情况并采取应对措施,从而提高生产效率和产品质量。
此外,工业大数据还可以用于运行成本的优化,例如优化设备的维修计划和降低能耗。
2.产品智能化升级工业大数据可以用于产品的设计和开发,例如通过收集用户行为和反馈数据,了解用户对产品的需求和改进建议,优化产品设计和功能。
此外,基于大数据的智能维护系统能够监测设备的状态和使用情况,预测故障并提供故障解决方案,从而降低维护成本和提升用户体验。
3.制造业的数字化转型工业大数据可以促进制造业的数字化转型,通过建立数字化工厂来实现生产效率和质量的提升。
工业大数据的分析和利用一、引言工业大数据指的是在工业领域中产生的海量数据,这些数据主要包括工业生产、设备运行、工件加工等方面的数据,随着传感技术、云计算技术、物联网技术等先进技术的不断发展与应用,工业大数据正逐渐成为了工业领域中的一种重要资源。
工业大数据的分析与利用对于提升工业生产的效率、提高设备运行的可靠性以及降低生产成本等方面具有非常重要的意义。
本文将会就工业大数据的分析和利用展开详细的探讨。
二、工业大数据的特点1、海量性工业大数据是在工业领域中产生的,所以其数量通常非常庞大、数量级巨大。
这些数据来源多样,包括传感器、监测设备、智能终端等各种设备和系统。
2、复杂性由于工业大数据源数据众多,其中包含着各种各样的数据类型和数据格式,这些数据之间存在着复杂的关联关系,数据分析和挖掘并不简单。
3、多样性工业大数据来源广泛,内容多样,包括工程数据、过程数据、传感器数据、智能设备数据等等,种类繁多、格式不一。
三、工业大数据的分析方法1、基于关联规则的分析方法通过关联规则挖掘可以发现数据的关联关系,从而得出一些重要的生产规律和生产现象,这对于生产过程的控制和管理非常重要。
2、基于聚类分析的方法通过聚类分析可以将相似的数据点进行聚类,从而得到一些数据的概括性结果,这对于大规模数据的管理和归纳有着很大的帮助。
3、基于统计分析的方法通过对工业数据的统计分析,可以了解生产过程中存在的规律和规律,从而为工厂的管理和调度提供支持。
四、工业大数据的利用1、制定优化生产方案通过对工业大数据的分析挖掘,可以了解生产过程中的优缺点,从而制定出更加科学合理的生产方案,提升生产效率和质量。
2、优化设备运行模式对工业大数据的分析可以了解设备运转的稳定性和可靠性,对于设备的故障预警和维护提供支持,也能够提升设备的使用寿命。
3、优化产品设计通过对工业大数据的分析可以了解产品的使用情况和用户反馈,从而对产品的设计进行优化改进,更好地满足用户需求。
工业大数据一、概述工业大数据是指在工业领域中产生、采集和处理的大规模数据集合。
它是通过传感器、设备和软件系统收集工业过程中各种参数和状态信息,并通过数据分析和挖掘技术进行处理和分析,以支持决策制定、优化生产和提高效率的重要手段。
二、工业大数据的应用领域1、生产过程优化:通过采集和分析数据,可以对生产过程中的一些关键指标进行实时监测和分析,从而帮助企业进行生产过程优化,提高生产效率和质量。
2、设备维护与故障诊断:通过对设备的大数据进行分析,可以实现设备的智能维护和故障预警,提前发现设备故障迹象,减少设备故障带来的生产停工和损失。
3、质量控制与产品改进:通过对生产过程中的数据进行分析,可以实现对产品质量的实时监测和控制,及时发现问题并采取相应措施进行产品改进。
4、供应链管理:通过对供应链中各个环节的数据进行分析,可以实现供应链的实时监测和管理,提高供应链的效率和可靠性。
5、能源管理:通过对能源消耗数据进行分析,可以实现能源的合理分配和使用,减少能源浪费,提高能源利用率。
三、工业大数据的技术与方法1、数据采集与存储:通过传感器、设备和软件系统,将工业过程中的各项数据进行采集和存储。
2、数据清洗与处理:对采集到的数据进行清洗和预处理,去除噪声和异常值,保证数据的准确性和可靠性。
3、数据分析与挖掘:运用统计学、机器学习和等技术对数据进行分析和挖掘,提取有价值的信息和模式。
4、可视化与展示:通过图表、报表和仪表盘等方式,将分析结果以可视化的形式展示,方便用户理解和使用。
四、工业大数据的挑战与应对1、数据质量:由于数据的采集和处理过程中可能存在噪声和异常值,因此需要对数据质量进行严格控制和监测。
2、数据安全:工业大数据涉及到企业的核心数据和机密信息,因此需要采取一系列措施确保数据的安全性,如加密、权限控制等。
3、数据融合与整合:工业大数据来自多个不同来源和系统,如何将这些数据进行融合和整合,提高数据的价值和利用效率是一个挑战。
工业大数据介绍工业大数据介绍:⒈引言●定义:工业大数据是指在工业生产、运营和管理过程中产生的大规模、实时、多样化的数据集合。
●背景:随着数字化技术的快速发展,工业环境中产生的数据数量迅速增加,工业大数据应运而生。
⒉工业大数据的重要性●提升生产效率:通过分析大数据,能够深入了解生产过程中的各个环节,优化生产流程从而提高效率。
●降低成本:利用数据分析技术可以减少资源浪费,降低运营成本。
●提升产品质量:通过分析大数据,可以发现生产过程中的潜在问题,及时进行调整,提升产品质量。
●实现个性化定制:通过大数据分析,可以了解顾客需求,实现个性化产品设计与生产。
⒊工业大数据的采集与存储●传感器技术:利用传感器采集设备运行状态、温度、湿度等各种数据。
●数据存储介质:选择适合工业大数据存储的介质,如云存储、分布式文件系统等。
●数据清洗与预处理:对采集到的原始数据进行清洗,去除噪声和异常值,以提高数据的质量。
⒋工业大数据的分析与应用●数据挖掘与机器学习:利用数据挖掘和机器学习算法,从大数据中发现隐藏的模式和规律。
●预测与优化:通过对历史数据的分析,可以预测未来的生产情况,并优化生产计划。
●实时监控与预警:通过对实时数据的监控和分析,能够及时发现异常情况,并预警相应部门进行处理。
⒌工业大数据的挑战与应对●数据安全:工业大数据的泄漏可能导致商业机密的泄露和生产过程的干扰,需要加强数据安全措施。
●数据隐私:工业大数据中可能包含个人敏感信息,需要加强对数据隐私的保护。
●技术人才:工业大数据的分析与应用需要具备数据分析能力和工业领域知识的人才。
⒍结论●工业大数据的发展给工业生产带来了巨大的变革和机遇。
●充分挖掘和应用工业大数据,将进一步提升工业生产的效率和质量。
附件:本文档附带的文件包括:●大数据采集与存储方案示意图●工业大数据分析流程图法律名词及注释:⒈数据隐私:指个人信息和企业商业秘密等在数据处理和传输过程中的保护措施。
⒉数据挖掘:是从大规模数据集中提取隐含信息并进行模式分析的方法。
工业大数据研究报告工业大数据是指在工业领域中产生的大量数据,通过对这些数据进行采集、存储、处理和分析,可以获得有关工业生产、设备状态、品质管理等方面的有价值的信息。
工业大数据的应用可以帮助企业提高生产效率、降低成本、提升产品质量和服务水平,以及支持企业创新和决策。
根据我国统计局发布的数据,截至2020年,我国工业大数据规模达到14.1万亿G。
其中,制造业是工业大数据的主要应用领域,占据了绝大部分的数据量。
工业大数据在制造业中的应用主要体现在以下几个方面:首先,工业大数据可以帮助企业提高生产效率。
通过对生产过程中的数据进行实时监测和分析,企业可以及时发现并解决生产过程中的问题,提高设备利用率和产能利用率。
同时,工业大数据还可以帮助企业进行生产计划的优化,提高生产资源的利用效率。
其次,工业大数据可以帮助企业降低成本。
通过对设备运行状态和能耗等数据进行分析,企业可以找出能源浪费和资源浪费的问题,并采取相应的措施进行优化。
此外,工业大数据还可以帮助企业进行供应链管理和库存管理,避免因为库存过多或过少而导致的成本增加。
第三,工业大数据可以提高产品质量和服务水平。
通过对生产过程中的各项指标进行实时监测和分析,企业可以及时发现并纠正生产过程中的质量问题,提高产品的一致性和稳定性。
同时,工业大数据还可以用于产品追溯,帮助企业及时发现和处理产品质量问题,提高客户满意度。
最后,工业大数据可以支持企业创新和决策。
通过对市场、客户和竞争对手等数据进行分析,企业可以及时获得市场动态和客户需求的变化,为企业创新提供依据。
同时,工业大数据还可以用于企业决策支持,通过对各种数据的分析,为企业决策提供参考和依据。
总结起来,工业大数据的应用可以帮助企业提高生产效率、降低成本、提升产品质量和服务水平,以及支持企业的创新和决策。
随着技术的不断发展和应用的深入,工业大数据的应用前景将会越来越广阔,为企业提供更多的发展机遇。
引言概述工业大数据是指大型工业企业生产运营中所产生的大量数据,并通过分析和挖掘这些数据,提供对生产过程、设备状态、产品质量等方面的洞察,从而优化生产效率、降低成本、提升竞争力。
随着信息技术的快速发展,工业大数据已经成为推动工业领域技术进步和创新的重要力量。
本文将介绍工业大数据的定义、应用场景、技术支持和未来发展趋势。
正文内容1.工业大数据的定义1.1工业大数据的特点1.2工业大数据的分类1.3工业大数据的价值和意义2.工业大数据的应用场景2.1工业生产过程优化2.2资产管理与维护2.3供应链管理与预测2.4产品质量改进2.5安全与环境监测3.工业大数据的技术支持3.1云计算与大数据平台3.2物联网技术3.3数据挖掘与分析技术3.4技术3.5数据安全与隐私保护4.工业大数据的未来发展趋势4.1边缘计算与工业互联网4.2跨界合作与创新模式4.3数据治理与标准化4.4基于区块链的信任机制4.5人机协作与智能制造5.工业大数据的挑战与机遇5.1数据质量与可靠性问题5.2基础设施与网络建设5.3人才培养与知识产权保护5.4隐私与安全风险5.5数据开放与共享总结工业大数据的发展正在推动工业领域的数字化转型和智能化升级。
通过对生产运营数据的深度分析和挖掘,企业可以实现生产效率的提升、成本的降低,同时也能够实现产品质量的改进和供应链的优化。
在技术支持方面,云计算、物联网、数据挖掘和等技术为工业大数据的应用提供了强大的支持。
工业大数据在发展过程中仍面临着数据质量、隐私保护、人才培养等诸多挑战。
未来,工业大数据有望进一步推动工业互联网的发展,实现更高水平的数字化和智能化生产。
为了充分发挥工业大数据的价值,企业需要加强数据治理,促进数据的开放和共享,同时也需要关注数据安全和隐私保护的问题。
工业大数据的概念在当今数字化时代,工业领域正经历着一场深刻的变革,工业大数据成为了推动这一变革的关键力量。
那么,究竟什么是工业大数据呢?简单来说,工业大数据就是在工业领域中产生的大量数据。
这些数据来源广泛,涵盖了从产品研发、生产制造、供应链管理、销售服务等工业生产的各个环节。
以生产制造环节为例,每一台机器设备在运行过程中都会产生大量的数据,包括设备的运行状态、工作参数、故障信息等。
这些数据反映了设备的性能和工作情况,通过对这些数据的分析,可以提前预测设备可能出现的故障,从而进行及时的维护和保养,减少设备停机时间,提高生产效率。
再看产品研发环节,研发人员在设计产品时会产生各种数据,如设计图纸、测试数据、用户反馈等。
对这些数据的深入挖掘和分析,可以帮助研发人员更好地了解用户需求,优化产品设计,提高产品质量和市场竞争力。
工业大数据具有以下几个显著特点。
首先是数据量大。
工业生产过程中涉及到众多的设备、工序和流程,每时每刻都在产生海量的数据。
这些数据的规模远远超过了传统数据处理技术所能应对的范围。
其次是数据类型多样。
工业大数据不仅包括结构化的数据,如生产计划、库存数量等,还包括大量的非结构化数据,如设备运行的图像、声音、视频等。
这种多样性增加了数据处理和分析的难度。
再者是数据价值密度低。
虽然工业大数据的规模庞大,但真正有价值的信息可能只是其中的一小部分。
这就需要通过先进的数据分析技术和算法,从海量的数据中提取出有价值的知识和洞察。
然后是数据产生速度快。
在工业生产中,数据的产生是实时的,需要及时进行采集、处理和分析,以便快速做出决策和响应。
工业大数据的应用场景十分广泛。
在质量管理方面,通过对生产过程中收集的数据进行分析,可以实时监控产品质量,及时发现质量问题的根源,并采取相应的措施进行改进。
在节能减排方面,利用工业大数据可以对能源消耗进行精确监测和分析,优化能源使用方案,降低能源消耗和环境污染。
在供应链优化方面,通过整合供应商、生产商、分销商等各方的数据,可以实现供应链的可视化和智能化管理,提高供应链的响应速度和灵活性。
工业大数据内容简介:工业大数据是未来工业在全球市场竞争中发挥优势的关键。
无论是德国工业4.0、美国工业互联网还是《中国制造2025》,各国制造业创新战略的实施基础都是工业大数据的搜集和特征分析,及以此为未来制造系统搭建的无忧环境。
本书基于工业4.0的时代背景,通过深入剖析未来工业的商业模式和智能服务体系的创新技术变革,论述如何通过工业大数据的分析和应用去预测需求、预测制造,整合产业链和价值链,发现用户的价值缺口,发现和管理不可见的问题,实现为用户提供定制化的产品和服务作者:李杰教授现任美国辛辛那提大学(Univ.of Cincinnati) 讲座教授,美国国家科学基金会(NSF)智能维护系统(IMS)产学合作中心主任,目前的研究重点是以工业大数据分析为主的智能预测技术、产品及服务的主控式创新设计(Do m i n a n tInnovation®)工业大数据则以分析这些问题为出发点,围绕它能够解决什么样的问题和为用户提供什么样的服务为价值。
同时,工业大数据能够在横向与纵向环节的互联与在统一平台的信息共享,由此将资源利用与分析维度规模化、价值最大化,进而能够最大范围地面向各环节的用户进行应用服务的定制与按需分发,由此又可衍生出持续性服务共赢的模式。
工业大数据是互联网、大数据和工业产业结合的产物,是中国制造2025、工业互联网、工业4.0等国家战略在企业的落脚点。
读书笔记1.工业大数据产生的背景1.无时不刻产生的数据2.工业生产的数据采集、使用范围就逐步加大3.数据的采集和使用的成本4.社会需求变革,响应个性化需求5.国策方针(国内现状--发展中)2.工业大数据的特点和分类数据扩大1.时间维度不断延长2.数据范围不断扩大3.数据粒度不断细化(粒度是指数据仓库的数据单位中保存数据的细化或综合程度的级别。
细化程度越高,粒度级就越小;相反,细化程度越低,粒度级就越大。
数据的粒度一直是一个设计问题。
工业大数据行业分析报告工业大数据行业分析报告一、定义工业大数据是指在工业生产与制造中所产生的海量数据,这些数据涵盖了整个制造过程中的各个环节。
随着传感网络、云计算以及大数据技术的快速发展,工业大数据的收集、存储、分析和应用能力都得到了显著提升。
工业大数据的应用广泛,包括制造过程优化、故障检测、产品质量控制、供应链管理等领域。
二、分类特点根据应用领域和数据类型不同,工业大数据可以分为制造大数据、能源大数据、交通大数据、医疗大数据等多个子类别。
工业大数据有如下几个主要特点:1.数据多样性:工业大数据包括多种数据格式,如传感器数据、生产日志、用户交互数据等。
2.数据量大:工业大数据具有海量性,需要在数据初始采集、传输、存储、处理等多个阶段进行分批次、分布式的处理。
3.数据时效性:工业数据有特定的时效性,数据的决策分析需要在较短时间内完成。
4.安全性:工业大数据安全性极为重要,需要采用多种技术手段来保护数据,如加密技术、防火墙等。
5.价值利用:工业大数据只有通过有效的数据分析挖掘,才能产生真正的价值,为企业和社会带来实际收益。
三、产业链整个工业大数据产业链可以分为数据采集、数据传输、数据存储、数据分析、应用服务等环节。
其中,数据采集是保证制造数据真实性和多样性的基础;数据传输是实现数据高效传输、保证数据时效性的关键;数据存储是保证数据安全、方便挖掘和分析的重要环节;数据分析是工业大数据挖掘的核心环节;应用服务则体现了工业大数据的综合应用价值。
四、发展历程作为工业智能化的重要支撑技术之一,工业大数据的发展历程可以分为三个阶段:1. 数据化阶段(2001-2010年),主要特征是数据采集收集的起步阶段:数据采集手段单一,数据采集的规模与能力还很有限。
2. 数字化阶段(2011-2020年),从数据采集到数据处理、应用,全链条能力稳步提升:数据收集多元化,数据量规模更大,大数据分析平台逐渐成熟。
3. 智能化阶段(2021年至今),工业大数据开始实现和人工智能的结合,产生更多的智能应用,为智能制造和工业互联网的发展提供强大支持。
工业大数据介绍在当今数字化的时代,数据已经成为了一种重要的资产,而工业大数据更是在工业领域发挥着至关重要的作用。
它不仅改变了工业生产的方式,还为企业带来了新的机遇和挑战。
工业大数据是什么呢?简单来说,工业大数据是指在工业领域中,通过传感器、设备、系统等收集到的海量、多样、高速、价值密度低的数据。
这些数据涵盖了从产品设计、生产制造、物流运输、销售服务等整个工业价值链的各个环节。
想象一下一家汽车制造工厂,生产线上的每一台机器都在实时产生数据,比如运行速度、温度、压力等;每一个零部件在安装时也有相关的数据记录,如安装时间、安装人员等;而销售出去的每一辆汽车,其行驶里程、故障信息等也都构成了数据的一部分。
所有这些数据加起来,就形成了汽车制造这个工业领域的大数据。
工业大数据具有一些独特的特点。
首先,它的数据量非常巨大。
工厂里的设备在不停地运转,每时每刻都在产生大量的数据。
其次,数据的类型多种多样,不仅有结构化的数据,如生产计划、库存数量等,还有大量的非结构化数据,比如机器运行的声音、图像等。
再者,数据产生的速度极快,需要实时处理和分析,才能及时发现问题并做出决策。
最后,工业大数据的价值密度相对较低,需要通过复杂的分析和挖掘,才能从中获取有价值的信息。
那么,工业大数据有什么用呢?它的应用场景非常广泛。
在生产制造环节,通过对生产过程中数据的分析,可以优化生产流程,提高生产效率,降低生产成本。
比如,通过监测设备的运行状态,可以提前预测设备可能出现的故障,进行预防性维护,避免因设备故障而导致的生产中断。
在质量控制方面,利用大数据技术对产品质量数据进行分析,可以及时发现质量问题的根源,采取措施加以改进,提高产品质量。
在供应链管理中,工业大数据也能发挥重要作用。
通过对供应商数据、物流数据等的分析,可以优化供应链的布局,提高供应链的响应速度和灵活性,降低库存水平。
例如,根据销售数据和市场预测,精准地安排原材料的采购和产品的生产,避免库存积压或缺货的情况发生。
工业大数据白皮书摘要:本白皮书旨在探讨工业大数据在现代工程领域中的应用和潜力,以及其对工业生产和管理的影响。
通过分析工业大数据的定义、特点、挑战和机遇,本文提出了一些关键观点和建议,以促进工业大数据的有效利用和推动工程行业的发展。
1. 引言工业大数据是指在工业生产和管理过程中产生的大量数据,包括传感器数据、生产数据、设备数据等。
随着传感器技术、互联网技术和数据存储技术的不断发展,工业大数据已经成为工程行业中不可忽视的资源。
通过对工业大数据的采集、存储、分析和应用,可以实现对生产过程的监控、优化和预测,提高工业生产的效率和质量。
2. 工业大数据的特点工业大数据具有以下几个特点:2.1 数据量大:工业生产过程中产生的数据量庞大,包含多个维度和多个层次的数据。
2.2 多样性:工业大数据来源广泛,包括传感器数据、设备数据、生产数据等,具有不同的格式和结构。
2.3 实时性:工业大数据需要及时采集和处理,以实现对生产过程的实时监控和调整。
2.4 高速性:工业大数据的产生速度快,需要具备高速处理和分析的能力。
3. 工业大数据的应用3.1 生产过程监控:通过对工业大数据的实时采集和分析,可以实现对生产过程的监控和调整,及时发现和解决生产中的问题,提高生产效率和质量。
3.2 故障预测和维护:通过对设备数据和传感器数据的分析,可以预测设备故障的发生,及时进行维护,减少停机时间和生产损失。
3.3 质量控制:通过对生产数据和传感器数据的分析,可以实时监控产品质量,及时发现和解决质量问题,提高产品质量和客户满意度。
3.4 能源管理:通过对能源数据和生产数据的分析,可以实现对能源消耗的监控和优化,降低能源成本和环境影响。
3.5 智能制造:通过对工业大数据的采集、存储和分析,可以实现生产过程的智能化和自动化,提高生产效率和灵活性。
4. 工业大数据的挑战4.1 数据质量:工业大数据的质量对于数据分析和应用的效果至关重要,需要解决数据质量问题,包括数据准确性、完整性和一致性等。
一、工业大数据的定义工业大数据是指在工业领域,主要通过传感器等物联网技术进行数据采集、传输得来的数据,由于数据量巨大,传统的信息技术已无法对相应的数据进行处理、分析、展示,而在传统工业信息化技术的基础上借鉴了互联网大数据的技术,提出新型的基于数据驱动的工业信息化技术及其应用;二、工业大数据特点工业大数据主要有以下几个特点:1、数据来源主要是企业内部,而非互联网个人用户;2、数据采集方式更多依赖传感器而非用户录入数据;3、数据服务对象是企业,而不是个人;4、在技术上,传统的企业架构技术已无法提供相应的分析应用,更多的采用了互联网大数据领域成熟的技术;5、改变了企业原先对数据的看法,使得原先看似无用的、直接丢弃的数据重新得到了重视,并且切实改进了企业的生产、销售、服务等过程;三、大数据在工业领域的作用1、实现数据的全面采集并持久化在前大数据时代,很多工业现场采集到的数据的生命周期仅仅是在显示屏上一闪而过,大量的数据由于种种原因被丢弃了,丢弃的一个很重要的原因就是无法有效存储,全部存储成本过高且数据量过大导致无法使用;大数据时代之后,新型的数据处理技术及云计算带来的低成本,使得数据的全面采集并且持久化成为可能,即采集到的数据可以实现长时间的存储,且海量的数据可处理、可分析,工业用户就有了存储数据的意愿;而这一切又反过来为大数据分析提供了坚实的数据基础,使得分析的结果更准确,成为一种正向循环;2、实现全生产过程的信息透明化随着现代生产技术的飞速提高,生产过程已经呈现高度复杂性和动态性,逐渐出现了不可控性;生产过程信息呈现碎片化倾向,只有专业部门、专业人员才掌握本部门、本专业的数据,企业无法全面有效了解全生产流程;随着大数据处理和可视化技术的不断发展,目前,通过全生产过程的信息高度集成化和数据可视化,从而达到了生产过程的信息透明化,企业总调度中心不仅可以清晰地识别产品,定位产品,而且还可全面掌握产品的生产经过、实际状态以及至目标状态的可选路径;3、实现生产设备的故障诊断和故障预测当前,已经可实现对设备各类数据的采集,包括设备运行的状态参数,例如温度、震动等,设备运行的工况数据,例如负载、转速、能耗等,设备使用过程中的环境参数,例如风速、气压等,设备的维护保养记录,包括检查、维护、维修、保养等信息,以及设备的使用情况,例如使用单位、操作人员等;收集到设备的各类数据后,再加上同类设备的数据、长周期的使用数据等等,就构成了大数据分析的基础数据;这个时候,再加上好的算法及模型,通过数据的分析处理实现设备的故障诊断和故障预测就是一个再简单不过的事情了;4、实现生产设备的优化运行在故障诊断和故障预测的基础上,机器、数据和生产指标构成了一个相互交织的网络,通过信息的实时交互、调整,再加上优化准则,将它们进行比对、评估,最终选出最佳方案;可以进一步提高设备的效率和精度,更加合理化和智能化的使用设备,这就使生产更具效率,更环保,更加人性化;并且设备的使用更加高效、节能、持久,同时还可减少运维环节中的浪费和成本,提高设备的可用率;5、提高企业的安全水平由于设备信息、环境信息和人员信息的高度集成,经过数据分析可实现安全报警、预警,隐患评估、预警等,从而大幅度提高安全水平,并且可提升人员效率;6、实现定制化生产近几十年里,技术开发面临的最大挑战是产品乃至系统无限增加的复杂性;与此同时,这还导致开发和制造的工业过程的复杂性也倾向于无限增加;而工业企业欲在未来长期保持竞争优势,又必须提高生产灵活性;因为只有这样,才能降低成本,缩短产品上市时间,并通过提高产品的种类,满足个性化的生产需求;单靠人脑进行管理,是无法对如此复杂的流程和庞大的数据进行匹配的,通过大数据技术的引入,可以将客户的需求直接反映到生产系统中,并且由系统智能化排程,安排组织生产,使得企业定制化生产成为现实;7、实现供应链的优化配置通过RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降;供应链体系以市场链为纽带,以订单信息流为中心,带动物流和资金流的运动,整合供应链资源和用户资源;在供应链的各个环节,客户数据、企业内部数据、供应商数据被汇总到供应链体系中,通过供应链上的大数据采集和分析,企业就能够持续进行供应链改进和优化,保证了对客户的敏捷响应;8、实现产品的持续跟踪服务随着物联网技术的发展,对于已售出的产品,现在可实现运行数据的全面收集,从而可分析已售出产品的安全性、可靠性、故障状态、使用情况等,在这些数据的基础上,产品运行数据可以直接转化到生产过程中,可以改进生产流程、提高产品质量、开发新产品,更进一步,生产信息也可以直接作用于优化产品研发及生产过程的上游工序中;9、为企业提升新的服务价值商家卖的是产品,用户看重的是产品带来的价值;一切技术或产品都只是手段,其核心目的是在使用中创造价值;当企业能够使用新的技术为用户提供服务时,卖的已经不是或者不只是冰冷的产品了,而是新的价值服务;这样,一个生产商就从过去单纯的产品提供者转变为如今的信息服务商;四、工业大数据案例1、实现全生产过程的信息透明化的案例通过采用集成自动化与驱动解决方案,能够显着提高生产效率和灵活性;原东德玻璃制造商f | glass就是一个很好的实例;它的工厂可以算得上是全世界最先进、最节能的工厂之一了;该工厂采用了一套集成自动化解决方案、一个先进的能源管理系统以及一个创新的热回收系统;从原材料供应和混合,到熔化过程,再到玻璃表面的精加工和调试,生产与物流均完全实现了自动化;通过全集成自动化TIA,所有集成仪表、驱动、自动化及配电解决方案相互协同,所有生产流程高效而灵活;过程控制系统Simatic PCS 7可视化控制着700米长设备上的3000个测量点,实现了一年365天连续可靠的运行;2、实现生产设备的故障诊断和故障预测的案例某世界500强的生活消费公司每年在纸尿裤市场占据超过100亿美元的市场份额,在纸尿裤的生产过程中曾经遇到过令人十分头痛的问题:在完成纸尿裤生产线从原材料到成品的全自动一体化升级后,生产线的生产速度得到了大幅提升,每秒钟能够生产近百米的纸尿裤成品;然而新的生产线建成后一直没有办法发挥最大的产能,因为在高速生产过程中某一个工序一旦出现错误,生产线会进行报警并造成整条生产线的停机,随后由现场的工人将生产错误的部分切除后再重新让生产线运转,这样做的原因是一旦某一片纸尿裤的生产发生问题会使随后的所有产品都受到影响,因此不得不将残次部分剔除后重新开机;为了提升生产线的生产效率,这家公司与IMS合作对纸尿裤生产线的监控和控制系统进行了升级;我们首先从控制器中采集了每一个工序的控制信号和状态监控参数,从这些信号中寻找出现生产偏差时的数据特征,并利用数据挖掘的分析方法找到正常生产状态和偏差生产状态下的序列特征;随后用机器学习的方法记录下这些特征,建立判断生产状态正常和异常的健康评估模型;在利用历史数据进行模型评价的过程中;该健康模型能够识别出所有生产异常的样本并用0—1之间的数字作为当前状态即时动态监控拇标;于是在生产过程中的每一个纸尿裤都会被赋予1个0—1的健康值,当系统识别出某一个纸尿裤的生产出现异常时,生产系统将在维持原有生产速度的状态下自动将这一产品从生产线上分离出来,且不会影响到其他产品的生产和整条生产线的运转;这项技术后来被纸尿裤生产公司集成到了控制器当中,升级后的生产线实现了近乎于零的停机时间,也使生产线实现了无人化操作,每年由于生产效率提升所带来的直接经济价值就高达4. 5亿美元;3、实现生产设备的优化运行的案例1高圣是一家生产带锯机床的中国台湾公司,所生产的带锯机床产品主要用于对金属物料的粗加工切削,为接下来的精加工做准备;机床的核心部件是用来进行切削的带锯,在加工过程中带锯会随着切削体积的增加而逐渐磨损,将会造成加工效率和质量的下降,在磨损到一定程度之后就要进行更换;使用带锯机床的客户工厂往往要管理上百台的机床,需要大量的工人时刻检查机床的加工状态和带锯的磨损情况,根据经验判断更换带锯的时间;带锯寿命的管理具有很大的不确定性,加工参数、工件材料、工件形状、润滑情况等一系列原因都会对带锯的磨耗速度产生影响,因此很难利用经验去预测带锯的使用寿命;切削质量也受到许多因素的影响,除了材料与加工参数的合理匹配之外,带锯的磨耗也是影响切削质量的重要因素;由于不同的加工任务对质量的要求不同,且对质量的影响要素无法实现透明化,因此在使用过程中会保守地提前终止使用依然健康的带锯;因此高圣意识到,客户所需要的并不是机床,而是机床所带来的切削能力,其核心是使用最少的费用实现最优的切削质量;于是高圣开始从机床的PLC控制器和外部传感器收集加工过程中的数据,并开发了带锯寿命衰退分析与预测算法模块,实现了带锯机床的智能化升级,为客户提供机床生产力管理服务;在加工过程中,智能带锯机床能够对产生的数据进行实时分析:首先识别当前的工件信息和工况参数,随后对振动信号和监控参数进行健康特征提取,依据工况状态对健康特征进行归一化处理后,将当前的健康特征映射到代表当前健康阶段的特征地图上的相应区域,就能够将带锯的磨损状态进行量化和透明化;分析后的信息随后被存储到数据库内建立带锯使用的全生命信息档案,这些信息被分为三类:工况类信息,记录工件信息和加工参数;特征类信息,记录从振动信号和控制器监控参数里提取的表征健康状态的特征值;状态类信息,记录分析的健康状态结果、故障模式和质量参数;大量带锯的全生命信息档案形成了一个庞大的数据库,可以使用大数据分析的方法对其进行数据挖掘,例如通过数据挖掘找到健康特征、工艺参数和加工质量之间的关系,建立不同健康状态下的动态最佳工艺参数模型,在保障加工质量的前提下延长带锯使用的寿命;在实现锯机床“自省性”智能化升级的同时,高圣开发了智慧云服务平台为用户提供“定”制化的机床健康与生产力管理服务,机床采集的状态信息被传到云端进行分析后,机床各个关键部件的健康状态、带锯衰退情况、加工参数匹配性和质量风险等信息都可以通过手机或PC端的用户界面获得,每一个机床的运行状态都变得透明化;用户还可以用这个平台管理自己的生产计划,根据生产任务的不同要求匹配适合的机床和能够达到要求的带锯,当带锯磨损到无法满足加工质量要求时,系统会自动提醒用户去更换据带,并从物料管理系统中自动补充一个带锯的订单;于是用户的人力的使用效率得到了巨大提升,并且避免了凭借人的经验进行管理带来的不确定性;带锯的使用寿命也得以提升,同时质量也被定量化和透明化地管理了起来;高圣的智慧带锯机床和智能云服务在2014年的芝加哥国际机床技术展IMTS上推出后赢得强烈反响,被认为是智能化设备的杰出示范,赢得了广大客户的欢迎和青睐;2位于德国安贝格的西门子工厂即是一个很好的实例,该工厂负责生产Simatic系列PLC可编程逻辑控制器Programmable LogicController;大部分生产都实现了数字化,并独立于实际生产进行了仿真和优化;通过采用Simatic IT 制造执行系统,显着提高了生产效率和灵活性;该Simatic系统允许在一分钟之内更改产品和工序,这对于自动化系统来说卫是一个很大的挑战:另外,每天大约有一百多万个测量事件,不断地涌入中央系统;通过数据矩阵码扫描器和RFID芯片,采集产品信息,并加载到上位中央系统,以确保数据的一致性;这样,控制系统就可以掌握每一件产品的信息,例如产品当前状态、是否通过检验等;若该产品未能通过检验,控制系统将对其按照原有程序进行干涉,如:自动发送一封邮件到品控部门,为技术人员提供维护信息等;品控部门的员工将会收到一份内容包含装配计划和故障诊断的信息清单;正是因为应用了这一技术,使得西门子公司的这家工厂几乎成为了误差最小的工厂;其误差比率之低,十分惊人:百万缺陷率仅15,相当于工厂产品合格率为99. 9985 %;3大众汽车改造一条已经使用了17年之久的冲压生产线时,将产品生命周期管理软件PLM与其自动化软件相结合,使得改造时间有了明显的减少:在早起改造生产线的规划阶段,为提高生产效率,可以使用冲压线仿真软件,模拟出现有机器和处理设备,再对其进行优化;为了将冲压件的模拟程序做到最精确,在使用仿真软件的时候,还需要配合使用运动控制软件Motion Control Software;运动控制软件除可用于虚拟环境外,还可用于现实操作中;使用这种技术,在完成最后冲压线改造工程之后,经计算实现节能35 %,每分钟冲程数可由14次提高至16次,生产力明显提高;虽然表面上看,这2个冲程数并不起眼,但放在每个班次上所提升的效率是相当可观的;4、实现定制化生产的案例2014年,红领以零库存实现150%的业绩增长,以大规模定制生产每天完成2000种完全不同的个性化定制产品;公司的核心竞争力是一套大数据信息系统,任何一项数据的变动都能驱动其余9000多项数据的同步变动,真正做到了从用户的个性化设计订单到生产过程的“零时差”连接;红领走了一条极端的定制路线,生产的每一件衣服从生成订单前就已经销售出去,并且每一件衣服都是由用户亲自完成的设计;这在成本上只比批量制造高10%,但收益却能达到两倍以上;实现低成本、高定制化生产的背后是一套完整的大数据信息系统,任何一个用户一周内就能够拿到定制的衣服,而传统模式下却需要3一6个月;定制的第一步是用户数据的采集,最重要的数据是用户的量体;量体数据采集的方案主要有四套:第一套方案,用户可以根据以往在任何一个大品牌服装上体验的自认为最合适据,从红领的数据库中自动匹配对应的量体数据;第二套方案,通过O2O平台,在任何地点预约上门量体;第三套方案,用户可以到红领的体验店直接采集量体数据,整个过程只需要5分钟,采集19个部位的数据;第四套方案,用户也可以选择自己的标准号,但是要对自己的选择负责;完成用户的数据采集之后,红领就会形成一个用户的数据档案,在未来用户进行新的定制化设计时可以直接使用以前的数据;除了量体数据的定制化,最大程度满足西装的合身之外,客户还可以定制衣服的面料、图案、光泽、颜色,甚至是一些极其微小的细节;比如纽扣的形状和排列方式、口袋的样式、里衬的走线纹路,甚至是添加一个水滴形的钢笔口袋,或是印上自己家族的徽章和名字;即使是在如此复杂和高度定制化的情况下,依然可以确保在7天内为用户完成制作并发货;这其中的秘诀依然离不开数据:当客户在网上完成下单之后,这些定制化的设计被转变成数以万计的生产指令数据,并按照工序被记录在数十个磁卡中,形成了一件衣服在制作过程中的“身份证”;一件定制化西服的生产流程可以简单描述为:工厂的订单信息全程由数据驱动,在信息化处理过程中没有人员参与,无须人工转换与纸质传递,数据完全打通,实时共享传输;所有员工在各自的岗位上接受指令,依照指令进行定制生产,员工真正实现了“在线”工作而非“在岗”工作;当一件正在制作中的西服到达一个工人面前时,员工可以从互联网云端获取这件西服的制作指令数据,按客户的要求操作,确保了来自全球订单的数据传递零时差、零失误率,用互联网技术实现客户个性化需求与规模化生产制造的无缝对接;在生产线的智能化升级方面,基于MES , WMS , APS等系统的实施,通过信息的读取与交互,与自动化设备相结合,促进制造自动化,流程智能化;通过AGV小车、智能分拣配对系统、智能吊挂系统与智能分拣送料系统的导入,加快整个制造流程的物料循环,通过智能摘挂系统、线号识别系统、智能取料系统、智能对格裁剪等系统的导入实现整个制造流程的自动化;除此之外,红领还利用大数据分析解决生产线平衡和瓶颈问题,使之达到产能最大化、排程最优化及库存和成本的最小化;红领经过10多年的数据累积,建立了个性化产品数据模型以及数据累积管理模型,基于数据模型完善大数据,目前具有千万种服装版型,数万种设计元素,满足用户个性化定制需求,组合出无限的定制可能,目前能满足近100%的个性化设计需求;红领在产品设计方面采用了与传统服装行业不同的三维计算机辅助设计CAD、计算机辅助工艺规划CAPP方式,对款式、尺码以及颜色等都进行智能化管理;红领使用大数据技术的最核心价值就是对C2M各生态链上的海量数据进行收集、存储和分析,构建了以下5个方面的核心能力:规模化:将软件、硬件设备资源进行规模化集成,提升设备的计算能力;可靠性:用分布式数据中心的存储和备份,保证了数据的容灾性;虚拟化:将软、硬件相互隔离,虚拟化应用,减少了设备之间的依赖性;按需服务:建立云端的虚拟资源池,为各模块提供弹性支撑服务;通用性:不用针对具体的应用,在“云”的支撑下可构造不同的应用;正是有了这样的一套大数据驱动的生产系统,红领员工才发出这样的感慨:现在人人都是设计师,每一件西服都是一个故事,从衣服上可以猜测它背后是什么样的人来穿,甚至以什么样的心情来穿;5、实现产品的持续跟踪服务的案例11987年,美国通用汽车General Motors收购了了休斯电气公司Hughes ElectronicsCorporation,应用各自领域的专业技术优势和经验在1992年开发出了OnStarTM国内称为“安吉星”系统;安吉星最初的功能主要是远程监控和危机处理,比如当用户丢失车钥匙时帮助他们远程打开车门、汽车发生问题时进行远程诊断筛选,以及汽车在发生碰撞后提供紧急救援服务;这也是汽车领域利用远程数据采集为用户提供服务的第一次尝试;2另一个代表是GE Medical Systems GE Healthcare的前身推出的InSite设备网管系统,能够通过无线系统网络对GE的医疗泛备如核磁共振仪等进行点对点监控;在InSite推出以前,医疗设备在故障后需要联络现场工程师到现场处理,从派遣工程师到维修完毕的平均时间为4个小时,故障后常常造成顾客长时间等待和抱怨;InSite 系统可以直接对设备进行远程监控,发生故障时远程帮助用户及时找出问题并自行解决,减少了不必要的到点维修;如果客户无法自行解决,也可以在远程对设备的故障进行较为详细的诊断,在到点维修前提示准备好所需的资源和备件;使用InSite系统后,41%的故障可以远程排除,平均消耗时间仅为15分钟,而34%的故降可以进行远程诊断和到点维修准备,平均故障排除时间降低到了2小时;在InSite的帮助下,GE 大幅削减了售后服务的成本,而且将设备的停机率缩短至小于1天/年;这个概念也激发了GE为航空发动机开发On-wing SupportTM服务的灵感,为GE第二代远程大数据服务系统打下了基础;3还有一个代表产品是奥蒂斯OTIS电梯公司的远程电梯维护系统Remote ElevatorMaintenance,REMTM早在1995年就利用监控数据对电梯进行远程维护;那个时候电梯最大的问题就是经常打不开门,把乘客关在一了电梯里,而维修人员赶到现场进行故障排除需要1个小时左右的时间;为了避免故障的发生,OTIS有一个庞大的维护人员团队,对每个城市的高层OTIS电梯进行定期的巡检,带来了高昂的人力成本;于是OTIS通过REMTM监控每一台电梯的平均开门时间和电气设备的重要参数,判断电梯发生故障的风险,为维护团队提供巡检的优先级排序和预防性维护决策支持,在承担较低的人力成本条件下最大限度地避免了电梯故障;4小松机械Komatsu在2005年推出了康查士KomtraxTM系统,利用ICT技术对车辆进行远程使用管理,将设备的使用数据和各种健康信息及时反馈给客户,帮助客户做好日常保养工作,使设备保持良好的状态;该系统还可以对用户的使用工况进行判断,例如当挖掘机设备在土质松软的海边工作时,由于设备自身无法固定而牢固,常常需。
《工业和信息化部关于工业大数据发展的指导意见》解读工业和信息化部关于工业大数据发展的指导意见解读近年来,随着新一代信息技术的快速发展和工业制造业的大规模发展,大数据技术在我国的工业领域中得到了广泛的应用。
为了更好地促进我国工业大数据的发展,实现我国产业升级和高质量发展,工业和信息化部发布了《工业和信息化部关于工业大数据发展的指导意见》。
一、指导意见的背景工业制造业是国民经济的重要支柱产业,具有重要的战略地位。
传统的工业生产方式面临着资源消耗、能源浪费和环境污染等问题,难以适应现代化工业发展的需求。
而随着新一代信息技术的不断发展,大数据技术也被广泛应用于工业制造业中,为企业的生产和管理带来了重大的变化。
当前,我国工业大数据发展仍存在一些困难和问题,例如数据孤岛、数据融合不足、数据共享不畅、数据隐私保护等。
为了解决这些问题,工业和信息化部发布了《指导意见》,提出了积极的指导和规范措施。
二、指导意见的主要内容1. 加强工业大数据基础设施建设指导意见提出,应加强云计算、物联网和5G等关键技术的研究和应用,推动各项技术的全面应用于工业制造业中。
同时,还应建立和完善大数据标准化、可信认证和安全管理等技术体系,为工业大数据的应用提供充分的技术保障。
2. 推动工业大数据融合指导意见强调,应加快数据融合的速度和规模。
通过对数据的整合和加工,将来自不同行业和各个环节的数据“串联”起来,形成更为准确、全面的数据信息资源,从而为工业制造业的高质量发展提供强有力的保障。
3. 推进工业大数据共享指导意见提出,应建立透明、公开、可信的数据共享机制,推进机构间和部门间的数据共享。
此外,还应加强数据交换和数据的可视化,方便各个行业的企业使用和管理各自的数据资源。
4. 加强工业大数据的保护指导意见强调,应建立和完善数据隐私保护的法律制度和技术保障手段,采取多种措施保护企业的数据。
此外,还应对非法获取或滥用数据的行为进行严厉打击,维护工业大数据的合法权益。
工业大数据的应用与分析随着互联网技术的不断发展,数据已经成为全球范围内最具价值的资源之一。
在这个信息化的时代,数据完全可以被视为企业和个人成功的必要因素。
作为现代工业智能化的关键技术之一,工业大数据的应用与分析已经成为各行各业的重要议题。
本文将从以下几个角度阐述工业大数据的重要性、应用及分析。
一、工业大数据的概念工业大数据是指在工业生产、制造和管理过程中,由各物理传感器、现场控制系统以及企业内部管理信息系统等产生的大量数据,也包括了从互联网上产生的各种数据,这些数据都被称为工业大数据。
工业大数据的应用已经越来越广泛,它在制造、能源、交通等各个领域都有广泛的应用。
通过对工业大数据的收集、分析和挖掘,可以为企业降低成本、提高效益、提升核心竞争力和创新能力。
二、工业大数据的特点1. 数据的海量性工业大数据具有数据海量性,它大量的数据是以TB、PB和EB为单位来计量的。
2. 数据的多样性工业大数据的数据更为复杂,多种设备产生的数据格式不同,且数据可以是结构化、半结构化和非结构化的,使用不同的方法应对。
3. 数据的时效性工业大数据处理过程中需要时刻关注数据的时效性,及时发现并解决问题。
4. 数据的价值性尽管数据也很多,但其中蕴含的价值还是需要进一步挖掘和识别。
三、工业大数据的应用1. 工业物联网工业物联网是指将生产、制造、现代物流、智能制造、数字化工厂集成在一起,成为可观、可测试、可感知、可控制、可管理的系统,成为一条平台。
2. 工业快速响应平台工业快速响应平台可以对传输和分析大数据进行建模、计算和处理,实现快速响应生产线上的问题,确保不会因错误造成生产线停顿而影响到工厂的正常生产,增加工厂的机会利润。
3. 工业大数据的智能应用在生产过程中,工业大数据有着非常广泛的智能化应用。
这些应用包括监控设备的运行状况、自动控制产品的生产流程、预测设备的维护周期以及实时优化生产过程。
四、工业大数据的分析工业大数据的收集非常容易,但要真正实现价值,还需要通过专业的数据分析方法进行挖掘。
工业大数据浅析在当今数字化的时代,工业大数据正逐渐成为推动工业领域创新和发展的关键因素。
随着信息技术的不断进步和工业生产的日益智能化,大量的数据在工业生产的各个环节中被生成、收集和分析。
这些数据蕴含着丰富的信息和价值,对于提高生产效率、优化产品质量、降低成本以及创新商业模式都具有重要意义。
工业大数据的来源十分广泛。
从生产设备的传感器和控制系统,到企业的资源规划(ERP)、制造执行系统(MES)以及供应链管理系统等,都在源源不断地产生数据。
这些数据包括设备的运行状态、生产工艺参数、产品质量检测结果、原材料和零部件的采购信息、销售和客户反馈等等。
例如,一台数控机床在运行过程中,其主轴转速、进给速度、切削力等参数会被实时监测并记录下来;一条汽车生产线,每一个工位的操作时间、零部件的装配情况以及车辆的检测数据都会被纳入到数据集合中。
工业大数据具有显著的特点。
首先是数据量大,工业生产过程中的设备众多、流程复杂,产生的数据规模往往是海量的。
其次是数据类型多样,包括结构化数据(如生产计划、库存记录等)、半结构化数据(如 XML 格式的设备日志)和非结构化数据(如图片、视频、音频等)。
再者,工业大数据的产生速度快,实时性要求高。
例如,在一些关键的生产环节,需要对数据进行毫秒级甚至微秒级的处理和分析,以实现实时监控和控制。
此外,工业大数据的价值密度相对较低,需要通过深入的分析和挖掘才能提取出有价值的信息。
工业大数据的应用场景非常丰富。
在生产过程优化方面,通过对设备运行数据和生产工艺数据的分析,可以发现潜在的问题和瓶颈,从而优化生产流程,提高设备利用率和生产效率。
例如,通过分析设备的故障数据,可以提前预测设备的故障,进行预防性维护,减少停机时间。
在产品质量控制方面,利用大数据技术对产品质量检测数据进行分析,可以精确地找出影响产品质量的因素,实现质量的精准控制。
比如,在电子制造行业,通过对贴片工艺中的数据进行分析,可以优化贴片参数,提高产品的合格率。