一元一次方程
- 格式:docx
- 大小:14.28 KB
- 文档页数:4
一元一次方程什么是一元一次方程?一元一次方程是数学中的基本概念和常见问题之一。
它是指只包含一个未知数并且该未知数的最高次数为一的方程式。
一元一次方程通常采用以下一般形式表示:ax + b = 0其中,a和b是常数,x是未知数。
解一元一次方程的方法解一元一次方程的关键是找到未知数的值,使得方程式成立。
一元一次方程可以使用多种方法求解,以下是其中几种常见的求解方法:1. 求解法一:移项法移项法是一种常见且简便的解一元一次方程的方法。
基本步骤如下:1.将方程的常数项移至方程的另一侧,使得方程变形为ax = -b。
2.通过将方程的左右两侧都除以a,得到未知数的值。
例如,对于方程2x + 3 = 7,可以按照以下步骤进行求解:1.将方程的常数项3移至方程的右侧,得到2x = 7 - 3 = 4。
2.将方程的左右两侧都除以2,得到x = 4/2 = 2。
因此,方程2x + 3 = 7的解为x = 2。
2. 求解法二:相乘法相乘法也是一种解一元一次方程的常见方法。
基本步骤如下:1.将方程变形为形如ax = b的形式,使得未知数系数为1。
2.将方程的左右两侧都乘以一个合适的数,将方程转化为x = c的形式。
例如,对于方程5x/3 = 2,可以按照以下步骤进行求解:1.将方程的左侧乘以3/5,得到x = 3/5 * 2 = 6/5。
因此,方程5x/3 = 2的解为x = 6/5。
3. 求解法三:代入法代入法是一种常见的解一元一次方程的方法,在一定条件下非常有效。
基本步骤如下:1.将方程中的未知数表示为另一个与之等价的表达式。
2.将等价表达式代入方程中,得到一个只含有一个未知数的方程。
3.使用移项法等方法解这个新的方程,求得未知数的值。
例如,对于方程2x + 3 = 5x - 1,可以按照以下步骤进行求解:1.将方程中的未知数表示为另一个与之等价的表达式,例如,将5x - 1表示为2x + 3。
2.将等价表达式代入方程中,得到方程2x + 3 = 2x + 3。
8.一元一次方程知识纵横早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为解方程.••虽然笛卡尔“伟大设想”没有实现,但是充分说明了方程(equation)的重要性. 一元一次方程(linear equation with one unknown)是代数方程中最基础的部分,是后续学习的基础,其基本内容包括:解方程、方程的解及其讨论.解一元一次方程有一般程序化的步骤,我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要能随机应变(灵活打乱步骤)解方程.当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以化为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论:1.当a ≠0时,方程有惟一解x=b a2.当a=0且b ≠0时,方程无解;3.当a=0且b=0时,方程有无数个解.例题求解【例1】(1)已知关于x 的方程3[x-2(x-3a )]=4x 和312x a +-158x -=1•有相同的解,•那么这个解是___________. (北京市“迎春杯”竞赛题)(2)如果12+16+112+…+1(1)n n +=20032004,那么n=________.(第18届江苏省竞赛题) 思路点拨 (1)设法建立关于a 的等式,再解关于a 的方程求出a 的值;(2)•恰当地解关于n 的一元一次方程.解:(1) 2728 提示:两方程的解分别为27a 、27221a - ;(2)n=2003 【例2】 当b=1时,关于x 的方程a(3x-2)+b(2x-3)=8x-7有无数多个解,则a 等于(• ). A.2 B.-2 C.-23 D.不存在 (“希望杯”邀请赛试题) 思路点拨 将b=1代入原方程,整理所得方程,就方程解的个数情况建立a 的等式. 解:选A. 提示:原方程化为(3a-6)x=2a-4,则3a-6=0且2a-4=0.【例3】 是否存在整数k,使关于x 的方程(k-5)x+6=1-5x 在整数范围内有解?并求出各个解.思路点拨 把方程的解x 用k 的代数式表示,利用整除的知识求出k.解: 存在整数k,k=±1或k=±5,原方程解分别为x=5 或x=1.【例4】解下列关于x 的方程.(1)4x+b=ax-8;(a ≠4)(2)mx-1=nx;(3)13m(x-n)=14(x+2m).思路点拨首先将方程化为ax=b的形式,•然后注意每个方程中字母系数可能取值的情况进行讨论.解:(1)x=84 ba+-;(2)当m≠n时,方程有惟一解x=1m n -;当m=n时,原方程无解;(3)原方程化为(4m-3)x=4mn+6m,当m≠34时,原方程有惟一解x=4643mn mm+-;当m=34,n=-32(由4mn+6m=0,即n=-64mm=-32得到)时,原方程有无数个解;当m=34,n≠-32时,原方程无解.【例5】已知p、q都是质数,并且以x为未知数的一元一次方程px+5q=97•的解是1,求代数式40p+101q+4的值. (第14届“希望杯”邀请赛试题) 思路点拨用代解法可得到p、q的关系式,进而综合运用整数相关知识分析.解:提示:把x=1代入方程px+5q=97,得p+5q=97,故p与5q中必有一个数是偶数.(1)若p=2,则5q=95,q=19,40p+101q+4=40×2+101×19+4=2003.(2)5q为偶数,则q=2,p=87,而87不是质数,与题设矛盾,舍去,因此原式值为2003.学力训练一、基础夯实1.已知x=-1是关于x的方程7x3-3x2+kx+5=0的解,则k3+2k2-11k-85=______.2.计算器上有一个倒数键1/x,能求出输入的不为零的数的倒数(注:有时需先按shift 或2nd键,再按1/x键,才能实现此功能,下面不再说明).例如,输入2,按下键1/x,则得0.5,现在计算器上输入某数,再依下列顺序按键:1/x-1=1/x-1= ,在显示屏上的结果为-0.75,则原来输入的某数是_______. (第17届江苏省竞赛题)3.方程16(20x+50)+23(5+2x)-12(4x+10)=0的解为______;解方程12{12[12(12x-3)-3]-3}-3=0,得x=_______.4.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.(“希望杯”邀请赛试题)5.和方程x-3=3x+4不同解的方程是( ). A.7x-4=5x-11 B.13x +2=0 C.(a 2+1)(x-3)=(3x+4)(a 2+1) D.(7x-4)(x-1)=(5x-11)(x-1)6.已知a 是任意有理数,在下面各题中(1)方程ax=0的解是x=1 (2)方程ax=a 的解是x=1(3)方程ax=1的解是x=1a(4)方程│a │x=a 的解是x=±1 结论正确的个数是( ).A.0B.1C.2D.3 (江苏省竞赛题)7.方程x-16[36-12(35x+1)]=13x-2的解是( ). A. 1514 B.-1514 C. 4514 D.- 4514 8.已知关于x 的一次方程(3a+8b)x+7=0无解,则ab 是( ).A.正数B.非正数C.负数D.非负数9.解下列关于x 的方程:(1)ax-1=bx; (2)4x+b=ax-8; (3)k(kx-1)=3(kx-1).10.a 为何值时,方程3x +a=2x -16(x-12)有无数多个解?无解?二、能力拓展11.已知方程2(x+1)=3(x-1)的解为a+2,那么方程2[2(x+3)-3(x-a)]=3a•的解为_______.12.•已知关于x•的方程9x-•3=•kx+•14•有整数解,•那么满足条件的所有整数k=_______. (“五羊杯”竞赛题)13.已知14+4(11999+1x )=134,那么代数式1872+48·(19991999x x +)的值为_________. 14.若(3a+2b)x 2+ax+b=0是关于x 的一元一次方程,且有惟一解,则x=_____.15.有4个关于x 的方程:(1)x-2=-1 (2)(x-2)+(x-1)=-1+(x-1) (3)x=0 (4)x-2+11x -=-1+11x - 其中同解的两个方程是( ).A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(4)16.方程12x ⨯+23x ⨯+…+19951996x ⨯=1995的解是( ). A.1995 B.1996 C.1997 D.199817.已知a+2=b-2=2c =2001,且a+b+c=2001k,那么k 的值为( ). A.14 B.4 C.-14 D.-4 (第15届江苏省竞赛题) 18.若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有( ).A.4个B.8个C.12个D.16个 (第12•届“希望杯”邀请赛试题)19.若干本书分给小朋友,每人m 本,则余14本;每人9本,则最后一人只得6本,•问小朋友共几个?有多少本书?20.下边横排有12个方格,每个方格都有一个数字,•已知任何相邻三个数字的和都是20,求x 的值. (上海市竞赛题)X 10E H G F E D C B A 5三、综合创新21.如果a 、b 为定值,关于x 的方程23kx a +=2+6x bk -,无论k 为何值,它的根总是1,求a 、b 的值. (山东省竞赛题)22.将连续的自然数1~1001按如图的方式排列成一个长方形阵列,•用一个正方形框出16个数,要使这个正方形框出的16个数之和分别等于:(1)1988;(2)1991;(•3)2000;(4)2080.这是否可能?若不可能,试说明理由;若可能,请写出该方框16个数中的最小数与最大数. (2002年河北省竞赛题)1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 28…………995 996 997 998 999 1000 1001答案:1.-105.2.设原来输入的数为x,则111x-1=-0.75,解得x=0.23.-52;904. 53、-1095.•D •6.A7.A8.B9.(1)当a≠b时,方程有惟一解x=1a b-;当a=b时,方程无解;(2)当a≠4时,•方程有惟一解x=84 ba+-;当a=4且b=-8时,方程有无数个解; 当a=4且b≠-8时,方程无解;(3)当k≠0且k≠3时,x=1k;当k=0且k≠3时,方程无解;当k=3时,方程有无数个解.10.提示:原方程化为0x=6a-12.(1)当a=2时,方程有无数个解;当a≠2时,方程无解.11.10.5 12.10、26、8、-8 提示:x=179k-,9-k│17,则9-k=±1或9-k=±17.13.2000 提示:把(11999+1x)看作一个整体. 14.1.5 15.A 16.B 17.B18.D 提示:x=20011k+为整数,又2001=1×3×23×29,k+1可取±1、±3、±23、•±29、±(3×23)、±(3×29)、±(23×29)、±2001共16个值,其对应的k值也有16个.19.有小朋友17人,书150本. 20.x=521.提示:将x=1代入原方程并整理得(b+4)k=13-2a,此式对任意的k值均成立,即关于k的方程有无数个解.故b+4=0且13-2a=0,解得a=132,b=-4.22.提示:设框中左上角数字为x,则框中其它各数可表示为:x+1,x+2,x+3,x+•7,x+8,x+9,x+10,x+14,x+15,x+16,x+17,x+21,x+22,x+23,x+24, 由题意得:x+(x+1)+(x+2)+(x+3)+…x+24=1998或1999或2000或2001,即16x+192=•2000•或2080解得x=113或118时,16x+192=2000或2080又113÷7=16 (1)即113是第17排1个数,该框内的最大数为113+24=137;118÷7=16 (6)即118是第17排第6个数,故方框不可框得各数之和为2080.。
一元一次方程的概念及解法【知识点】:1、一元一次方程的定义:只含有一个未知数,并且未知数的次数都是1,这样的整式方程叫一元一次方程。
(如果方程的两边都是整式,我们就把这样的方程叫整式方程。
)2、方程的解:使方程左右两边相等的未知数的值叫方程的解。
3、解方程:求方程解的过程叫做解方程。
4、等式的基本性质:(1)、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
5、解一元一次方程的基本步骤:(1):去分母;(2):去括号;(3):移项;(4):合并同类项;(5):系数化成1。
【例题解析】1、判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。
(1) x+3y=4 ( ) (2) x2-2x=6 ( )(3) -6x=0 ( ) (4) 2m +n =0 ( )1+8=5y(5) 2x-y=8 ( ) (6)y ( )2、下列变形中,正确的是()A 、若ac=bc ,那么a=b 。
B 、若cb c a =,那么a=b C 、a =b ,那么a=b 。
D 、若a 2=b 2那么a=b3、给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为; 其中变形正确的是( )A .①③④B .①②④C .②③④D .①②③4、解方程:(1)x +2x +4x=140 (2)3x +20=4x-25 解: x+2x+4x=140[来源:学科网] ↓合并 7x=140 ↓系数化为1 x=20练习:解方程:(1)12y-3-5y=14; (2)2x -3x =5; (3)0.6x-13x-3=0.5、解方程:(1)42112+=+x x ; (2)2(x -2)-(4x -1)=3(1-x ) 6、解方程:452168x x +=+ 解 :去分母,得 依据去括号,得 依据 移项,得 依据 合并同类项,得 依据 系数化为1,得6x =- 依据 6、数学小诊所:小马虎的解法对吗?如果不对,应怎么改正?解方程312-x =1-614-x解:去分母 2(2x-1)=1-4x-1 去括号 4x-1=1-4x-1 移项 4x+4x=1-1+1 合并 8x=1 系数化为1 x=8练习:解方程:(1) 2x -13 =x+22 +1 (2)3142125x x -+=- (3) 4-3(2-x)=5x7、已知关于x 的方程132233x m m x x x -+=+=-与 的解互为倒数,求m 的值.归纳:解一元一次方程的步骤:步骤方法注意依据去分母在方程两边都乘以________________不要漏乘不含分母的项,分子是一个整体,去分母后应加括号去括号先去_______,再去______,最后______。
一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
一元一次方程100道及答案过程本文精心收集了100道一元一次方程题,且每道题均附上清晰的求解步骤和解答,可供学生们在学习中参考。
一元一次方程是高中一类重要的数学问题,在数学测试中出现的频率也比较高。
下面是一元一次方程100道及解答过程:1. x + 2 = 5解答:x = 32. 2x = 4解答:x = 23. x - 3 = 4解答:x = 74. 4x - 5 = 15解答:x = 45. x - 7 = 3解答:x = 106. 5x + 6 = 36 解答:x = 67. 3x = 9解答:x = 38. 7x - 2 = 12 解答:x = 29. 9x - 4 = 16 解答:x = 210. 6x + 3 = 27 解答:x = 411. 4x + 9 = 25 解答:x = 412. 2x - 7 = -5 解答:x = 413. 2x = 10解答:x = 514. 3x - 4 = 6 解答:x = 415. 8x - 3 = 21 解答:x = 316. x = 8解答:x = 817. 5x + 2 = 27 解答:x = 518. 3x - 7 = 6 解答:x = 519. 8x + 4 = 48 解答:x = 620. 4x - 3 = 7 解答:x = 221. x + 5 = 10 解答:x = 522. 2x = 6解答:x = 323. 8x + 9 = 61 解答:x = 724. 4x + 5 = 21 解答:x = 425. x - 4 = 3 解答:x = 726. 7x + 2 = 20 解答:x = 327. 9x = 27 解答:x = 328. 7x - 4 = 10 解答:x = 229. 9x + 7 = 58 解答:x = 630. 3x - 8 = 14 解答:x = 631. 5x + 9 = 44 解答:x = 732. x = 5解答:x = 533. 6x - 8 = 18 解答:x = 434. 8x + 1 = 65 解答:x = 835. 4x - 7 = 11 解答:x = 336. 5x + 3 = 28解答:x = 537. 2x + 7 = 17 解答:x = 538. 8x - 5 = 47 解答:x = 639. 9x - 1 = 80 解答:x = 940. 7x - 3 = 26 解答:x = 441. 4x + 8 = 28 解答:x = 542. 6x + 9 = 51 解答:x = 743. x + 6 = 9 解答:x = 344. 5x = 10解答:x = 245. 9x - 8 = 28 解答:x = 446. x = 12解答:x = 1247. 8x - 6 = 36 解答:x = 548. 5x + 4 = 24 解答:x = 449. x - 5 = 8 解答:x = 1350. 6x + 2 = 42 解答:x = 751. 2x + 9 = 23 解答:x = 752. 3x - 7 = 12 解答:x = 753. 5x + 6 = 30 解答:x = 554. x = 18解答:x = 1855. 7x + 4 = 46 解答:x = 656. 4x + 3 = 19 解答:x = 457. 8x = 64解答:x = 858. 6x - 5 = 21 解答:x = 459. 3x + 8 = 14解答:x = 260. x - 6 = 11 解答:x = 1761. 7x - 9 = 32 解答:x = 562. 2x + 7 = 17 解答:x = 563. 6x + 4 = 38 解答:x = 664. 5x = 30解答:x = 665. 3x + 5 = 20 解答:x = 566. x + 9 = 16 解答:x = 767. 8x - 7 = 21 解答:x = 368. x = 20解答:x = 2069. 4x + 3 = 19 解答:x = 470. 7x - 5 = 25 解答:x = 471. x - 9 = 5 解答:x = 1472. 2x + 8 = 14 解答:x = 373. 8x + 4 = 68 解答:x = 874. 6x - 7 = 11 解答:x = 375. 3x + 9 = 24 解答:x = 576. 5x - 8 = 33 解答:x = 777. x + 4 = 10 解答:x = 678. 7x + 2 = 64 解答:x = 979. 9x - 5 = 44 解答:x = 580. 4x + 8 = 28 解答:x = 581. 3x + 2 = 5 解答:x = 182. x - 8 = 10解答:x = 1883. 5x = 40解答:x = 884. 7x + 6 = 74 解答:x = 1085. 9x = 63解答:x = 786. x = 24解答:x = 2487. 4x + 1 = 17 解答:x = 488. 2x - 6 = 8 解答:x = 789. 7x - 9 = 16 解答:x = 390. 5x + 7 = 47 解答:x = 891. 3x - 7 = 4 解答:x = 792. 8x + 9 = 73 解答:x = 993. x - 4 = 9 解答:x = 1394. 6x = 48解答:x = 895. 4x + 6 = 22 解答:x = 496. x + 8 = 13 解答:x = 597. 7x + 5 = 43 解答:x = 698. 9x - 3 = 36 解答:x = 499. 3x + 6 = 24 解答:x = 6100. x - 9 = 16 解答:x = 25。
《一元一次方程的解法》讲义一元一次方程是数学学习中的重要基础内容,掌握其解法对于解决各类实际问题和进一步学习更复杂的数学知识都具有关键作用。
接下来,我们就来详细探讨一元一次方程的解法。
一、一元一次方程的定义一元一次方程指只含有一个未知数,并且未知数的最高次数是 1 的整式方程。
一般形式为:$ax + b = 0$(其中$a$,$b$为常数,且$a ≠ 0$)。
例如:$3x + 5 = 11$,$2x 7 = 0$等都是一元一次方程。
二、等式的基本性质在学习一元一次方程的解法之前,我们需要先了解等式的基本性质,因为这些性质是解方程的依据。
等式的性质 1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
例如:如果$x = 5$,那么$x + 2 = 5 + 2$,$x 3 = 5 3$。
等式的性质 2:等式两边同时乘(或除以)同一个不为 0 的整式,等式仍然成立。
比如:若$2y = 6$,则$2y × 2 = 6 × 2$,$2y ÷ 2 = 6 ÷ 2$。
三、一元一次方程的解法步骤1、去分母如果方程中存在分数,我们需要先去分母,使方程中的各项都变为整数。
方法是在方程两边同时乘以各分母的最小公倍数。
例如:方程$\frac{x}{2} +\frac{x}{3} = 6$,分母 2 和 3 的最小公倍数是 6,方程两边同时乘以 6 得到:$6×\frac{x}{2} + 6×\frac{x}{3} = 6×6$$3x + 2x = 36$2、去括号如果方程中有括号,要运用乘法分配律去括号。
例如:方程$2(x + 3) = 10$,去括号得到:$2x + 6 = 10$3、移项把含未知数的项移到方程的一边,常数项移到方程的另一边。
移项时要注意变号。
比如:方程$3x + 5 = 11$,移项得到:$3x = 11 5$$3x = 6$将方程中相同类型的项进行合并。
一元一次方程的解法一元一次方程是数学中最基础也是最常见的一类方程。
它的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。
解一元一次方程的目的是找出使等式成立的x的值。
在本文中,我将介绍几种常用的解一元一次方程的方法。
方法一:移项法移项法是解一元一次方程最常用的方法之一。
首先,将方程的项重新排列,使得未知数x的系数为1。
例如,对于方程2x + 3 = 7,我们可以将方程转化为2x = 7 - 3。
接下来,将常数项移到等号的另一边,得到2x = 4。
最后,继续化简方程,得到x = 4/2,也就是x = 2。
所以,方程2x + 3 = 7的解为x = 2。
方法二:因式分解法当一元一次方程的系数a和b都是整数,并且方程可以因式分解时,我们可以使用因式分解法来解方程。
例如,对于方程2x - 6 = 0,我们可以因式分解为2(x - 3) = 0。
根据零乘法,可以得到等式的解为x - 3 = 0,即x = 3。
所以,方程2x - 6 = 0的解为x = 3。
方法三:代入法代入法是一种直接将x的值代入方程中验证是否成立的方法。
例如,对于方程3x + 5 = 14,我们可以先猜测一个x的值,例如x = 3。
把x = 3代入方程中,得到3(3) + 5 = 14。
将方程简化后,可以发现等式两边相等。
所以,方程3x + 5 = 14的解为x = 3。
方法四:图像法图像法是通过绘制方程的函数图像来寻找方程的解。
对于一元一次方程ax + b = 0,可以将方程表示为y = ax + b的形式。
通过画出y = ax + b的图像,我们可以观察到方程与x轴的交点,这些交点即为方程的解。
例如,对于方程2x - 3 = 0,我们可以绘制y = 2x - 3的直线,然后观察直线与x轴交点的横坐标,即为方程的解。
方法五:消元法消元法是通过变换方程,使其中一个未知数的系数为零,从而降低方程的次数。
例如,对于方程3x + 2y = 7,我们可以通过消元法将方程转化为x = (7 - 2y)/3。
一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。
其中a是未知数的系数,b是常数,x是未知数。
未知数一般设为x,y,z。
方程特点(1)该方程为整式方程。
方程里所有的未知数都出现在分子上,分母只是常数而没有未知数。
比如3x/5+2=0这个是整式方程,而3/(x-1)+2=1这个就不是整式方程通常情况下我们用字母x,y,z来表示未知数。
方程中含有几个不同的未知数我们就叫做几元,未知数的最高次数是几我们就叫几次。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法要判断一个方程是否为一元一次方程,先看它是否为整式方程。
若是,再对它进行整理。
如果能整理为 ax+b=0(a≠0)的形式,则这个方程就为一元一次方程。
里面要有等号,且分母里不含未知数。
变形公式ax=-b(a,b为常数,x为未知数,且a≠0)求根公式通常解法去分母→去括号→移项→合并同类项→系数化为1。
①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数)②去括号(把括号去掉切记看符号)③移项(把方程两边都加上或减少同一个数或同一个整式,通常将未知数放在等式左边,常数放在右边。
)④合并同类项⑤系数化为一两种类型(1)总量等于各分量之和。
将未知数放在等号左边,常数放在右边。
如:x+2x+3x=6。
(2)等式两边都含未知数。
如:300x+400=400x,40x+20=60x[1]。
方程举例x/2-5=2(X-4)去分母 x-10=4(x-4)去括号 x-10=4x-16移项 x-4x=-16+10合并同类项 -3x=-6系数化为1 x=2。
一元一次方程单元复习与巩固一、知识网络三、知识要点梳理知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。
方程的右边没有变化,这要与“去分母”区别开。
要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.四、规律方法指导1、判断一个式子是否是一元一次方程:(1)首先看是否是方程,(2)再看是否满足一元一次方程的三个条件或对原式进行等价变形化简后再看;2、解一元一次方程常用的技巧有:(1)有多重括号,去括号与合并同类项可交替进行。
(2)当括号内含有分数时,常由外向内先去括号,再去分母。
(3)当分母中含有小数时,可用分数的基本性质化成整数。
(4)运用整体思想,即把含有未知数的代数式看做整体进行变形。
四、经典例题透析类型一:一元一次方程的相关概念1、已知下列各式:①2x-5=1;②8-7=1;③x+y;④x-y=x2;⑤3x+y=6;⑥5x+3y+4z=0;⑦=8;⑧x=0。
一元一次方程一、知识点知识点一:一元一次方程及解的概念1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:常用步骤具体做法依据注意事项去分母在方程两边都乘以各分母的最小公倍数等式基本性质2 防止漏乘(尤其整数项),注意添括号;去括号一般先去小括号,再去中括号,最后去大括号去括号法则、分配律注意变号,防止漏乘;移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号) 等式基本性质1 移项要变号,不移不变号;合并同类项把方程化成ax=b(a≠0)的形式合并同类项法则计算要仔细,不要出差错;系数化成1 在方程两边都除以未知数的系数a,得到方程的解x=等式基本性质2 计算要仔细,分子分母勿颠倒要点诠释:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般步骤:(1)审题,分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2)设未知数,一般求什么就设什么为x,但有时也可以间接设未知数.(3)列方程,把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.(4)解方程.(5)检验,看方程的解是否符合题意.(6)写出答案.2、解应用题的书写格式:设→根据题意→解这个方程→答。
一元一次方程解法详解一元一次方程是初中数学中的基础知识,也是解决实际问题的数学工具之一。
本文将详解一元一次方程的解法,帮助读者理解和掌握这一重要概念。
一、一元一次方程的定义一元一次方程(简称一次方程)是指等号两边含有变量、常数和运算符(如加减乘除)的代数式。
通常形式为ax+b=0,其中a、b都是已知的实数,而x是未知数,a不等于0。
二、解一元一次方程的步骤解一元一次方程的一般步骤如下:步骤一:将方程按照等号两边排列,使得方程左边为零。
步骤二:类似项合并,即合并方程左边的x项和常数项,使方程左边只剩下一个x。
如果方程左边有多个x,则可以进行移项、合并同类项等操作。
步骤三:通过除法运算,将x的系数化为1。
即将方程左边的x系数除以x的系数,使得方程左边x的系数变为1。
步骤四:通过加减法逆运算,将常数项移到方程右边。
步骤五:检验解是否正确。
将方程左边的x代入原方程,验证等式是否成立。
三、解一元一次方程的示例为了更好地理解解一元一次方程的步骤,以下给出一个具体的示例:示例一:2x+3=7步骤一:将方程按照等号两边排列2x-4=0步骤二:合并同类项2x=4步骤三:将x的系数化为1x=2步骤四:将常数项移到方程右边x-2=0步骤五:检验解是否正确将x=2代入原方程,得到2*2+3=7,等式成立示例二:3(x-4)=5x-7步骤一:将方程按照等号两边排列3x-12=5x-7步骤二:合并同类项3x-5x=-7+12-2x=5步骤三:将x的系数化为1x=-5/2步骤四:将常数项移到方程右边x+5/2=0步骤五:检验解是否正确将x=-5/2代入原方程,得到3*(-5/2-4)=5*(-5/2)-7,等式成立通过以上示例,我们可以看出解一元一次方程的步骤是一致的,只是具体的计算过程和运算符的选择会有所不同。
四、解一元一次方程的注意事项在解一元一次方程时,需要注意以下几点:1. 当方程左边的系数为0时,方程无解。
2. 当方程左边和右边的系数相等且常数项相等时,方程有无数解。
初中数学一元一次方程3篇学习是一架保持平衡的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,勤奋至关重要!下面是小编给大家带来的初中数学一元一次方程,欢迎大家阅读参考,我们一起来看看吧!初中数学一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根. ②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解. (3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =12ab ;B.x -y =0;C.x =0;D.12x +3=1;E.3-1=2;F.4y -5=1;G .2x 2+2x +1=0;H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解. A .-5(x -1)=-4(x -2) B .4x +2=1C .13x +5=5 D .-3x -1=0解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:如果a =b ,那么ac =bc ,a c =bc(c ≠0).③性质3:如果a =b ,那么b =a .(对称性) 如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性) 如:若∠1=60°,∠2=∠1,则∠2=60°. (2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换. 谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若x 2=0,则x =2D .若x 6-1=1,则x -6=1解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =57.答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20. 方程的两边同时除以5,得x =4. (2)方程的两边同时减去2x ,得2x -2=0. 方程的两边同时加上2,得2x =2. 方程的两边同时除以2,得x =1. (3)方程两边都同时减去1, 得x +1-1=6-1,∴x=6-1.∴x=5.(4)方程两边都加上x,得3-x+x=7+x,3=7+x,方程两边都减去7,得3-7=7+x-7,∴-4=x,即x=-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x=7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x=7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x=1,把3从方程的左边移到右边要变号,得5x=1-3,是属于移项;而把5x-15x+11x=11变成5x+11x -15x=11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1 移项要变号合并同类项将方程化为ax=b的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1 方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2 分子、分母不能颠倒值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ). A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程2-x 3-5=x -14.分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12, 得4(2-x )-60=3(x -1). 去括号,得8-4x -60=3x -3. 移项,得-4x -3x =-3-8+60. 合并同类项,得-7x =49. 两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程0.4x -90.5-x -52=0.03+0.02x0.03.分析:由于0.4x -90.5和0.03+0.02x 0.03的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子0.4x -90.5的分子、分母中都乘以10,变为4x -905,在式子0.03+0.02x0.03的分子、分母中都乘以100,变为3+2x3,然后去分母,再按解一元一次方程的步骤求解.解:分母整数化,得 4x -905-x -52=3+2x3.去分母,得6(4x -90)-15(x -5)=10(3+2x ). 去括号,得24x -540-15x +75=30+20x . 移项,得24x -15x -20x =540-75+30. 合并同类项,得 -11x =495. 两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题 方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .43C .2D .-43解析:解方程3x +5=0,得x =-53.将x =-53代入方程3x +3k =1,得-5+3k =1,解得k =2,故应选C. 答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________. 解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8. 答案:86.一元一次方程的常用解题策略 我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程34⎣⎡⎦⎤43⎝⎛⎭⎫12x -14-4=32x +1. 分析:注意到34×43=1,把34乘以中括号的每一项,则可先去中括号,34×43⎝⎛⎭⎫12x -14-34×4=32x +1,再去小括号为12x -14-3=32x +1,再按步骤解方程就非常简捷了. 解:去括号,得12x -14-3=32x +1.移项,合并同类项,得-x =174.两边同除以-1,得x =-174.【例6-2】 解方程x +37-x +25=x +16-x +44.分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,5(x +3)-7(x +2)35=2(x +1)-3(x +4)12,把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012. 去分母,得12(-2x +1)=35(-x -10). 去括号,得-24x +12=-35x -350. 移项、合并同类项,得11x =-362.两边同除以11,得x =-36211.7.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值 利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数. (2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-116.答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程x -k 3+3k +26-x =x +k2的解,求k 的值.分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得 -2-k 3+3k +26-(-2)=-2+k2. 去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ). 去括号,得-4-2k +3k +2+12=-6+3k . 移项、合并同类项,得 -2k =-16.方程两边同除以-2,得k =8.【题01】下列变形中,不正确的是( ) A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x ya a=,则ax ay =. 【题02】下列各式不是方程的是( ) A .24y y -=B .2m n =C .222p pq q -+D .0x =【题03】解为2x =-的方程是( ) A .240x -=B .5362x +=C .3(2)(3)5x x x ---=D .275462x x --=- 【题04】若关于x 的方程223(4)0n x n -+-=是一元一次方程,求n 的值.课后作业【题05】已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .【题06】若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.【题07】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .【题08】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .【题09】2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( ) A .2140- B .2140C .5615-D .5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11 (4)(3) 34y y-=+【题12】解方程:122233x xx-+ -=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20343x --+=。
3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根.②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解.(3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =ab ;B.x -y =0;C.x =0;D.=1;E.3-1=2;F.4y -5=1;G.2x 2+2x +1=0;1212x +3H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解.A .-5(x -1)=-4(x -2)B .4x +2=1C .x +5=5D .-3x -1=013解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.用式子形式表示为:如果a =b ,那么ac =bc ,=(c ≠0).a c bc③性质3:如果a =b ,那么b =a .(对称性)如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性)如:若∠1=60°,∠2=∠1,则∠2=60°.(2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换.谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若=0,则x =2D .若-1=1,则x -6=1x 2x 6解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =.57答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20.方程的两边同时除以5,得x =4.(2)方程的两边同时减去2x ,得2x -2=0.方程的两边同时加上2,得2x =2.方程的两边同时除以2,得x =1.(3)方程两边都同时减去1,得x +1-1=6-1,∴x =6-1.∴x =5.(4)方程两边都加上x ,得3-x +x =7+x ,3=7+x ,方程两边都减去7,得3-7=7+x -7,∴-4=x ,即x =-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x =7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x =7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x =1,把3从方程的左边移到右边要变号,得5x =1-3,是属于移项;而把5x -15x +11x =11变成5x +11x -15x =11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区 移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体见下表:变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1移项要变号合并同类项将方程化为ax =b 的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2分子、分母不能颠倒解技巧 巧解一元一次方程值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ).A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程-5=.2-x 3x -14分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12,得4(2-x )-60=3(x -1).去括号,得8-4x -60=3x -3.移项,得-4x -3x =-3-8+60.合并同类项,得-7x =49.两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程-=.0.4x -90.5x -520.03+0.02x0.03分析:由于和的分子、分母中含有小数,可利用分数的基本性质把0.4x -90.50.03+0.02x0.03小数化为整数,在式子的分子、分母中都乘以10,变为,在式子0.4x -90.54x -9050.03+0.02x0.03的分子、分母中都乘以100,变为,然后去分母,再按解一元一次方程的步骤求解.3+2x3解:分母整数化,得-=.4x -905x -523+2x3去分母,得6(4x -90)-15(x -5)=10(3+2x ).去括号,得24x -540-15x +75=30+20x .移项,得24x -15x -20x =540-75+30.合并同类项,得-11x =495.两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .C .2D .-4343解析:解方程3x +5=0,得x =-.53将x =-代入方程3x +3k =1,53得-5+3k =1,解得k =2,故应选C.答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________.解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8.答案:86.一元一次方程的常用解题策略我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程=x +1.34[43(12x -14)-4]32分析:注意到×=1,把乘以中括号的每一项,则可先去中括号,×-×43443343443(12x -14)34=x +1,再去小括号为x --3=x +1,再按步骤解方程就非常简捷了.32121432解:去括号,得x --3=x +1.121432移项,合并同类项,得-x =.174两边同除以-1,得x =-.174【例6-2】 解方程-=-.x +37x +25x +16x +44分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,=,5(x +3)-7(x +2)352(x +1)-3(x +4)12把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得=.化简,得=5(x +3)-7(x +2)352(x +1)-3(x +4)12-2x +135.-x -1012去分母,得12(-2x +1)=35(-x -10).去括号,得-24x +12=-35x -350.移项、合并同类项,得11x =-362.两边同除以11,得x =-.362117.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数.(2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-.116答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程+-x =的解,求k 的值.x -k 33k +26x +k2分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得+-(-2)=.-2-k 33k +26-2+k2去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ).去括号,得-4-2k +3k +2+12=-6+3k .移项、合并同类项,得-2k =-16.方程两边同除以-2,得k =8.课后作业【题01】下列变形中,不正确的是( )A .若,则.B .若则.25x x =5x =77,x -=1x =-C .若,则.D .若,则.10.2x x -=1012x x -=x ya a=ax ay =【题02】下列各式不是方程的是( )A .B .24y y -=2m n =C .D .222p pq q -+0x =【题03】解为的方程是( )2x =-A .B .240x -=5362x +=C .D .3(2)(3)5x x x---=275462x x --=-【题04】若关于的方程是一元一次方程,求的值.x 223(4)0n x n -+-=n 【题05】已知是关于的一元一次方程,则 .2(23)(23)1m x m x ---=x m =【题06】若关于的方程是一元一次方程,求的解.x 2(2||)(2)(52)0m x m x m -+---=m 【题07】若关于的方程是一元一次方程,则= .x 1(2)50k k xk --+=k 【题08】若关于的方程是一元一次方程,则= .若关于的x 1(2)50k k x k --+=k x 方程是一元一次方程,则方程的解= .2(2)450k x kx k ++-=x【题09】是关于的一元一次方程,且该方程有惟一解,则2(38)570a b x bx a ++-=x x =( )A .B .2140-2140C .D .5615-5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11(4)(3)34y y -=+【题12】解方程:122233x x x -+-=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20 343x--+=。
一元一次方程一元一次方程是初中数学中的重要概念之一,它是由一个未知数和系数构成的代数方程,其中未知数的最高幂为1,例如:2x + 3 = 7。
解一元一次方程可以帮助我们找到未知数的值,从而解决实际问题。
一、一元一次方程的定义和性质一元一次方程是指只有一个未知数的代数方程,其一般形式为:ax + b = c,其中a、b、c为已知数,a≠0。
方程中的未知数一般用x表示。
一元一次方程的求解可以通过以下步骤进行:1. 将方程中未知数的系数和常数项移到同一侧,以得到ax = c - b的形式;2. 如果方程中未知数系数a为1,则可直接得到x的值,即x = c - b;3. 如果方程中未知数系数a不为1,则需要通过除以a的方式,将x 的系数化为1,从而得到x的值。
二、解一元一次方程的实例展示以下是几个解一元一次方程的实例:例1:解方程2x + 3 = 7。
解:首先将方程中未知数系数与常数项移到同一侧,得到2x = 7 - 3。
然后,将等式两边除以2,得到x = (7 - 3) / 2,即x = 4 / 2,所以x = 2是方程的解。
例2:解方程3(x - 2) = 5(x + 1) - 4。
解:首先将方程中的分布式展开,得到3x - 6 = 5x + 5 - 4。
然后,将未知数系数移到一侧,得到3x - 5x = 5 - 4 + 6。
化简得到-2x = 7,再将等式两边除以-2,得到x = -7 / 2,所以x = -3.5是方程的解。
例3:解方程4(x - 1) + 2 = 5(x + 3) - 1。
解:首先将方程中的分布式展开,得到4x - 4 + 2 = 5x + 15 - 1。
然后,将未知数系数移到一侧,得到4x - 5x = 15 - 1 + 4 - 2。
化简得到-x = 16,再将等式两边乘以-1,得到x = -16,所以x = -16是方程的解。
三、一元一次方程的应用举例一元一次方程的求解在实际问题中有着广泛的应用,以下是几个相关应用的示例:例1:小明拥有某笔钱财,他将其中2/5捐给了慈善机构,然后将剩下的400元全部存入银行,求小明原先有多少钱。
一元一次方程一元一次方程的基本性质方程的相关概念方程:含有未知数的等式叫做方程。
方程的已知数和未知数,例1方程的解:使方程左、右两边的式子相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
方程解的检验一元一次方程的定义(1)一元一次方程的概念只含有一个未知数,未知数的最高次数是1,这样的方程叫做一元一次方程。
(2)一元一次方程的形式标准形式:ax+b=0(其中a 不等于0,a ,b 是已知数)。
最简形式:ax=b (其中a 不等于0,a ,b 是已知数)。
注:一元一次方程的判断标准(首先化简为标准形式或最简形式)A 、只含有一个未知数(系数不为0).B 、未知数的最高次数为1.C 、方程是整式方程.等式的概念和性质(1)等式的概念:用“=”来表示相等关系的式子,叫做等式。
(2)等式的性质等式性质1:等式两边同时加上或者减去同一个数或同一个式子,所得结果仍是等式 等式性质2:等式两边同时乘以或者除以同一个数或者同一个式子(除数不能是0),所得结果仍是等式。
(3)等式的其他性质A 、对称性:若a=b ,则b=aB 、传递性:若a=b ,b=c 则a=c例1、判断下列各式是不是方程,如果是,指出已知数和未知数x x =-95 (2)x y 322=- (3)1152+x211-=-- (5)x x -=-24 (6)125=-x x练习题: 判断下列各式是不是方程,如果是,指出已知数和未知数3+x 2、1432+=+ 3、x x +=+44 4、21=x5、312=++x x 32=x 7、x x -=-44 8、3)2(2++=+x x x x例2、根据题意列出方程:(1)x 的20%与15的差的一半等于—2。
x 的3倍比x 的一半多15,求这个数。
某数的3倍与2的差等于16,求这个数。
笼子里有鸡和兔子共12只,共40条腿,求鸡有几只。
练习题:(1)用绳子量井深,把绳子三折来量,井外余4尺;把绳子四折来量,井外余1尺。
一元一次方程教学设计
教学内容:人教版七年级上册3.1.1一元一次方程
知识与技能:
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
情感态度和价值观:让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
教学重点:建立一元一次方程的概念,寻找相等关系,列出方程。
教学难点:根据具体问题中的相等关系,列出方程。
教学过程:
一、游戏导入,设置悬念
一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。
二、突出主题,突出主体
1、师:看大屏幕,独立思考下列问题,根据条件列出式子。
(1)x的2倍与3的差是5,
(2)长方形的的长为a,宽比长少5,周长为36,则=36
(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180
师:这些式子小学学习过,它们是()?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。
(现实,学生齐读)
【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。
】
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。
请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。
还要回答下列问题:(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;用含x的未知数表示这台计算机的检修时间;用含x的未知数分别表示男、女生人数。
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
五、我的课堂,我做主,我来说
六、课后反思:
数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。
所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。
只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。
只有使等式两边相等的未知数的值才是该方程的解。
俗话说得好:书读百遍,其义自现。
在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。