托勒密定理
- 格式:docx
- 大小:264.33 KB
- 文档页数:6
托勒密定理推导过程概述及解释说明1. 引言1.1 概述在几何学中,托勒密定理是一个重要的数学原理,它描述了一个四边形各边长度和对角线之间的关系。
该定理由古希腊数学家托勒密在《大地与天》一书中首次提出,并给出了其推导过程。
托勒密定理被广泛应用于数学、工程和物理等领域,对于解决相关问题具有重要意义。
1.2 文章结构本文将对托勒密定理的推导过程进行概述与解释说明。
文章分为五个部分:引言、托勒密定理推导过程、实例分析、托勒密定理的重要性与应用领域以及结论与总结。
在引言部分中,将介绍托勒密定理以及本文主要内容。
1.3 目的本文旨在通过梳理和解释托勒密定理的推导过程,增进读者对该数学原理的认识与理解。
同时,通过对实例问题的分析和相应领域的应用探讨,展示托勒密定理在现实世界中的实际价值。
最后,通过总结和展望未来研究方向,促进对于托勒密定理及其应用的深入研究和探索。
2. 托勒密定理推导过程:2.1 托勒密定理介绍托勒密定理,也被称为正交四边形定理,是平面几何中的一个重要定理。
它描述了一个在一个凸四边形内切于其边的圆上的一组关系。
托勒密定理可以用来计算非直角四边形的各种性质,比如角度、对角线长度以及相对边长等。
2.2 推导步骤解释推导托勒密定理时,我们假设有一个任意形状的凸四边形ABCD,并在该四边形内切一个圆O。
我们要证明以下关系成立:AB ×CD + BC ×AD = AC ×BD首先,在凸四边形ABCD中,通过连结AC和BD,得到两条对角线。
接下来,我们观察圆O与这两条对角线之间的关系。
假设∠AOC = α和∠BOC = β,根据圆心角和弧度之间的关系可知∠ADC = 180°- α和∠BDC = 180°- β。
同样地,我们有∠ADB = α和∠BCD = β。
根据三角函数中余弦定理可得:cos(∠ADC) = cos(180°- α) = -cosαcos(∠BDC) = cos(180°- β) = -cosβcos(∠ADB) = cosαcos(∠BCD) = cosβ由于在同一个圆上,AC和BD可以视为弦,角度对应的余弦值相同。
厦门一中2010数学竞赛讲座—平面几何
平面几何定理3——托勒密定理
托勒密定理:圆内接四边形的两组对边乘积之和等于两对角线的乘积。
推论1 (三弦定理)若A 是圆上任意一点,AB ,AC ,AD 是圆上顺次的三条弦,则: sin sin sin .AC BAD AB CAD AD CAB ⋅∠=⋅∠+⋅∠
推论2 (四角定理)四边形ABCD 内接于圆O ,则
sin sin sin sin sin sin .ADC BAD ABD BDC ADB DBC ∠⋅∠=∠⋅∠+∠⋅∠,
四边形中的托勒密定理(托勒密不等式):设ABCD 为任意凸四边形,则 AB CD BC AD AC BD ⋅+⋅≥⋅,当且仅当A 、B 、C 、D 四点共圆时取等.
练习: 如图,△ABC 与△A 'B 'C '的三边分别为a 、b 、 c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°. 试证:aa '=bb '+cc '. (1)
(2)
图8A
C
A'B'
c b c'b'
练习 例2.(面积问题)如图
练习
例3(边长问题)如图
例4.(解代数问题)
练习
例5..(定理证明)
练习
练习
1
2.
3.
4.
5.。
托勒密定理五边形证明-概述说明以及解释1.引言1.1 概述托勒密定理是几何学中一个非常重要的定理,它描述了一个特殊的五边形的性质。
这个定理的命名来自于古希腊数学家托勒密,他在其著作《大地与天球的数学基础》中首次提出了这个定理。
托勒密定理主要研究的是一个凸五边形,也就是一个有五个顶点的多边形,且其中的四个顶点都位于一个圆上。
这个定理给出了这个五边形的一条非常重要的性质,即其两对对角线的乘积之和等于两条对边的乘积之和。
具体而言,如果我们设这个五边形的顶点依次为A、B、C、D、E,那么托勒密定理可以表示为AC ×BD + AD ×BC = AB ×CD。
托勒密定理的证明过程非常有趣且具有一定的难度。
它通常使用几何、代数和三角等方法相结合,通过引入辅助线、利用相似三角形关系以及运用勾股定理等工具,从而逐步推导出定理的正确性。
托勒密定理的应用非常广泛。
一方面,在几何学中,托勒密定理是解决五边形相关问题的基础,通过利用这个定理,我们可以推导出许多与五边形有关的性质和公式。
另一方面,托勒密定理在实际应用中也具有一定的价值,如在工程测量中可以用于计算不易直接测量的距离或角度等。
对于托勒密定理的进一步研究也是一个有意义的课题。
目前,已经有许多学者在托勒密定理的基础上进行了延伸和拓展,提出了一些新的数学定理和性质。
同时,随着计算机技术的发展,我们可以利用计算机辅助证明的方法来进一步探索托勒密定理及其相关的数学问题。
综上所述,托勒密定理是几何学中一项重要的成果,它描述了一个特殊五边形的性质。
在本文中,我们将会介绍托勒密定理的定义、性质以及它的证明过程,并探讨其在几何学和实际应用中的意义。
同时,我们还将展望托勒密定理的进一步研究方向,以期能够为数学领域的发展做出更多的贡献。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构:本文分为引言、正文和结论三个部分。
引言部分主要概述了本文的内容和目的。
第九讲托勒密(Ptolemy)定理一、知识要点:1、托勒密定理:圆内接凸四边形两组对边乘积之和等于两条对角线之积,即已知,如图,四边形ABCD为圆内接凸四边形,则有 AB·CD+AD·BC =A C·BD ADB C托勒密定理的逆定理:如果凸四边形的两组对边的乘积之和等于对角线之积,那么这个四边形是圆内接四边形。
即:如图,若AB·CD+AD·BC =A C·BD,则A、B、C、D四点共圆。
ADB C托勒密定理的推广:在任意凸四边形ABCD中,有AB·CD+AD·BC ≥A C·BD,当且仅当ABCD四点共圆时取等号。
DAB C二、要点分析:托勒密定理可以用于线段长的转换,其逆定理可用于证明四点共圆。
三、 例题讲解:例1、设ABCD 为圆内接正方形,P 为弧DC 上的一点,求证:PA(PA+PC)=PB(PB+PD) PD CA B例2、如图,设P 、Q 为平行四边形ABCD 的边AB 、AD 上的两点,APQ ∆的外接圆交对角线AC 于R ,求证:A P ·AB+AQ ·AD=AR ·RCDA B CQP R例3、已知ABC ∆中,C B ∠=∠2,求证:AC 2=AB 2+AB ·BCAB C例4、如图所示,已知两同心圆O,四边形ABCD 内接于内圆,AB 、BC 、CD 、DA 的延长线交外圆于A 1、B 1、C 1、D 1,若外圆的半径是内圆的半径的2倍,求证:四边形A 1B 1C 1D 1的周长≥四边形ABCD 的周长的2倍,并确定等号成立的条件。
D 1例5、已知ABC ∆中,AB>AC,A ∠的一个外角平分线交ABC ∆的外接圆于点E,过E 作EF ⊥AB,垂足为F (如图),求证:2AF=AB-ACABC EF第九讲 托勒密(Ptolemy )定理练习1、 如图,已知圆内接正五边形ABCDE,若P 为弧AB 上一点,求证:PA+PD+PB=PE+PC AB C D EP2、 ABCD 为圆内接四边形,DC=BC ,对角线DB 与AC 交于E,若CE :EA=1:3,AB+AD=m,求BD 的长。
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).即:ABCD AB CD AD BC AC BD ⋅+⋅≥⋅定理:在四边形中,有:ABCD 并且当且仅当四边形内接于圆时,等式成立;()A B C D E B A E C A D A B E A C DA B B E A B E A C D A B C D A C B E A C C D A B A E B A C E A D A B C A E D A C A D B CE DA DBC A C E DA C A D ABCD A D B C A C BE E D A B C D A D B C A C B D E B D A B C D ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;一、直接应用托勒密定理例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC .分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB ,∵AB=BC=AC . ∴PA=PB+PC .二、完善图形 借助托勒密定理例2 证明“勾股定理”:在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 证明:如图,作以Rt △ABC 的斜边AC 为一对角线的矩形ABCD ,显然ABCD 是圆内接四边形.由托勒密定理,有 AC ·BD=AB ·CD +AD ·BC . ①又∵ABCD 是矩形,∴AB=CD ,AD=BC ,AC=BD . ②把②代人①,得AC 2=AB 2+BC 2.例3 如图,在△ABC 中,∠A 的平分 线交外接∠圆于D ,连结BD ,求证:AD ·BC=BD(AB +AC).证明:连结CD ,依托勒密定理,有AD ·BC =AB ·CD +AC ·BD .∵∠1=∠2,∴ BD=CD .故 AD ·BC=AB ·BD +AC ·BD=BD(AB +AC).三、构造图形 借助托勒密定理例4 若a 、b 、x 、y 是实数,且a 2+b 2=1,x 2+y 2=1.求证:ax +by ≤1.证明:如图作直径AB=1的圆,在AB 两边任作Rt △ACB 和Rt △ADB ,使AC =a ,BC=b ,BD =x ,AD =y .由勾股定理知a 、b 、x 、y 是满足题设条件的.据托勒密定理,有AC ·BD +BC ·AD=AB ·CD .∵CD ≤AB =1,∴ax +by ≤1.四、巧变原式 妙构图形,借助托勒密定理例5 已知a、b 、c 是△ABC 的三边,且a 2=b(b +c),求证:∠A=2∠B .分析:将a 2=b(b +c)变形为a ·a=b ·b +bc ,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b ,两对角线为a ,一底边为c .证明:如图 ,作△ABC 的外接圆,以 A 为圆心,BC 为半径作弧交圆于D ,连结BD 、DC 、DA .∵AD=BC , AC D BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC ·AD=AB ·CD +BD ·AC . ①而已知a 2=b(b+c),即a ·a=b ·c +b 2. ②∴∠BAC=2∠ABC .五、巧变形 妙引线 借肋托勒密定理例6 在△ABC 中,已知∠A ∶∠B ∶∠C=1∶2∶4,分析:将结论变形为AC ·BC +AB ·BC=AB ·AC ,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图,作△ABC 的外接圆,作弦BD=BC ,边结AD 、CD .在圆内接四边形ADBC 中,由托勒密定理,有AC ·BD +BC ·AD=AB ·CD易证AB=AD ,CD=AC ,∴AC ·BC +BC ·AB=AB ·AC ,1.已知△ABC 中,∠B=2∠C 。
平面几何(3)----托勒密定理及应用托勒密定理:圆内接四边形的两组对边乘积之和等于两对角线的乘积推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则sin sin sin AC BAD AB CAD AD CAB ⋅∠=⋅∠+⋅∠推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin sin sin ADC BAD ABD BDC ADB DBC ∠⋅∠=∠⋅∠+∠⋅∠直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排序的四点,则AB CD BC AD AC BD ⋅+⋅=⋅四边形中的托勒密定理:设ABCD 为任意凸四边形,则,AB CD BC AD AC BD ⋅+⋅≥⋅当且仅当A ,B ,C ,D 四点共圆时取等号托勒密定理的逆定理: 在凸四边形ABCD 中,若AB CD BC AD AC BD ⋅+⋅=⋅,则A ,B ,C ,D 四点共圆例1:在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若角A ,B ,C 的大小成等比数列,且22b a ac -=,则角B 的弧度数等于多少?例2:凸四边形ABCD 中,60,90o o ABC BAD BCD ∠=∠=∠=,AB=2,CD=1,对角线AC ,BD 交于点O ,如图,求sin AOB ∠例3:如图,在锐角ABC 的BC 边上有两点E ,F ,满足,BAE CAF ∠=∠作FM AB ⊥于M ,FN AC ⊥于N ,延长AE 交ABC 的外接圆于点D ,证明:四边形AMDN 与ABC 的面积相等.例4:如图,在ABC 中,60o A ∠=,,AB AC >点O 是外心,两条高BE ,CF 交于H 点,点M ,N 分别在线段BH ,HF 上,且满足BM=CN ,求MH NH OH+的值例5:若有四个圆都与第五个圆内切,第一个与第二个圆的外公切线长用12l 表示,其他前四个圆中的两两的外公切线也用同样的方法来标记,且前四个圆以顺时针的顺序排列,试证明依次以12233441,,,l l l l 为边长,以1324,l l 为对角线所构成的凸四边的四个顶点共圆.例6:经过XOY ∠的平分线上的一点A ,任作一直线与OX 及OY 分别相交于P,Q ,求证:11OP OQ+为定值例7:圆内接六边形ABCDEF 的对角线共点的充要条件是1AB CD EF BC DE FA ⋅⋅=。
初中托勒密定理初中托勒密定理托勒密定理是初中数学中的一个重要定理,它是由古希腊数学家托勒密发现的,因此得名。
该定理是关于四边形的一个定理,它表明,如果一个四边形的两条对角线相交于一点,那么这个四边形的两组对边乘积之和相等。
具体来说,设四边形ABCD的对角线AC和BD相交于点O,那么有以下公式:AB × CD + BC × AD = AC × BD其中,AB、BC、CD、AD分别表示四边形ABCD的四条边的长度,AC和BD分别表示四边形ABCD的两条对角线的长度。
托勒密定理的证明可以通过几何方法和代数方法来完成。
其中,几何方法是通过构造一些辅助线来证明该定理的,而代数方法则是通过将四边形的顶点坐标表示成复数来证明该定理的。
托勒密定理在初中数学中的应用非常广泛,它可以用来解决各种几何问题,例如求解四边形的面积、判断四边形是否为正方形等。
此外,托勒密定理还可以用来证明勾股定理和正弦定理等其他重要定理。
总之,托勒密定理是初中数学中的一个重要定理,它不仅具有理论意义,而且在实际应用中也有着广泛的应用。
因此,学生们应该认真学习和掌握该定理,以便在以后的学习和工作中能够灵活运用。
排版格式:初中托勒密定理托勒密定理是初中数学中的一个重要定理,它是由古希腊数学家托勒密发现的,因此得名。
该定理是关于四边形的一个定理,它表明,如果一个四边形的两条对角线相交于一点,那么这个四边形的两组对边乘积之和相等。
具体来说,设四边形ABCD的对角线AC和BD相交于点O,那么有以下公式:AB × CD + BC × AD = AC × BD其中,AB、BC、CD、AD分别表示四边形ABCD的四条边的长度,AC和BD分别表示四边形ABCD的两条对角线的长度。
托勒密定理的证明可以通过几何方法和代数方法来完成。
其中,几何方法是通过构造一些辅助线来证明该定理的,而代数方法则是通过将四边形的顶点坐标表示成复数来证明该定理的。
托勒密定理不等式托勒密定理不等式托勒密定理是欧几里得几何中的一个重要定理,也是三角学、解析几何和复数学中的基本定理之一。
它通常用于计算四边形的对角线长度,以及确定圆周上两个点之间的距离。
在本文中,我们将探讨托勒密定理的不等式形式。
一、托勒密定理先来回顾一下托勒密定理的内容。
托勒密定理指出,如果一个四边形ABCD中,对边AB和CD相交于点E,则有:AE × BD + CE × AD = AC × BD或者:AD × BC + AB × CD = AC × BD其中AC表示对角线AC的长度,BD表示对角线BD的长度。
这个定理可以通过欧氏几何证明,也可以用解析几何或复数学证明。
它在计算四边形对角线长度时非常有用。
二、托勒密不等式除了上述恒等式外,还有一个与之相关的不等式形式。
这个不等式被称为“托勒密不等式”,它表达了四边形内部任意两条线段乘积之和大于或等于对角线乘积。
具体地说,设ABCD是一个四边形,对角线AC和BD相交于点E。
则有:AE × CE + BE × DE ≥ AC × BD或者:AD × BC + AB × CD ≥ AC × BD这个不等式的证明可以用多种方法,其中一种比较简单的方法是利用向量的内积和余弦定理。
三、托勒密不等式的应用托勒密不等式在几何学和数学中有着广泛的应用。
下面我们来看几个例子。
1. 四边形内部任意两点之间的距离假设我们要求四边形ABCD内部任意两点P和Q之间的距离,如图所示:根据托勒密定理,我们可以得到:AC² = AD² + CD²BD² = AB² + AD²BC² = AB² + CD²将上述三个式子带入托勒密不等式中,得到:AP · CP + BQ · DQ≥ AC · BD这个不等式表明,如果P和Q分别在四边形ABCD的两条对角线上,则它们之间的距离最短。
模型介绍1.托勒密定理:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和.翻译:在四边形ABCD 中,若A 、B 、C 、D 四点共圆,则AC BD AB CD AD BC ⋅=⋅+⋅.证明:在线段BD 上取点E ,使得∠BAE =∠CAD ,易证△AEB ∽△ADC ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅,当∠BAE =∠CAD 时,可得:∠BAC =∠EAD ,易证△ABC ∽△AED ,∴AD DE AC CB=,即AC DE AD BC ⋅=⋅,∴AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴AC BD AB CD AD BC ⋅=⋅+⋅.2.(托勒密不等式):对于任意凸四边形ABCD ,有AC BD AB CD AD BC⋅≤⋅+⋅证明:如图1,在平面中取点E 使得∠BAE =∠CAD ,∠ABE =∠ACD ,易证△ABE ∽△ACD ,∴AB BE AC CD=,即AC BE AB CD ⋅=⋅①,连接DE ,如图2,∵AB AE AC AD =,∴AB AC AE AD=,又∠BAC =∠BAE +∠CAE =∠DAC +∠CAE =∠DAE ,∴△ABC ∽△AED ,∴AD DE AC BC=,即AC DE AD BC ⋅=⋅②,将①+②得:AC BE AC DE AB CD AD BC ⋅+⋅=⋅+⋅,∴()AC BD AC BE DE AB CD AD BC⋅≤⋅+=⋅+⋅即AC BD AB CD AD BC ⋅≤⋅+⋅,当且仅当A 、B 、C 、D 共圆时取到等号.3.托勒密定理在中考题中的应用(1)当△ABC 是等边三角形时,如图1,当点D 在弧AC 上时,根据托勒密定理有:DB AC AD BC AB CD ⋅=⋅+⋅,又等边△ABC 有AB =AC =BC ,故有结论:DB DA DC =+.证明:在BD 上取点E 使得DE =DA ,易证△AEB ∽△ADC ,△AED ∽△ABC ,利用对应边成比例,可得:DB DA DC =+.如图2,当点D 在弧BC 上时,结论:DA =DB +DC .【小结】虽然看似不同,但根据等边的旋转对称性,图1和图2并无区别.(2)当△ABC 是等腰直角三角形,如图3,当点D 在弧BC 上时,根据托勒密定理:AD BC AB CD AC BD ⋅=⋅+⋅,又::1:1:2AB AC BC =,代入可得结论:2AD BD CD =+.如图4,当点D 在弧AC 上时,根据托勒密定理:AD BC AB CD AC BD ⋅=⋅+⋅,又::1:1:2AB AC BC =,代入可得结论:2BD AD CD =+.(3)当△ABC 是一般三角形时,若记BC :AC :AB =a :b :c ,根据托勒密定理可得:a AD b BD c CD⋅=⋅+⋅例题精讲【例1】.如图,正五边形ABCDE 内接于⊙O ,AB =2,则对角线BD 的长为1+.解:如图,连接AD、AC.∵五边形ABCDE是正五边形,∴△ABC≌△DCB≌△AED(SAS),∴设BD=AC=AD=x.在圆内接四边形ABCD中,由托勒密定理可得:AB•CD+AD•BC=AC•BD,即2×2+x•2=x2,解得:x1=1+,x2=1﹣(舍去).∴对角线BD的长为1+.故答案为:1+.变式训练【变式1-1】.先阅读理解:托勒密(Ptolemy古希腊天文学家)定理指出:圆内接凸四边形两组对边乘积的和等于两条对角线的乘积.即:如果四边形ABCD内接于⊙O,则有AB•CD+AD•BC=AC•BD.再请完成:(1)如图1,四边形ABCD内接于⊙O,BC是⊙O的直径,如果AB=AC=,CD=1,求AD的长.(2)在(1)的条件下,如图2,设对边BA、CD的延长线的交点为P,求PA、PD的长.解:(1)∵BC是⊙O的直径,∴∠BAC=∠BDC=90°,∵AB=AC=,∴△ABC是等腰直角三角形,∴BC=AB=,∴BD===3,∵圆内接凸四边形两组对边乘积的和等于两条对角线的乘积,即:如果四边形ABCD内接于⊙O,则有AB•CD+AD•BC=AC•BD,即×1+AD×=×3,解得:AD=;(2)∵∠PAD=∠PCB,∠P=∠P,∴△PAD∽△PCB,∴==,设PA=x,PD=y,则==,解得:x=,y=,∴PA=,PD=.【变式1-2】.如图1,已知⊙O内接四边形ABCD,求证:AC•BD=AB•CD+AD•BC.证明:如图1,在BD上取一点P,连接CP,使∠PCB=∠DCA,即使∠1=∠2.∵在⊙O中,∠3与∠4所对的弧都是,∴∠3=∠4.∴△ACD∽△BCP.∴=.∴AC•BP=AD•BC.①又∵∠2=∠1,∴∠2+∠7=∠1+∠7.即∠ACB=∠DCP.∵在⊙O中,∠5与∠6所对的弧都是,∴∠5=∠6.∴△ACB∽△DCP.…(1)任务一:请你将“托勒密定理”的证明过程补充完整;(2)任务二:如图2,已知Rt△ABC内接于⊙O,∠ACB=90°,AC=6,BC=8,CD 平分∠ACB交⊙O于点D,求CD的长.解:(1)补全证明:∴,∴AC•DP=AB•DC②,∴①+②得:AC•BP+AC•DP=AD•BC+AB•DC,∴AC•(BP+DP)=AD•BC+AB•DC,即AC•BD=AD•BC+AB•DC,(2)∵∠ACB=90°,AC=6,BC=8,∴∠ADB=90°,AB==10,∵CD平分∠ACB交⊙O于点D,∴∠BCD=∠ACD,∴BD=AD,∵∠ADB=90°,∴∠ABD=45°,∴BD=AD=AB•sin45°=5,∵四边形ABCD内接于⊙O,∴AB•CD=AC•BD+AD•BC,即10CD=6×+8×5,∴CD=7.【例2】.托勒密定理:圆的内接四边形两对对边乘积的和等于两条对角线的乘积.已知:如图1,四边形ABCD内接于⊙O.求证:AB⋅DC+AD⋅BC=AC⋅BD.证明:如图2,作∠BAE=∠CAD,交BD于点E,……∴△ABE∽△ACD,∴AB•DC=AC•BE,……∴△ABC∽△AED,∴AD•BC=AC•ED,∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.(1)请帮这位同学写出已知和求证,并完成证明过程;(2)如图3,已知正五边形ABCDE内接于⊙O,AB=1,求对角线BD的长.(1)解:已知:如图1,四边形ABCD内接于⊙O,求证:AB•DC+AD⋅BC=AC•BD,故答案为:四边形ABCD内接于⊙O,AB•DC+AD•BC=AC•BD;证明:如图2,作∠BAE=∠CAD,交BD于点E,∵,∴∠ABE=∠ACD,∴△ABE∽△ACD,∴=,∴AB⋅DC=AC⋅BE.∵,∴∠ACB=∠ADE.∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∴△ABC∽△AED,∴,∴AD⋅BC=AC⋅ED,∴AB⋅DC+AD⋅BC=AC⋅BE+AC⋅ED=AC(BE+ED)=AC⋅BD,即AB•DC+AD•BC=AC•BD;(2)解:在图3中,连接AD、AC.∵五边形ABCDE是正五边形,∴△ABC≌△DCB≌△AED,∴设BD=AC=AD=x.在圆内接四边形ABCD中,由托勒密定理可得:AB•CD+AD•BC=AC•BD,即1×1+x•1=x2,解得,(舍去),∴对角线BD的长为.变式训练【变式2-1】.已知:如图1,四边形ABCD内接于⊙O.求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵=,∠ABE=∠ACD,∴△ABE∽△ACD,∴,∴AB•CD=AC•BE;∵=,∴∠ACB=∠ADE(依据1),∵∠BAE=∠CAD,∴∠BAC=∠EAD,∴△ABC∽△AED(依据2),∴,∴AD•BC=AC•ED;∴AB•CD+AD•BC=AC•(BE+ED),即AB•CD+BC•AD=AC•BD.(1)上述证明过程中的“依据1”是指同弧所对的圆周角相等;“依据2”是指两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们熟知的勾股定理.(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是的中点,求AC的长.解:(1)上述证明过程中的“依据1”是同弧所对的圆周角相等.“依据2”是两角分别相等的两个三角形相似.故答案为:同弧所对的圆周角相等;两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,则AB=CD,AD=BC,AC=BD,∵AB•CD+AD•BC=AC•BD,∴AB2+AD2=BD2,托勒密定理就是我们非常熟知的一个定理:勾股定理,故答案为:勾股.(3)连接BD,作CE⊥BD于E.∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵,∴CD=CB,∴∠CDB=30°,在Rt△CDE中,cos30°=,∴DE=CD,∴BD=2DE=CD,由托勒密定理:AC•BD=AD•BC+CD•AB,∴AC•CD=3CD+5CD,∴AC=,答:AC的长为.【变式2-2】.圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为AC•BD=AB•CD+BC•AD.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.解:(1)由托勒密定理可得:AC•BD=AB•CD+BC•AD 故答案为:AC•BD=AB•CD+BC•AD(2)如图,连接AC∵∠COD=120°,∴∠CBD=∠CAD=60°∵BD平分∠ABC∴∠ABD=∠CBD=60°∴∠ACD=60°,∴△ACD是等边三角形∴AC=AD=CD,∵四边形ABCD是圆内接四边形∴AC•BD=AB•CD+BC•AD∴BD=AB+BC1.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,对角线交于点O,连接AO,如果AB=4,AO=4,那么AC的长等于()A.12B.16C.4D.8解:在AC上截取CG=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90°,∴OB=OC,∠BAC=∠BOC=90°,∴B、A、O、C四点共圆,∴∠ABO=∠ACO,在△BAO和△CGO中,∴△BAO≌△CGO(SAS),∴OA=OG=4,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90°,∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形,由勾股定理得:AG==8,即AC=AG+CG=8+4=12.故选:A.2.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.解:解法一、∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵∠BAD=60°,AC平分∠BAD,∴∠CAD=∠CAB=30°,如图1,将△ACD绕点C逆时针旋转120°得△CBE,则∠E=∠CAD=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=×(5+3)=4,在Rt△AMC中,AC===;解法二、过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CBE,在△CBE和△CDF中∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=3,AD=5,∴AE=AF=x+3,∴5=x+3+x,解得:x=1,即AE=4,∴AC==,故答案为:.3.如图,在等腰△ABC中,AB=AC=4,BC=6,点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为1.解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴=,∴BE==1.故答案为:1.4.如图,P是正方形ABCD内一点,CP=CD,AP⊥BP,则的值为.解:如图,过点D作AP垂线交AP延长线于E,∵四边形ABCD是正方形,CP=CD,∴BC=CP=CD,∴∠PBC=∠BPC,∠DPC=∠PDC,设∠PCD=x,则∠BPC=,∠DPC=,∴∠BPD=45°+90°=135°,∵AP⊥BP,∴∠APD=360°﹣135°﹣90°=135°,∴∠DPE=45°,设DE=PE=y,∴DP==y,∵∠DAE+∠BAP=∠BAP+∠ABP=90°,∴∠DAE=∠ABP,在△DAE与△ABP中,,∴△APB≌△DEA(AAS),∴AP=DE=y,∴==.故答案为:.5.如图,正方形ABCD的边长是6,对角线的交点为O,点E在边CD上且CE=2,CF⊥BE,连接OF,则:(1)∠OFB45°;(2)OF=.解:(1)在BE上截取BG=CF,∵在正方形ABCD,AC⊥BD,∠ABC=∠BCD=90°,AC=BD,BO=BD,CO=AC,AC、BD分别平分∠ABC、∠BCD,∴BO=CO,∠BOC=90°,∠OBC=∠OCD=45°,∵CF⊥BE,∴∠CFE=90°,∴∠FEC+∠ECF=90°,∵∠EBC+∠FEC=90°,∴∠EBC=∠ECF,∴∠OBC﹣∠EBC=∠OCD﹣∠ECF,∴∠OBG=∠FCO,∴△OBG≌△OCF(SAS),∴∠BOG=∠FOC,OG=OF,∴∠GOC+∠COF=90°,∴∠OFG=∠OGF=45°,故答案为:45°;(2)在Rt△BCE中,根据勾股定理,得BE=2,∴CF=BG==,在Rt△FCE中,根据勾股定理,得EF=,∴GF=BE﹣BG﹣EF=,在Rt△FCE中,根据勾股定理,得OF=,故答案为:.6.如图,在Rt△ABC中,∠BAC=90°,D为BC的中点,过点D作DE⊥DF,交BA的延长线于点E,交AC的延长线于点F.若CF=,AC=4,AB=2.则AE=10.解:延长FD至G,使GD=FD,连接BG,如图所示:∵D为BC的中点,∴BD=CD,在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=CF=,∠G=∠F,∴BG∥CF,∴△BGH∽△AFH,∴====,∴=,AH=AB=,∵∠BAC=90°,AF=AC+CF=,∴HF==,∴DH=FH=,∵DE⊥DF,∴∠EDH=90°=∠BAC,∴∠E+∠EHD=∠F+∠EHD=90°,∴∠E=∠F,∴△DHE∽△AHF,∴=,即=,解得:HE=,∴AE=HE﹣AH=﹣=10;故答案为:10.7.设△ABC是正三角形,点P在△ABC外,且与点A在直线BC异侧,∠BPC=120°,求证:PA=PB+PC.解:如图,延长BP至E,使PE=PC,连接CE,∵∠BAC+∠BPC=180°,且∠BAC=60°,∴∠BPC=120°,∴∠CPE=60°,又PE=PC,∴△CPE为等边三角形,∴CP=PE=CE,∠PCE=60°,∵△ABC为等边三角形,∴AC=BC,∠BCA=60°,∴∠ACB=∠PCE,∴∠ACB+∠BCP=∠PCE+∠BCP,即:∠ACP=∠BCE,∵在△ACP和△BCE中,,∴△ACP≌△BCE(SAS),∴AP=BE,∵BE=BP+PE,∴PA=PB+PC.8.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P为圆上一个动点.求2PC+PE的最小值.解:延长OA到K,使AK==2.∵C是AO的中点,∴OC=OA=1,∴=.又∵∠COP=∠POK,∴△COP∽△POK,∴,即PK=2PC.∴2PC+PE=PE+PK≥EK.作EH⊥BC于点H.∵在直角△COD中,cos∠DOC=,∴∠DOC=60°,∴∠EOH=∠DOC=60°,∴HE=OE•sin60°=2×,∴EK=.即最小值是2.故答案是:2.9.如图,点P为等边△ABC外接圆,劣弧为BC上的一点.(1)求∠BPC的度数;(2)求证:PA=PB+PC.(1)解:∵四边形ABPC内接于圆,∴∠BAC+∠BPC=180.∵等边三角形ABC中,∠BAC=60°,∴∠BPC=120°;(2)证明:延长BP到D,使得DP=PC,连接CD.∵∠BPC=120,∴∠CPD=60.又∵PC=PD,∴△PCD是等边三角形,∴PC=CD,∠PCD=60°,∴∠ACM+∠MCP=PCD+∠MCP,即∠ACP=∠BCD.∵等边三角形ABC中,∴BC=AC.∵所对的圆周角是∠DBC与∠PAC,∴∠DBC=∠PAC.在△DBC和△PAC中,,∴△DBC≌△PAC(ASA),∴AP=BD.∵BD=BP+DP,∴AP=BP+DP,∵DP=PC,∴PA=PB+PC.10.如图,⊙O的直径AB的长为10,弦BD的长为6,点C为上的一点,过点B的切线EF,连接AD,CD,CB;(1)求证:∠CDB=∠CBF;(2)若点D为的中点,求CD的长.(1)证明:连接AC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∴∠1+∠2=90°,∵EF为⊙O的切线,∴AB⊥EF,∴∠ABF=90°,即∠2+∠CBF=90°,∴∠1=∠CBF,∵∠1=∠CDB,∴∠CDB=∠CBF;(2)解:作CM⊥AD于M,CN⊥DB于N,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴AD===8,∵点C为的中点,∴∠ADC=∠BDC,∴CA=CB,CM=CN,在Rt△ACM和Rt△BCN中,∴Rt△ACM≌Rt△BCN,∴AM=BN,即AD﹣AM=DN﹣BD,∴AM+DN=AD+BD=8+6=14,∵四边形CMDN为矩形,CM=CN,∴四边形CMDN为正方形,∴DM=DN=7,∴CD=DM=7.11.阅读下列材料,并完成相应的任务.托勒密定理:托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.已知:如图1,四边形ABCD内接于⊙O,求证:AB•CD+BC•AD=AC•BD下面是该结论的证明过程:证明:如图2,作∠BAE=∠CAD,交BD于点E.∵∴∠ABE=∠ACD∴△ABE∽△ACD∴∴AB•CD=AC•BE∵∴∠ACB=∠ADE(依据1)∵∠BAE=∠CAD∴∠BAE+∠EAC=∠CAD+∠EAC即∠BAC=∠EAD∴△ABC∽△AED(依据2)∴AD•BC=AC•ED∴AB•CD+AD•BC=AC•(BE+ED)∴AB•CD+AD•BC=AC•BD任务:(1)上述证明过程中的“依据1”、“依据2”分别是指什么?(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:勾股定理.(请写出)(3)如图3,四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C为的中点,求AC的长.解:(1)上述证明过程中的“依据1”是同弧所对的圆周角相等.“依据2”是两角分别相等的两个三角形相似.(2)当圆内接四边形ABCD是矩形时,则AB=CD,AD=BC,AC=BD,∵AB•CD+AD•BC=AC•BD,∴AB2+AD2=BD2,托勒密定理就是我们非常熟知的一个定理:勾股定理,故答案为勾股定理.(3)连接BD,作CE⊥BD于E.∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵=,∴CD=CB,∴∠CDB=30°,在Rt△CDE中,cos30°=,∴DE=CD,∴BD=2DE=CD,由托勒密定理:AC•BD=AD•BC+CD•AB,∴AC•CD=3CD+5CD,∴AC=,答:AC的长为.12.在学习了《圆》和《相似》的知识后,小明自学了一个著名定理“托勒密定理:圆内接四边形对角线的乘积等于两组对边乘积之和.”(1)下面是小明对托勒密定理的证明和应用过程,请补充完整.已知:四边形ABCD内接于⊙O.求证:AC•BD=AB•CD+AD•BC.证明:作∠CDE=∠BDA,交AC于点E,∵⊙O中,∠1=∠2,∴△ABD∽△ECD(两角对应相等,两三角形相似).∴.∴AB•CD=BD•EC①,.又∵∠BDA+∠3=∠CDE+∠3,即∠ADE=∠BDC,∴△DAE∽△DBC(两边对应成比例且夹角相等,两三角形相似).∴.∴AD•BC=BD•AE②.∴AB•CD+AD•BC=BD(EC+AE),∴AB•CD+AD•BC=AC•BD.(2)利用托勒密定理解决问题:是否存在一个圆内接四边形,它的两条对角线长为5和,一组对边长为1和3,另一组对边的和为4.若存在,求出未知的两边;若不存在,说明理由.(1)证明:作∠CDE=∠BDA,交AC于点E,∵⊙O中,∠1=∠2,∴△ABD∽△ECD(两角对应相等,两三角形相似).∴.∴AB•CD=BD•EC①,∴.又∵∠BDA+∠3=∠CDE+∠3,即∠ADE=∠BDC,∴△DAE∽△DBC(两边对应成比例且夹角相等,两三角形相似).∴.∴AD•BC=BD•AE②.∴AB•CD+AD•BC=BD(EC+AE),∴AB•CD+AD•BC=AC•BD.故答案为:两角对应相等,两三角形相似,DAE,DBC,两边对应成比例且夹角相等,两三角形相似,AB•CD+AD•BC=BD(EC+AE);(2)不存在,理由如下:设未知的两边分别为:a,4﹣a,由托勒密定理可得:5×=1×3+a(4﹣a),∴(a﹣2)2=7﹣5<0,∴方程无解,∴不存在这样的一个圆内接四边形.13.阅读下列相关材料,并完成相应的任务.布拉美古塔定理婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边.某数学兴趣小组的同学写出了这个定理的已知和求证.已知:如图,在圆内接四边形ABCD中,对角线AC⊥BD,垂足为P,过点P作AB的垂线分别交AB,DC于点H,M.求证:M是CD的中点任务:(1)请你完成这个定理的证明过程.(2)该数学兴趣小组的同学在该定理的基础上写出了另外一个命题:若圆内接四边形的对角线互相垂直,则一边中点与对角线交点的连线垂直于对边请判断此命题是真命题.(填“真”或“假”)(3)若PD=2,HP=,BP=3,求MH的长.(1)证明:∵AC⊥BD,∴∠APB=∠CPD=90°,∴∠ABP+∠BAP=90°,∵PH⊥AB,∴∠BAP+∠APH=90°,∴∠ABP=∠APH,∴∠MPC=∠APH,∵=,∴∠ABP=∠ACD,∴∠PCM=∠MPC,∴PM=MC,同理可得,PM=DM,∴DM=CM,∴M是CD的中点;(2)若圆内接四边形的对角线互相垂直,则一边中点与对角线交点的连线垂直于对边,理由如下:已知:如图,在圆内接四边形ABCD中,对角线AC⊥BD,垂足为P,M是CD的中点,连接MP交AB于点H,求证:PH⊥AB;证明:∵M是CD的中点;∴DM=CM=PM,∴∠PCM=∠MPC,∵=,∴∠ABP=∠PCM,∵∠MPC=∠APH,∴∠MPC=∠APH,∴∠APH+∠HPB=∠ABP+∠HPB=90°,∴PH⊥AB;故答案为:真;(3)解:∵BP=3,HP=,∴BH=,∴sin∠HBP=,∵∠ABP=∠PCD,∴==,∴CD=2,∵M是CD的中点,∴PM=CD=,∴MH=2.14.已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:AB+AC=AD;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论;(3)如图③,若BC=5,BD=4,求的值.解:(1)如图①在AD上截取AE=AB,连接BE,∵∠BAC=120°,∠BAC的平分线交⊙O于点D,∴∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,∴△ABE和△BCD都是等边三角形,∴∠DBE=∠ABC,AB=BE,BC=BD,∴△BED≌△BAC(SAS),∴DE=AC,∴AD=AE+DE=AB+AC;故答案为:AB+AC=AD.(2)AB+AC=AD.理由如下:如图②,延长AB至点M,使BM=AC,连接DM,∵四边形ABDC内接于⊙O,∴∠MBD=∠ACD,∵∠BAD=∠CAD=45°,∴BD=CD,∴△MBD≌△ACD(SAS),∴MD=AD,∠M=∠CAD=45°,∴MD⊥AD.∴AM=,即AB+BM=,∴AB+AC=;(3)如图③,延长AB至点N,使BN=AC,连接DN,∵四边形ABDC内接于⊙O,∴∠NBD=∠ACD,∵∠BAD=∠CAD,∴BD=CD,∴△NBD≌△ACD(SAS),∴ND=AD,∠N=∠CAD,∴∠N=∠NAD=∠DBC=∠DCB,∴△NAD∽△CBD,∴,∴,又AN=AB+BN=AB+AC,BC=5,BD=4,∴=.15.问题探究:(1)已知:如图①,△ABC中请你用尺规在BC边上找一点D,使得点A到点BC的距离最短.(2)托勒密(Ptolemy)定理指出,圆的内接四边形两对对边乘积的和等于两条对角线的乘积.如图②,P是正△ABC外接圆的劣弧BC上任一点(不与B、C重合),请你根据托勒密(Ptolemy)定理证明:PA=PB+PC.问题解决:(3)如图③,某学校有一块两直角边长分别为30m、60m的直角三角形的草坪,现准备在草坪内放置一对石凳及垃圾箱在点P处,使P到A、B、C三点的距离之和最小,那么是否存在符合条件的点P?若存在,请作出点P的位置,并求出这个最短距离(结果保留根号);若不存在,请说明理由.解:(1)利用尺规作图,过点A作BC的垂线,交BC于D,则点D即为所求;(2)由托勒密定理得,PA•BC=PB•AC+PC•AB,∵△ABC为正三角形,∴AB=BC=AC,∴PA•BC=PB•BC+PC•BC,∴PA=PB+PC;(3)以BC为边作正△BCD,使点D与点A在BC两侧,作△BCD的外接圆,连接AD交圆于P,连接PB,作DE⊥AC交AC的延长线于E,则点P即为所求,由(2)得,PD=PB+PC,∴P到A、B、C三点的距离之和=DA,且距离之和最小,∵CD=BC=30,∠DCE=∠BCE﹣∠BCD=30°,∴DE=CD=15,由勾股定理得,CE==15,则AD==30,答:P到A、B、C三点的距离之和最小值为30m.16.(1)方法选择如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD =AD+CD.小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…小军认为可用补短法证明:延长CD至点N,使得DN=AD…请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是BD=CD+2AD.(3)拓展猜想如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是BD=CD+AD.解:(1)方法选择:∵AB=BC=AC,∴∠ACB=∠ABC=60°,如图①,在BD上截取DM=AD,连接AM,∵∠ADB=∠ACB=60°,∴△ADM是等边三角形,∴AM=AD,∵∠ABM=∠ACD,∵∠AMB=∠ADC=120°,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;(2)类比探究:如图②,∵BC是⊙O的直径,∴∠BAC=90°,∵AB=AC,∴∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=45°,∴△ADM是等腰直角三角形,∴AM=AD,∠AMD=45°,∴DM=AD,∴∠AMB=∠ADC=135°,∵∠ABM=∠ACD,∴△ABM≌△ACD(AAS),∴BM=CD,∴BD=BM+DM=CD+AD;【探究2】如图③,∵若BC是⊙O的直径,∠ABC=30°,∴∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,∵∠ADB=∠ACB=60°,∴∠AMD=30°,∴MD=2AD,∵∠ABD=∠ACD,∠AMB=∠ADC=150°,∴△ABM∽△ACD,∴=,∴BM=CD,∴BD=BM+DM=CD+2AD;故答案为:BD=CD+2AD;(3)拓展猜想:BD=BM+DM=CD+AD;理由:如图④,∵若BC是⊙O的直径,∴∠BAC=90°,过A作AM⊥AD交BD于M,∴∠MAD=90°,∴∠BAM=∠DAC,∴△ABM∽△ACD,∴=,∴BM=CD,∵∠ADB=∠ACB,∠BAC=∠MAD=90°,∴△ADM∽△ACB,∴==,∴DM=AD,∴BD=BM+DM=CD+AD.故答案为:BD=CD+AD17.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB =∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,连接AE,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=90°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.18.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD=3.(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD 的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是PQ=AC或PQ=AC.解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵,∴AD=BD,将△BCD绕点D顺时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=CD,∴CD=;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④由(2)的证明过程可知:AC+=D1C,∴D1C=,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+CD2=D1D2,∴CD2=m2+n2﹣=,∵m<n,∴CD=;(4)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=AC,∴AE=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(2)的证明过程可知:AQ+CQ=PQ,∴PQ=a+a,∴PQ=AC;当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=AE=,由勾股定理可求得:CQ=a,由(3)的结论可知:PQ=(CQ﹣AQ),∴PQ=AC.综上所述,线段PQ与AC的数量关系是PQ=AC或PQ=AC.。
广义托勒密定理什么是托勒密定理?——托勒密定理是一个数学定理,它是由古希腊数学家托勒密在其著名的《几何》中于三世纪公元前三世纪提出的。
——这个定理说:若一个多边形的三角形的边都相等,并且其内外的角都相等,就能被分解成六边形。
这三个三角形,分别为托勒密三角形、正射形和平行三角形。
托勒密定理被称为是数学界最古老、最具权威的定理之一,它也是建立在苏美尔定理之上的。
众所周知,苏美尔定理是描述两个直径的圆在赤道上的关系的一项定理,并且只有当两个直径的圆的圆心角等于360°时,这两个圆才能完全重叠。
而托勒密定理则需要更加深入地探究,它主要是讲解三角形的边和角之间的关系,以及其在圆的关系。
它引申出的概念是多边形,也就是说用三角形可以分解成六边形,六边形可以再分解到更多的边和角,并且最终可以分解到矩形。
根据托勒密定理所使用的几何定义,广义托勒密定理认为,只要一个多边形的所有边都相等,并且其内外角度相等,它就可以被分解成多边形。
这一定理也被称为“多边形性质法则”。
在三角形中,由于边和角的角度已经确定,它们就可以分解成正射形和平行三角形的六边形。
同样的原则也适用于其他多边形,只要它们的边都相等,并且其内外角度相等,它们就可以分解成六边形。
此外,根据托勒密定理,当一个多边形内角度之和等于其外角度之和时,该多边形所有内角之和等于其所有外角度之和。
也就是说,任何一个多边形,始终可以通过这种方式将其内外角度相加,并得到360°的结果。
广义托勒密定理可以用在很多不同的领域,它也是许多几何形式的基础,如正方形、三角形、六边形等等,它们都可以由广义托勒密定理来解释。
托勒密定理也可以应用在几何图形的生成上,人们可以根据这一定理来重建多边形,或者用它证明多边形的边和角度,甚至可以根据定理来求解相关的问题。
托勒密定理是一个相当重要的定理,它帮助人们理解三角形,以及多边形的构成,是建立数学几何理论的重要部分,也是许多数学问题的基础。
托勒密定理的几何语言描述如下:
在任意一个凸四边形中,如果两组对边分别用AB、CD和BC、AD表示,而两条对角线则用AC、BD表示,那么托勒密定理指出,这两组对边的乘积之和(即AB×CD + BC×AD)不小于两条对角线的乘积(即AC×BD)。
特别地,当且仅当这个凸四边形是圆内接四边形时,上述两组乘积之和会严格等于两条对角线的乘积。
这一定理是欧几里得几何学中的一个重要定理,它揭示了四边形中边与对角线之间的深刻关系。
通过这一定理,我们可以更好地理解四边形的几何性质,并在相关的数学问题中加以应用。
平面几何的几个重要定理--托勒密定理托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有:设四边形BD AC BC AD CD AB ABCD ⋅=⋅+⋅ ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BDAC BC AD CD AB ABCD ⋅≥⋅+⋅一、直接应用托勒密定理例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC .分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB ,∵AB=BC=AC . ∴PA=PB+PC .四点共圆时成立;、、、上时成立,即当且仅当在且等号当且仅当相似和且又相似和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ⋅≥⋅+⋅∴+⋅=⋅+⋅∴⋅=⋅⇒=∴∆∆∴∠=∠=⋅=⋅⇒=∴∆∆∠=∠∠=∠)(二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、构造图形借助托勒密定理例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.四、巧变原式妙构图形,借助托勒密定理例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.五、巧变形妙引线借肋托勒密定理例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,1.已知△ABC 中,∠B=2∠C 。
托勒密定理证明过程证明托勒密定理托勒密定理是古希腊数学家托勒密发现的,记为a²+b²=c²,是直角三角形斜边与两个直角边的一个重要的数学定理,由此可以归纳出一个重要的几何定律:三角形的直角边的平方和,等于另外两条边的平方和。
这一定理大部分人都头脑中灵光一闪就能想出来,如果用正规的证明方法来证明它就不太容易了,本文将对托勒密定理进行正规的数学证明。
证明:设直角三角形ABC中,直角角度为C,斜边为c,腰边为a和b,如图a 与b两边组成向量为AB和BC。
将AB和BC分解成正交基础,即向量AB投影到向量BC上节点A’,投影线段长为t,向量AB可分为t和t’,BC的投影点同理。
则三角形加入A’B’C可以得到图b,有|AB| = t + t'|BC| = s + s'|AC| = r由直角三角形内角和定理A +B +C = π由AB、BC、AC三角形的定义,结合上式有a + t + s = πb + t’ + s’ = πc + r = π将power法加入这个公式中,即平方两边可得:a² + t² + s² = a² + 2t.t’ + t’²b² + t’² + s’² = b² + 2t. t + t²c² + r² = c²假如t = t’ = 0 ,那么a² + b² = c²即证明了托勒密定理,该定理有多种其他的证明方法,比如向量法、面积公式等。
这里的证明给读者体现了什么类推能力,需要读者推导出与直角三角形有关的三角形加减公式和A+B+C = π的定义。
可见证明托勒密定理是一个很有挑战性的概念,要深入探寻,就像是解开一个难题一样。
托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).即:ABCD AB CD AD BC AC BD ⋅+⋅≥⋅定理:在四边形中,有:ABCD 并且当且仅当四边形内接于圆时,等式成立;()ABCD E BAE CAD ABE ACDAB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC ADBC ED AD BC AC ED AC ADAB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、一、直接应用托勒密定理例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC .分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB ,∵AB=BC=AC . ∴PA=PB+PC .二、完善图形 借助托勒密定理例2 证明“勾股定理”:在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 证明:如图,作以Rt △ABC 的斜边AC 为一对角线的矩形ABCD ,显然ABCD 是圆内接四边形.由托勒密定理,有 AC ·BD=AB ·CD +AD ·BC . ①又∵ABCD 是矩形,∴AB=CD ,AD=BC ,AC=BD . ②把②代人①,得AC 2=AB 2+BC 2.例3 如图,在△ABC 中,∠A 的平分 线交外接∠圆于D ,连结BD ,求证:AD ·BC=BD(AB +AC).证明:连结CD ,依托勒密定理,有AD ·BC =AB ·CD +AC ·BD .∵∠1=∠2,∴ BD=CD .故 AD ·BC=AB ·BD +AC ·BD=BD(AB +AC).三、构造图形 借助托勒密定理例4 若a 、b 、x 、y 是实数,且a 2+b 2=1,x 2+y 2=1.求证:ax +by ≤1.证明:如图作直径AB=1的圆,在AB 两边任作Rt △ACB 和Rt △ADB ,使AC =a,BC=b,BD =x ,AD =y .由勾股定理知a 、b 、x 、y 是满足题设条件的.据托勒密定理,有AC ·BD +BC ·AD=AB ·CD .∵CD ≤AB =1,∴ax +by ≤1.四、巧变原式 妙构图形,借助托勒密定理例5 已知a 、b 、c 是△ABC 的三边,且a 2=b(b +c),求证:∠A=2∠B .分析:将a 2=b(b +c)变形为a ·a=b ·b +bc ,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b ,两对角线为a ,一底边为c .证明:如图 ,作△ABC 的外接圆,以 A 为圆心,BC 为半径作弧交圆于D ,连结BD 、DC 、DA .∵AD=BC ,ACD BDC =∴∠ABD=∠BAC .又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC ·AD=AB ·CD +BD ·AC . ①而已知a 2=b(b +c),即a ·a=b ·c +b 2. ②∴∠BAC=2∠ABC .五、巧变形 妙引线 借肋托勒密定理例6 在△ABC 中,已知∠A ∶∠B ∶∠C=1∶2∶4,分析:将结论变形为AC ·BC +AB ·BC=AB ·AC ,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图,作△ABC 的外接圆,作弦BD=BC ,边结AD 、CD .在圆内接四边形ADBC 中,由托勒密定理,有AC ·BD +BC ·AD=AB ·CD易证AB=AD ,CD=AC ,∴AC ·BC +BC ·AB=AB ·AC ,1.已知△ABC 中,∠B=2∠C 。
托勒密定理Last revision on 21 December 2020
托
勒密定理
【定理内容】
圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆,
则有BD AC BC AD CD AB ⋅=⋅+⋅. [评]等价叙述:四边形的两组对边之积的和
等于两对角线
之积的充要条件是四顶点共圆。
【证法欣赏】
证明:如图,过C 作CP 交BD 于P ,使21∠=∠,
∵43∠=∠,∴ACD ∆∽BCP ∆, ∴
BP
AD
BC AC =
,即AD BC BP AC ⋅=⋅ ① 又DCP ACB ∠=∠,65∠=∠,∴ACB ∆∽DCP ∆,
∴
DP
AB
DC AC =
,即DC AB DP AC ⋅=⋅ ② ∴①+②得:DC AB AD BC DP BP AC ⋅+⋅=+⋅)( 即BD AC BC AD CD AB ⋅=⋅+⋅ 【定理推广】 托勒密定理的推广:
在四边形ABCD 中,有BD AC BC AD CD AB ⋅≥⋅+⋅;当且仅当四边形ABCD 内接于圆时,等式成立。
[证] 在四边形ABCD 内取点E ,使CAD BAE ∠=∠,ACD ABE ∠=∠
则ABE ∆∽ACD ∆ ∴
AD
AE
CD BE AC AB ==, ∴BE AC CD AB ⋅=⋅; ∵
AD
AE
AC AB =,且EAD BAC ∠=∠ C
D
A
B
E B
C
D
∴ABC ∆∽AED ∆ ∴
AD
ED
AC BC =
,即ED AC BC AD ⋅=⋅; ∴)(ED BE AC BC AD CD AB +⋅=⋅+⋅ ∴BD AC BC AD CD AB ⋅≥⋅+⋅ 当且仅当E 在BD 上时“=”成立,
即四点共圆时成立;、、、当且仅当D C B A
【定理推广】 托勒密定理的推论:
等腰梯形一条对角线的平方等于一腰的平方加上两底之积. 即:若四边形ABCD 是等腰梯形,且BC AD //, 则BC AD AB AC ⋅+=22.
分析:因为等腰梯形必内接于圆,符合托勒密定理的条件,其对角线相等,两腰相等,结论显然成立。
【定理应用】
【例1】 如图,P 是正ABC ∆外接圆的劣弧BC 上任一点(不与B 、C 重合),
求证:PC PB PA +=. 证明:由托勒密定理得: ∵CA BC AB == ∴PC PB PA +=.
[注]此例证法甚多,如“截长”、“补短”等,详情参看《初中
数学一
题多解欣赏》.
【定理应用】
【例2】 证明“勾股定理”:
已知:在ABC Rt ∆中,︒=∠90B , 求证:222BC AB AC +=。
证明:如图,以ABC Rt ∆的斜边AC 为对角
B
C
线作矩形ABCD ,则ABCD 是圆内接四边形. 由托勒密定理,得
BC AD CD AB BD AC ⋅+⋅=⋅ ① ∵ABCD 是矩形,
∴CD AB =,BC AD =,BD AC = ② 把②代人①,得:222BC AB AC +=.
【定理应用】
【例3】 如图,在ABC ∆中,A ∠的平分线交外接圆于D ,连结BD ,
求证:)(AC AB BD BC AD +=⋅. 证明:连结CD ,由托勒密定理,得
BD AC CD AB BC AD ⋅+⋅=⋅. ∵CAD BAD ∠=∠,∴CD BD =. 故)(AC AB BD BC AD +=⋅.
【定理应用】
【例4】 若a 、b 、x 、y 是实数,且122=+b a ,122=+y x .
求证:1≤+by ax .
证明:如图,作直径1=AB 的圆,在AB 两侧任作ACB Rt ∆和ADB Rt ∆, 使a AC =,b BC =,x BD =,y AD =. 由勾股定理知a 、b 、x 、y 是满足题设条件的. 据托勒密定理,有CD AB BC AD BD AC ⋅=⋅+⋅. ∵1=≤AB CD ,
∴1≤⋅=⋅+⋅CD AB BC AD BD AC ,即1≤+by ax .
【定理应用】
【例5】 已知a 、b 、c 是ABC ∆的三边,且)(2c b b a +=,
求证:B A ∠=∠2.
证明:∵)(2c b b a +=,∴c b b b a a ⋅+⋅=⋅, 由托勒密定理,构造圆内接四边形。
如图 ,作ABC ∆的外接圆,以A 为圆心,BC 为半径作弧交圆于D ,连结
BD 、CD 、AD .
∵BC AD =,∴BAC ABD ∠=∠,则21∠=∠, ∴b AC BD ==
由托勒密定理得:AC BD CD AB AD BC ⋅+⋅=⋅ 即b b DC c a a ⋅+⋅=⋅①
又∵)(2c b b a +=,∴c b b b a a ⋅+⋅=⋅, ② 比较①②得b BD CD ==,则213∠=∠=∠, ∴ABC BAC ∠=∠2
【定理应用】
【例6】 在ABC ∆中,已知4:2:1::=∠∠∠C B A ,求证:
BC
AC AB 1
11=
+. 证明:如图,作ABC ∆的外接圆,作弦BC BD =,连结AD 、CD . ∵4:2:1::=∠∠∠C B A ,
∴CDA CBA CAD ∠=∠=∠,CAB ADB ABD ∠=∠=∠3 ∴AD AB =,AC CD =,
在圆内接四边形ADBC 中,由托勒密定理,得: ∴AC AB AB BC BC AC ⋅=⋅+⋅, 则
BC
AC AB 1
11=
+. 【定理应用】
【例7】 由ABC ∆外接圆的弧BC 上一点P 分别向边BC 、AC 与AB 作垂线PK 、PL 和
PN ,求证:
PM
AB
PL AC PK BC +=. 证:连接PA 、PB 、PC ,
四边形ABPC ,由托勒密定理得: 即
PM CP PM
AB
PL BP PL AC PK AP PK BC ⋅⋅+⋅⋅=⋅⋅ ①
∵LAP KBP ∠=∠, ∴KBP Rt ∆∽LAP Rt ∆ ∴
PA
PB
PL PK =
,∴PL BP PK AP ⋅=⋅② 同理可得PM CP PL BP ⋅=⋅③ ②③代人①得:PM
AB
PL AC PK BC +
=. 【练习】
[1] 已知ABC ∆中,C B ∠=∠2。
求证:)(2BC AB AB AC +=. [2] 已知正七边形721A A A 。
求证:
4
131211
11A A A A A A +=. (第21届全苏数学竞赛)
[提示]1. 过A 作BC 的平行线交△ABC 的外接圆于D ,连结BD 。
则CD=DA=AB ,AC=BD 。
由托勒密定理,AC ·BD=AD ·BC+CD ·AB 。
2.。