多边形扫描转换算法
- 格式:docx
- 大小:3.52 KB
- 文档页数:3
描述多边形扫描转换的扫描线算法的基本步骤多边形扫描转换是计算机图形学中一种常用的算法,用于将输入的多边形进行转换和填充。
其基本步骤包括初始化,活性边表的生成,活性边表的更新和扫描线的处理。
1.初始化首先,需要根据输入的多边形构造一个扫描线填充的边表。
这包括对多边形顶点的排序、计算多边形中的水平线交点,并将边表中的数据初始化为初始值。
2.活性边表的生成活性边表是用来存储和管理与扫描线相交的边的数据结构。
生成活性边表的过程包括两个步骤:-遍历多边形的每一条边,将边与当前扫描线的位置进行比较,如果两者相交,则将这条边添加到活性边表中。
-对活性边表中的边按照交点的水平位置进行排序。
这里可以使用插入排序等算法。
3.活性边表的更新活性边表需要在每次扫描线移动时进行更新。
这包括对活性边表中的边进行更新,以反映新的交点或边的状态的变化。
-对于与当前扫描线相交的边,需要计算其交点,并更新到活性边表中。
-对于已经处理完的边或超出当前扫描线范围的边,从活性边表中移除。
4.扫描线的处理在每次扫描线移动时,需要对当前的活性边表进行处理。
这包括两个子步骤:-将活性边表中的边按照两两成对的方式遍历,找到当前扫描线和这两条边所定义的三角形的上顶点和下顶点。
-将这个三角形的内部填充,并进行显示或存储等处理。
5.继续扫描线的移动在处理完一条扫描线后,需要将扫描线的位置向上移动一个单位,并继续执行第3步和第4步,直到所有的扫描线都被处理完毕。
总结:多边形扫描转换的基本步骤包括初始化、活性边表的生成、活性边表的更新和扫描线的处理。
这个算法通常用于实现对多边形的填充。
在每次扫描线移动时,活性边表需要进行更新,以反映新的交点或变化的边的状态。
扫描线的处理包括遍历活性边表中的边,并根据扫描线和这两条边所定义的三角形的顶点来进行填充。
最后,重复执行扫描线的移动和对活性边表的更新和处理,直到所有的扫描线都被处理完毕。
多边形的扫描转换算法概述多边形的扫描转换算法是计算机图形学中用于将多边形转换为像素的常用算法。
它通过扫描线的方式来确定多边形与像素的相交关系,并将多边形的内部区域填充为指定的颜色。
本文将详细介绍多边形的扫描转换算法的原理、步骤和应用。
原理多边形的扫描转换算法基于扫描线的概念,将多边形的边界线与一条水平线或垂直线进行比较,从而确定多边形的内部和外部区域。
算法的关键在于边界线的处理和内部区域的填充。
步骤多边形的扫描转换算法一般包括以下步骤:1.初始化扫描线的位置和内部区域的填充颜色。
2.遍历多边形的边界线,将其与扫描线比较,确定内部和外部区域。
3.根据内部区域的状态,进行填充颜色。
4.更新扫描线的位置,继续扫描下一条线段,直至完成对所有边界线的处理。
算法详解初始化扫描线在开始进行多边形的扫描转换之前,需要初始化扫描线的位置和内部区域的填充颜色。
一般情况下,扫描线的位置可以从多边形的最低点开始,逐渐向上扫描。
内部区域的填充颜色可以根据具体需求进行选择。
边界线处理多边形的边界线可以由多个线段组成,需要按照一定的顺序进行处理。
一种常用的处理方式是按照边界线的上端点的纵坐标从小到大排序,然后依次处理每条线段。
对于每条线段,通过比较线段的上端点和下端点的纵坐标与扫描线的位置,可以确定线段与扫描线的相交关系。
根据线段的斜率可以进一步确定线段与扫描线的交点。
内部区域填充确定了线段与扫描线的相交关系后,就可以确定内部和外部区域。
一般情况下,内部区域被定义为线段上方的区域,而外部区域被定义为线段下方的区域。
根据内部区域的状态,可以进行填充颜色。
如果内部区域是连续的,则可以使用扫描线的颜色进行填充。
如果内部区域有间隙,则需要采用其他填充算法,如边界填充算法或种子填充算法。
更新扫描线处理完当前线段后,需要更新扫描线的位置,继续扫描下一条线段。
一般情况下,扫描线的位置会逐渐向上移动,直至到达多边形的最高点。
应用多边形的扫描转换算法在计算机图形学中有广泛的应用。
X-扫描线算法多边形的扫描转换(X-扫描线算法)⼀、两种表⽰⽅法把多边形的顶点表⽰转换为点阵表⽰称为多边形的扫描转换。
⼆、X-扫描线算法 图1 图21.步骤a. 求交b. 排序:把所有交点按递增顺序排序为何要进⾏排序?答:按交点x值递增排序,确保交点两两配对时填充区间的正确性。
c. 交点配对:确定填充区间d. 区间填⾊2.交点取舍(当扫描线与多边形顶点相交时,交点如何取舍?)两边只取1,同边0或2。
三、X-扫描线算法的改进1. 三⽅⾯的改进a. 处理⼀条扫描线,仅对与它相交的多边形的边(有效边)进⾏求交运算。
(也就是避免把所有的边都进⾏求交,因为⼤部分的边求交结果为空。
所以设置⼀个表来记录有效边。
即下⾯提到的AET)b. 考虑边的连贯性:当前扫描线与各边的交点顺序与下⼀条扫描线与各边的交点顺序很可能相同或⾮常相似。
c. 多边形的连贯性:当某条边与当前扫描线相交时,它很可能也与下⼀条扫描线相交。
2.数据结构通过引⼊新的数据结构来避免求交运算(1)活性边表a. 活性边表(AET):把和当前扫描线相交的边称为活性边,并把它们按交点x坐标递增的顺序存于⼀个链表中。
b. 结点内容Δx=1/k,y max 是为了知道何时达到边界c. 举例(2)新边表(NET)建⽴AET需要知道与哪些边相交,所以定义NET来存储边的信息,从⽽⽅便AET的建⽴。
a. 构造⼀个纵向链表,长度为多边形占有的最⼤扫描线数。
每个节点(称为吊桶)对应多边形覆盖的⼀条扫描线。
b. 结点内容y max:该边的y最⼤值x min:该边较低点的x坐标c. NET挂在与该边较低端y值相同的扫描线吊桶中此时NET也就记录了6条有效边(3)NET与AET的使⽤流程⾸先我们得明⽩,AET的⽬的是为了使⽤增量⽅法避免求交运算,⽽NET是⽤在构造AET的。
a. 所以第⼀步为构造NET。
⽅法:遍历所有扫描线,把y min = i 的边放进NET[ i ]中,从⽽构造出整个NET。
贵州大学计算机图形学实验报告学院:计算机科学与信息学院专业:软件工程班级:反映)根据扫描线的连贯性可知:一条扫描线与多边形的交点中,入点和出点之间所有点都是多边形的内部点。
所以,对所有的扫描线填充入点到出点之间的点就可填充多边形。
如何具体实现(如何找到入点、出点)?根据区域的连贯性,分为3个步骤:(1)求出扫描线与多边形所有边的交点;(2)把这些交点按x坐标值以升序排列;(3)对排序后的交点进行奇偶配对,对每一对交点间的区域进行填充。
步骤(3)如上图:对y=8的扫描线,对交点序列按x坐标升序排序得到的交点序列是(2,4,9,13),然后对交点2与4之间、9与13之间的所有象素点进行填充。
求交点、排序、配对、填色利用链表:与当前扫描线相交的边称为活性边(Active Edge),把它们按与扫描线交点x坐标递增的顺序存入一个链表中,称为活性边表AEL (AEL, Active Edge List)。
它记录了多边形边沿扫描线的交点序列。
AEL中每个对象需要存放的信息:ymax:边所交的最高扫描线;x:当前扫描线与边的交点;Δx:从当前扫描线到下一条扫描线之间的x增量next:指向下一对象的指针。
伪码:建立ET,置y为ET中非空桶的最小序号;置AEL表为空,且把y桶中ET表的边加入AEL表中;while AEL表中非空do begin对AEL表中的x、Δx按升序排列;按照AEL表中交点前后次序,在每对奇偶交点间的x段予以填充;计算下一条扫描线:y=y+1;if 扫描线y=ymax then 从AEL表中删除这些边;对在AEL表中的其他边,计算与下一条扫描线的交点:x=x +Δx 按照扫描线y值把ET表中相应桶中的边加入AEL表中;endend of algorithm二、区域填充算法:区域可采用两种表示形式:内点表示枚举区域内部的所有像素;内部的所有像素着同一个颜色;边界像素着不同的颜色。
边界表示:枚举出边界上所有的像素;边界上的所有像素着同一颜色;内部像素着不同的颜色。
多边形扫描转换算法
多边形扫描转换算法是一种计算机图形学中常用的算法,用于将一个多边形转换为一组水平线段,以便进行填充或渲染。
该算法的基本思想是将多边形沿着水平方向进行扫描,找出多边形与水平线段的交点,并将这些交点按照从左到右的顺序进行排序,最终得到一组水平线段。
多边形扫描转换算法的实现过程可以分为以下几个步骤:
1. 找出多边形的顶点
首先需要找出多边形的顶点,这些顶点可以通过遍历多边形的边来得到。
在遍历边的过程中,需要注意将相邻的边进行合并,以便得到多边形的完整轮廓。
2. 找出多边形与水平线段的交点
在进行扫描转换时,需要将多边形沿着水平方向进行扫描,找出多边形与水平线段的交点。
这些交点可以通过遍历多边形的边来得到,对于每条边,需要判断其是否与当前扫描线相交,如果相交,则计算出交点的坐标。
3. 对交点进行排序
得到多边形与水平线段的交点后,需要将这些交点按照从左到右的
顺序进行排序。
这可以通过对交点的x 坐标进行排序来实现。
如果有多个交点具有相同的 x 坐标,则需要按照其 y 坐标进行排序。
4. 将交点组成线段
将交点按照从左到右的顺序进行排序后,就可以将它们组成一组水平线段。
对于相邻的两个交点,可以将它们之间的部分作为一条水平线段。
如果两个交点之间没有其他交点,则可以将它们之间的部分作为一条水平线段。
5. 进行填充或渲染
得到一组水平线段后,就可以进行填充或渲染。
对于填充操作,可以使用扫描线算法来实现。
对于渲染操作,可以将每条水平线段转换为一组像素点,并将这些像素点进行绘制。
多边形扫描转换算法的优点是可以处理任意形状的多边形,并且可以得到一组水平线段,方便进行填充或渲染。
但是该算法的缺点是需要进行大量的计算,特别是在多边形较复杂时,计算量会非常大,导致性能下降。
为了提高多边形扫描转换算法的性能,可以采用一些优化技术。
例如,可以使用空间分割技术来减少计算量,将多边形分割成多个小块进行处理。
另外,可以使用并行计算技术来加速计算过程,将多个处理器或计算机同时进行计算。
多边形扫描转换算法是一种常用的计算机图形学算法,可以将多边形转换为一组水平线段,方便进行填充或渲染。
虽然该算法存在一些缺点,但是可以通过优化技术来提高其性能,使其更加适用于实际应用场景。