气体变质量问题汇总
- 格式:doc
- 大小:7.18 MB
- 文档页数:13
高中物理一轮复习气体实验定律图像问题和变质量问题副标题题号 得分一二三总分一、单选题(本大题共 12 小题,共 48.0 分) 1. 如图是某种喷雾器示意图,在贮液筒装入一些药液后将密封盖盖好.多次拉压活塞后,把空气打入贮液筒内,贮液筒与外界热交换忽略不计,打开喷嘴开关,活塞位置不变,药液就可以持续地喷出,药液喷出过程中,贮液筒内的空气A. 分子间的引力和斥力都在增大B. 体积变大,压强变大C. 气体分子的平均动能不变D. 气体的内能减小2. 如图所示,一定质量的理想气体,由状态 A 沿直线 AB 变化到状态 B,在此过程中,气体分子的平均速率的变化情况是A. 不断增大 B. 不断减小 C. 先减小后增大 D. 先增大后减小3. 一定质量的理想气体的状态变化过程如图所示,AB 为一条直线,则气体从状态 A 到状态 B 的过程中A. 气体分子平均动能保持不变 B. 气体分子平均动能先增大后减小到初始状态 C. 整个过程中气体对外不做功 D. 气体的密度在不断增大4. 如图为一定质量的某种气体的 个状态中,下列判断正确的是图象。
在 A、B、C 三A. 体积最大的是 C 状态 B. 体积最大的是 B 状态 C. A,B 两状态体积一样第 1 页,共 13 页D. A 状态变到 B 状态,外界对气体做功值等于气体内能增加5. 如图,一定质量的理想气体从状态 I 变化到 II 的过程 中,其压强随热力学温度变化的图象为双曲线的一 支.若气体在状态 I 的体积和温度分别为 、 ,在状态Ⅱ的体积和温度分别为 、 ,则A.,且B.,且C.,且D.6. 如图甲,一定质量的理想气体的状态变化过程的之相对应的变化过程图象应为图乙中,且 图象.则与A.B.C.D.7. 如图所示,一定质量的理想气体,从状态 1 变化到状态 2,气体温度变化是A. 逐渐升高 B. 逐渐降低 C. 不变 D. 先升高后降低8. 如图所示,A、B 代表某一定质量的理想气体的两次等容变 化过程,由图可知,气体在 B 过程中当温度为 时,其压强为A. B. C. D. 1atm9. 足球的容积为 足球内已有的气体与外部大气的温度相同,压强等于大气压强 ,现再从球外取体积为 的空气充入球内,使足球内的压强增大到 P,设足球容积保持不变,充气过程气体温度不变,则 为A.B.C.D.第 2 页,共 13 页10. 如图为一定质量理想气体的压强 p 与体积 V 的关系图象,它由 状态 A 经过等容过程到状态 B,再经过等压过程到状态 设 A、 B、C 状态对应的温度分别为 、 、 ,则下列关系式中正确的是A.,B.,C.,D.,11. 如图所示,一定质量的理想气体,从状态 A 变到状态 B,则在 A、B 两状态时的压强 、 相比较是A.B.C.D. 条件不足,元法比较12. 带有活塞的气缸内封闭一定量的理想气体.气体开始处于状态 a,然后经过过程 ab 到达状态 b 或经过过程 ac 到达状态 c,b、c 状态温度相同,如图所示.设气体在状态 b 和状态 c 的压强分别为 和 ,在过程 ab 和 ac 中吸收的热量分别为 和 ,则A.,B.,C.,D.,二、多选题(本大题共 4 小题,共 16.0 分)13. 空气能热水器采用“逆卡诺”原理,工作过程与空调相反,能将空气中免费热量搬到水中进行制热,即使在南极也有良好表现,高效节能,是广东在世界领先的核心技术。
变质量气体问题的处理方法1. 引言变质量气体问题是指在热力学系统中,物质的质量发生变化而产生的一类气体问题。
这类问题涉及到物质的进出、化学反应以及物质转化等过程。
在工程实践和科学研究中,我们经常会遇到这类问题,并需要采取相应的处理方法。
本文将介绍变质量气体问题的处理方法,包括控制物质进出、考虑化学反应和转化以及计算相关参数等内容。
2. 控制物质进出在处理变质量气体问题时,首先需要考虑如何控制物质的进出。
常见的方法有以下几种:2.1 进料控制通过控制进料流量和进料时间来控制物质的进入系统。
可以使用阀门、泵等设备来调节流量,确保物质进入系统的稳定性。
2.2 排放控制通过控制排放流量和排放时间来控制物质的离开系统。
可以使用排放阀门、泄压装置等设备来调节流量,确保物质排放的安全性和稳定性。
2.3 密封控制在处理变质量气体问题时,需要注意系统的密封性。
通过选择合适的密封材料、设计合理的密封结构等方式,确保系统的密封性,防止物质的泄漏和外界空气的进入。
3. 考虑化学反应和转化变质量气体问题中常涉及到化学反应和物质转化。
在处理这类问题时,需要考虑以下几个方面:3.1 化学平衡对于存在多种化学反应的系统,需要考虑各个反应之间的平衡关系。
可以根据各个反应的速率常数、反应热力学数据等信息,利用热力学平衡条件求解各个组分的浓度或压力。
3.2 反应速率对于存在快速反应和慢速反应的系统,需要考虑各个反应之间的速率差异。
可以使用动力学模型描述快速反应和慢速反应之间的相互作用,并通过求解动力学方程得到各个组分的浓度或压力随时间变化的规律。
3.3 物质转化在处理变质量气体问题时,常常需要考虑物质之间的转化关系。
可以使用反应速率常数、平衡常数等数据,通过建立适当的动力学模型和质量守恒方程,求解各个组分的转化率和转化程度。
4. 计算相关参数在处理变质量气体问题时,需要计算一些与问题相关的参数。
常见的参数包括:4.1 流量流量是指单位时间内物质通过某一截面的数量。
变质量问题 理想气体的图像问题[学习目标] 1.会巧妙地选择研究对象,使变质量气体问题转化为定质量的气体问题.2.会利用图像对气体状态、状态变化及规律进行分析,并应用于解决气体状态变化问题.一、变质量问题分析气体的变质量问题时,可以通过巧妙选择合适的研究对象,将变质量转化为定质量问题,然后用气体实验定律或理想气体状态方程求解. (1)打气问题向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球、轮胎内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题. (2)抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可看作是膨胀的过程.(2020·徐州一中高二开学考试)一只两用活塞气筒的原理图如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V 0,现将它与另一只容积为V 的容器相连接,开始时气筒和容器内的空气压强为p 0,已知气筒和容器导热性能良好,当分别作为打气筒和抽气筒时,活塞工作n 次后,在上述两种情况下,容器内的气体压强分别为(容器内气体温度不变,大气压强为p 0)( )图1A .np 0,1np 0B.nV 0V p 0,V 0nVp 0 C .(1+V 0V )n p 0,(1+V 0V )n p 0D .(1+nV 0V )p 0,(V V +V 0)n p 0答案 D解析 打气时,活塞每推动一次,就把体积为V 0、压强为p 0的气体推入容器内,若活塞工作n 次,就是把压强为p 0、体积为nV 0的气体压入容器内,容器内原来有压强为p 0、体积为V 的气体,根据玻意耳定律得: p 0(V +nV 0)=p ′V .所以p ′=V +nV 0V p 0=(1+n V 0V)p 0.抽气时,活塞每拉动一次,就把容器中的气体的体积从V 膨胀为V +V 0,而容器中的气体压强就要减小,活塞推动时,将抽气筒中的体积为V 0的气体排出,而再次拉动活塞时,又将容器中剩余的气体的体积从V 膨胀到V +V 0,容器内的压强继续减小,根据玻意耳定律得: 第一次抽气p 0V =p 1(V +V 0), p 1=VV +V 0p 0.第二次抽气p 1V =p 2(V +V 0) p 2=V V +V 0p 1=(V V +V 0)2p 0活塞工作n 次,则有: p n =(V V +V 0)n p 0.故正确答案为D.在分析和求解气体质量变化的问题时,首先要将质量变化的问题变成质量不变的问题,否则不能应用气体实验定律.如漏气问题,不管是等温漏气、等容漏气,还是等压漏气,都要将漏掉的气体“收”回来.可以设想有一个“无形弹性袋”收回漏气,且漏掉的气体和容器中剩余气体同温、同压,这样就把变质量问题转化为定质量问题,然后再应用气体实验定律求解. 针对训练 大气压强p 0=1.0×105 Pa.某容器的容积为V 0=20 L ,装有压强为p 1=2.0×106 Pa 的理想气体,如果保持气体温度不变,把容器的开关打开,等气体达到新的平衡时,容器内剩余的气体质量与原来气体的质量之比为( ) A .1∶19 B .1∶20 C .2∶39 D .1∶18答案 B解析 由玻意耳定律得p 1V 0=p 0V 0+p 0V ,因V 0=20 L ,则V =380 L ,即容器中剩余20 L 压强为p 0的气体,而同样大气压下气体的总体积为400 L ,所以剩余气体的质量与原来气体的质量之比等于同压下气体的体积之比,即20400=120,B 正确.二、理想气体的图像问题名称图像特点其他图像等温线p-VpV=CT(C为常量),即pV之积越大的等温线对应的温度越高,离原点越远p-1Vp=CTV,斜率k=CT,即斜率越大,对应的温度越高等容线p-T p=CV T,斜率k=CV,即斜率越大,对应的体积越小等压线V-T V=Cp T,斜率k=Cp,即斜率越大,对应的压强越小使一定质量的理想气体的状态按图2甲中箭头所示的顺序变化,图中BC段是以纵轴和横轴为渐近线的双曲线的一部分.图2(1)已知气体在状态A的温度T A=300 K,求气体在状态B、C和D的温度各是多少?(2)将上述状态变化过程在图乙中画成用体积V和热力学温度T表示的图线(图中要标明A、B、C、D四点,并且要画箭头表示变化的方向),说明每段图线各表示什么过程.答案(1)600 K600 K300 K(2)见解析解析从p-V图中可以直观地看出,气体在A、B、C、D各状态下压强和体积分别为p A=4atm ,p B =4 atm ,p C =2 atm ,p D =2 atm ,V A =10 L ,V C =40 L ,V D =20 L. (1)根据理想气体状态方程 p A V A T A =p C V C T C =p D V DT D, 可得T C =p C V C p A V A ·T A =2×404×10×300 K =600 K ,T D =p D V Dp A V A ·T A =2×204×10×300 K =300 K ,由题意知B 到C 是等温变化,所以T B =T C =600 K. (2)因由状态B 到状态C 为等温变化, 由玻意耳定律有p B V B =p C V C ,得 V B =p C V C p B =2×404L =20 L.在V -T 图上状态变化过程的图线由A 、B 、C 、D 各状态依次连接(如图),AB 是等压膨胀过程,BC 是等温膨胀过程,CD 是等压压缩过程.(多选)一定质量的理想气体的状态变化过程的p -V 图像如图3所示,其中A 是初状态,B 、C 是中间状态,A →B 是等温变化,如将上述变化过程改用p -T 图像和V -T 图像表示,则下列图像可能正确的是( )图3答案BD解析A到B是等温变化,气体体积变大,根据玻意耳定律知压强p变小,B到C是等容变化,在p-T图像上为过原点的一条倾斜的直线;C到A是等压变化,气体体积减小,根据盖-吕萨克定律知温度降低,故A错误,B正确;A到B是等温变化,气体体积变大,B到C是等容变化,压强变大,根据查理定律,温度升高;C到A是等压变化,气体体积变小,在V-T图像中为过原点的一条倾斜的直线,故C错误,D正确.1.(图像问题)(多选)一定质量的气体的状态经历了如图4所示的ab、bc、cd、da四个过程,其中bc的延长线通过原点,cd垂直于ab且与T轴平行,da与bc平行,则气体体积在()图4A.ab过程中不断增加B.bc过程中保持不变C.cd过程中不断增加D.da过程中保持不变答案AB解析因为bc的延长线通过原点,所以bc是等容线,即气体体积在bc过程中保持不变,B 正确;ab是等温线,压强减小则体积增大,A正确;cd是等压线,温度降低则体积减小,C 错误;如图所示,连接aO交cd于e,则ae是等容线,即V a=V e,因为V d<V e,所以V d<V a,即da过程中气体体积变大,D错误.2.(变质量问题)用打气筒将压强为1 atm的空气打进自行车轮胎内,如果打气筒容积ΔV=500 cm3,轮胎容积V=3 L,原来压强p=1.5 atm.现要使轮胎内压强变为p′=4 atm,若用这个打气筒给自行车轮胎打气,则要打气次数为(设打气过程中空气的温度不变)()A.10次B.15次C.20次D.25次答案 B解析打气过程中空气的温度不变,由玻意耳定律的分态气态方程得pV+np0ΔV=p′V,代入数据解得n =15.3. (图像问题)如图5所示是一定质量的气体从状态A 经状态B 、C 到状态D 的p -T 图像,已知气体在状态B 时的体积是8 L ,求V A 、V C 和V D ,并画出此过程中的V -T 图像.图5答案 4 L 8 L323L 见解析图 解析 A →B 为等温过程,由玻意耳定律得p A V A =p B V B 所以V A =p Bp A V B =1.0×1052.0×105×8 L =4 LB →C 为等容过程,所以V C =V B =8 L C →D 为等压过程,有V C T C =V DT D则V D =T D T C V C =400300×8 L =323 L此过程的V -T 图像如图所示.考点一 变质量问题1.空气压缩机的储气罐中储有1.0 atm 的空气6.0 L ,现再充入1.0 atm 的空气9.0 L .设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为( ) A .2.5 atm B .2.0 atm C .1.5 atm D .1.0 atm 答案 A解析 取全部气体为研究对象,由p 1(V 1+V 2)=pV 1得p =2.5 atm ,故A 正确.2.容积为20 L 的钢瓶充满氧气后,压强为150 atm ,打开钢瓶的阀门让氧气同时分装到容积为5 L 的小瓶中,若小瓶原来是抽空的,小瓶中充气后压强为10 atm ,分装过程中无漏气,且温度不变,那么最多能分装( ) A .4瓶 B .50瓶 C .56瓶 D .60瓶 答案 C解析 取全部气体为研究对象,根据玻意耳定律:p 0V 0=p ′(V 0+nV 1) n =p 0V 0-p ′V 0p ′V 1=150×20-10×2010×5瓶=56瓶,故选C.3.一个瓶子里装有空气,瓶上有一个小孔跟外面大气相通,原来瓶里气体的温度是7 ℃,如果把它加热到47 ℃,瓶里留下的空气的质量是原来质量的( ) A.18 B.34 C.56 D.78 答案 D解析 取原来瓶中气体为研究对象,初态V 1=V ,T 1=280 K 末态V 2=V +ΔV ,T 2=320 K 由盖-吕萨克定律得:V 1T 1=V 2T 2又m 余m 原=V V +ΔVm 余m 原=T 1T 2=78,故选D. 考点二 图像问题4.(多选)如图1所示,用活塞把一定质量的理想气体封闭在固定的导热汽缸中,用水平外力F 作用于活塞杆,使活塞缓慢向右移动,气体由状态①变化到状态②.如果环境保持恒温,分别用p 、V 、T 表示该理想气体的压强、体积、温度.气体从状态①变化到状态②,此过程可用下图中哪几个图像表示( )图1答案 AD解析 由题意知,气体由状态①到状态②的过程中,温度不变,体积增大,根据pVT=C 可知压强将减小.对A 图像进行分析,p -V 图像是双曲线,即等温线,且由状态①到状态②,气体体积增大,压强减小,故A 项正确;对B 图像进行分析,p -V 图像是直线,气体温度会发生变化,故B 项错误;对C 图像进行分析,可知气体温度不变,但体积减小,故C 项错误;对D 图像进行分析,可知气体温度不变,压强减小,故体积增大,故D 项正确. 5.如图2为一定质量理想气体的压强p 与体积V 的关系图像,它由状态A 经过等容过程到状态B ,再经过等压过程到状态C .设A 、B 、C 状态对应的温度分别为T A 、T B 、T C ,则下列关系式中正确的是( )图2A .T A <TB ,T B <TC B .T A >T B ,T B =T C C .T A >T B ,T B <T CD .T A =T B ,T B >T C 答案 C解析 根据pVT =C 可知,从A 到B 体积不变,压强减小,则温度降低,即T A >T B ,从B 到C压强不变,体积变大,则温度升高,即T B <T C ,故选C.6.(2021·吉林江城中学高二期中)一定质量的理想气体经过一系列过程,如图3所示,下列说法中正确的是( )图3A .a →b 过程中,气体体积减小,压强减小B .b →c 过程中,气体压强不变,体积增大C .c →a 过程中,气体压强增大,体积减小D .c →a 过程中,气体内能增大,体积不变 答案 D解析 a →b 过程中,温度不变,压强减小,根据pV =C 可知体积变大,A 错误;b →c 过程中,压强不变,温度降低,根据VT =C 可知体积减小,B 错误;c →a 过程中,图像为过坐标原点的倾斜直线,所以体积不变,温度升高,压强增大,内能增大,C 错误,D 正确.7.用活塞式抽气机抽气,在温度不变的情况下,从玻璃瓶中抽气,第一次抽气后,瓶内气体的压强减小到原来的45,要使容器内剩余气体的压强减为原来的256625,抽气次数应为( )A .2B .3C .4D .5 答案 C解析 设玻璃瓶的容积是V ,抽气机的容积是V 0, 气体发生等温变化,由玻意耳定律可得 pV =45p (V +V 0),解得V 0=14V ,设抽n 次后,气体压强变为原来的256625,由玻意耳定律可得:抽一次时:pV =p 1(V +V 0),解得p 1=45p ,抽两次时:p 1V =p 2(V +V 0),解得p 2=(45)2p ,抽n 次时:p n =(45)n p ,又p n =256625p ,则n =4,C 正确.8.氧气瓶的容积是40 L ,瓶内氧气的压强是130 atm ,规定瓶内氧气压强降到10 atm 时就要重新充氧.有一个车间,每天需要用1 atm 的氧气400 L ,一瓶氧气能用几天?(假定温度不变,氧气可视为理想气体) 答案 12解析 用如图所示的方框图表示思路.以氧气瓶内的气体为研究对象,气体发生等温变化,由V 1→V 2,由玻意耳定律可得p 1V 1=p 2V 2, V 2=p 1V 1p 2=130×4010L =520 L ,由(V 2-V 1)→V 3,由玻意耳定律可得p 2(V 2-V 1)=p 3V 3, V 3=p 2(V 2-V 1)p 3=10×4801 L =4 800 L ,则V 3400 L=12(天).9.(2020·山东高二期末)如图4,医院消毒用的压缩式喷雾器储液桶的容量为5.7×10-3 m3,开始时桶内倒入了4.2×10-3m3的药液.现关闭进气口,开始打气,每次能打进2.5×10-4m3的空气,假设打气过程中药液不会向外喷出.当打气n次后,喷雾器内空气的压强达到4 atm,设周围环境温度不变,气压为标准大气压强1 atm.图4(1)求出n的数值;(2)试判断这个压强能否使喷雾器的药液全部喷完.答案(1)18(2)能解析(1)根据理想气体状态方程的分列式,得p0V+p0nV′=4p0V,其中V=5.7×10-3 m3-4.2×10-3 m3=1.5×10-3 m3,V′=2.5×10-4 m-3,代入数值,解得n=18;(2)当空气完全充满储液桶后,如果空气压强仍然大于标准大气压强,则药液可以全部喷出.由于温度不变,根据玻意耳定律p1V1=p2V2,得p2=4p0V 5.7×10-3解得p2≈1.053p0>p0所以药液能全部喷出.10.(2021·吉化第一高级中学高二月考)如图5甲所示是一定质量的气体由状态A经过状态B 变为状态C的V-T图像,已知气体在状态A时的压强是1.5×105 Pa.图5(1)根据图像提供的信息计算图甲中T A对应的温度值;(2)请在图乙坐标系中作出该气体由状态A经过状态B变为状态C的p-T图像,并在图线相应位置上标出字母A、B、C,如果需要计算才能确定有关坐标值,请写出计算过程.答案(1)200 K(2)见解析解析(1)由题图甲所示图像可知,A与B的连线所在的直线过原点O,所以A→B是一个等压过程,即p A=p B=1.5×105 Pa由题图甲可知,V A=0.4 m3,V B=V C=0.6 m3,T B=300 K,T C=400 K,从A到B过程,由盖—吕萨克定律得V A T A =V B T B解得T A =200 K.(2)从B 到C 为等容过程,由查理定律得p B T B =p C T C解得p C =2×105 Pa ,气体状态变化的p -T 图像如图所示11.(2019·全国卷Ⅰ)热等静压设备广泛应用于材料加工中.该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能.一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13 m 3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中.已知每瓶氩气的容积为3.2×10-2 m 3,使用前瓶中气体压强为1.5×107 Pa ,使用后瓶中剩余气体压强为2.0×106 Pa ;室温温度为27 ℃.氩气可视为理想气体.(1)求压入氩气后炉腔中气体在室温下的压强;(2)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强.答案 (1)3.2×107 Pa (2)1.6×108 Pa解析 (1)设初始时每瓶气体的体积为V 0,压强为p 0;使用后瓶中剩余气体的压强为p 1.假设体积为V 0、压强为p 0的气体压强变为p 1时,其体积膨胀为V 1.由玻意耳定律得:p 0V 0=p 1V 1① 被压入炉腔的气体在室温和p 1条件下的体积为:V 1′=V 1-V 0②设10瓶气体压入完成后炉腔中气体在室温下的压强为p 2,体积为V 2,由玻意耳定律:p 2V 2=10p 1V 1′③联立①②③式并代入题给数据得:p 2=3.2×107 Pa ④(2)设加热前炉腔的温度为T 0,加热后炉腔的温度为T 1,气体压强为p 3,由查理定律得:p 3T 1=p 2T 0⑤ 联立④⑤式并代入题给数据得:p 3=1.6×108 Pa.。
2021年高考物理100考点最新模拟题千题精练(选修3-3、3-4)第一部分热学(选修3-3)专题1.16 变质量气体计算问题(基础篇)1. (2020东北三省三校一模)一导热性能良好的圆柱形气缸固定在水平面上,气缸上端开口,内壁光滑,截面积为S。
A是距底端H高处的小卡环。
质量为m的活塞静止在卡环上,活塞下密封质量为m o的氢气,C为侧壁上的单向导管。
大气压强恒定为Po。
环境温度为T o时,从C处注入水,当水深为时,关闭C,卡环恰对活塞无作用力。
接下来又从c处缓慢导人一定量氢气,稳定后再缓慢提升环境温度到1. 6T o,稳定时活塞静止在距缸底2.7H处,设注水过程中不漏气,不考虑水的蒸发,氢气不溶于水。
求:①初被封闭的氢气的压强P1;②导人氢气的质量M。
【名师解析】①对原有气体,经历等温过程,设注水后气体压强为,有:------(2分)对活塞,有:---------------(2分)---------------(1分)②设导入气体后且尚未升温时气体总高度为h,显然此时活塞已经离开卡环,接下来升温过程为等压过程,有:---------------(2分)得:考虑到此高度的气体中,原有气体占高为,故后导入的气体占高为---------------(1分)所以设此时密度为有:---------------(1分)得:---------------(1分)2.⑵(10分)(2020陕西咸阳二模)2019年12月以来,我国部分地区突发的新型冠状病毒肺炎威胁着人们的身体健康。
勤消毒是防疫很关键的一个措施。
如右图是防疫消毒用的喷雾消毒桶的原理图,圆柱形喷雾器高为h,内有高度为的消毒液,上部封闭有压强为p0、温度为T0的空气。
将喷雾器移到室内,一段时间后打开喷雾阀门K,恰好有消毒液流出.已知消毒液的密度为ρ,大气压强恒为p0,喷雾口与喷雾器等高。
忽略喷雾管的体积,将空气看作理想气体。
①求室内温度。
②在室内用打气筒缓慢向喷雾器内充入空气,直到水完全流出,求充入空气与原有空气的质量比。
Thinking-Good Id-气体实验定律之-huinL-nvent-气体变质量问题-So ution-Learnin-ecology-Study-【高中物理】【人教版选修3-3】【第八气体】-nnovation-ideas-Education-Science-ChemicalI I-01-气体分子运动特点-02-气体实验定律-03-解题思路-04-解题方法zhi-shi-hui-知-识-01气体分子的运动特点:-气体分子除了相互碰撞或者跟器壁碰撞外不受力而做匀速直线运动;-2-某一时刻,向各个方向运动的气体分子数目都相等;-3-气体能充满它能到达的整个空间,气体的体积为容器的容积;-气体分子做无规则运动,速率有大有小,却按一定的规律布:-1fv-低温分布-高温分布积成反比-查理定律:p1TP2/T2-盖吕萨克定律:V1T1=V2/T2-一定质量的某种气体,-体积不变的情况下,压强-压强不变的情况下,体积-与热力学温度成反比积成反比-图像:等温线-说明:P-V图为双曲线,同一气-T增大-体的两条等温线比较,双曲线顶-离坐标原点远的温度高,即-T1>T2.-P-1W图线为过原点的直线,同-一气体的两条等温线比较斜率-大的温度高,T1>T2。
积成反比-放气:-PVj=P2V2+P3V3+P4V4+...-充气:-PiV+P2V2+P3 3+...=PmVm02气体实验定律-p-图像:等容线-A-C--273-T-查理定律:p1TP2/T2-说明:pt图线为过-273C的直线,与纵轴交点是0C时气-一定质量的某种气体,在-体的压强,同一气体的条等容线比较,V1>V2。
-体积不变的情况下,压强--T图线为过原点的直线,同一气体的两条等容比较,斜-与热力学温度成反比-率大的体积小,即V1>V2。
02气体实验定律-图像:等压线-Vm3↑-Vm1-92-273-tc-TK-盖吕萨克定律:V11=V2/T2-一定质量的某种气体,在-压强不变的情况下,体积-说明:V-t图线为过-273C直线,与纵轴交点为0C时气-与热力学温度成反比-体的体积,同一气体的两条等压线比较,P1>P2 -图线为过原点的直线,同一气体的两条等压线比较,斜率-大的压强小,即P1>P2。
气体变质量问题的处理分析变质量问题时,可以通过巧妙选择合适的研究对象,使这类问题转化为一定质量的气体问题,用理想气体状态方程求解.1.充气问题向球、轮胎中充气是一个典型的气体变质量的问题.只要选择球内原有气体和即将打入的气体作为研究对象,就可以把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题.2.抽气问题从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可看做是等温膨胀的过程.3.灌气问题将一个大容器中的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,可以把大容器中的气体和多个小容器中的气体看做是一个整体来作为研究对象,可将变质量问题转化为定质量问题.4.漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用理想气体状态方程求解.如果选容器内剩余气体为研究对象,便可使问题变成一定质量的气体状态变化的问题,可用理想气体状态方程求解.对点例题某容积为20L的氧气瓶中装有30atm的氧气,把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中氧气的压强为5atm,如果每个小钢瓶中原有氧气的压强为1atm,问共能分装多少瓶(设分装过程中无漏气,且温度不变)解题指导设能够分装n个小钢瓶,则以氧气瓶中的氧气和n个小钢瓶中的氧气整体为研究对象,分装过程中温度不变,遵守玻意耳定律.分装前:氧气瓶中气体状态p1=30atm,V1=20L;小钢瓶中气体状态p2=1atm,V2=5L.分装后:氧气瓶中气体状态p1′=5atm,V1=20L;小钢瓶中气体状态p2′=5atm,V2=5L.由p1V1+np2V2=p1′V1+np2′V2得n==瓶=25瓶.答案25技巧点拨 1.对于气体的分装,可将大容器中和所有的小容器中的气体看做一个整体来研究;2.分装后,瓶中剩余气体的压强p1′应大于或等于小钢瓶中应达到的压强p2′,通常情况下取压强相等,但不能认为p1′=0,因通常情况下不可能将瓶中气体全部灌入小钢瓶中.1.一只轮胎容积为V=10L,已装有p1=1atm的空气.现用打气筒给它打气,已知打气筒的容积为V0=1L,要使胎内气体压强达到p2=,应至少打多少次气(设打气过程中轮胎容积及气体温度维持不变,大气压强p0=1atm)()次次次次答案 D解析本题中,胎内气体质量发生变化,选打入的和原来的气体组成的整体为研究对象.设打气次数为n,则V1=nV0+V,由玻意耳定律,p1V1=p2V,解得n=15次,故选D.2.贮气筒内压缩气体的温度为27°C,压强是20atm,从筒内放出一半质量的气体后,并使筒内剩余气体的温度降低到12°C,求剩余气体的压强为多大答案解析以筒内剩余气体为研究对象,它原来占有整个筒容积的一半,后来充满整个筒,设筒的容积为V,则初态:p1=20atm,V1=V,T1=(273+27) K=300K;末态:p2=V2=V,T2=(273+12) K=285K根据理想气体状态方程:=得:p2==atm=.2.一只两用活塞气筒的原理如图1所示(打气时如图甲所示,抽气时如图乙所示),其筒内体积为V0,现将它与另一只容积为V的容器相连接,容器内的空气压强为p0,当分别作为打气筒和抽气筒时,活塞工作n次后,在上述两种情况下,容器内的气体压强分别为(大气压强为p0)()3…某同学用压强为10atm体积为的氢气瓶给足球充气,设充气前足球为真空,充完气后,足球的容积为,且充气后,氢气瓶内气体的压强?变为5atm设充气过程中温度不变,求充气后足球内气体的压强?。
气体变质量问题汇总常见的几种变质量的情况(1)打气问题:向球、轮胎中充气是一个典型的变质量的气体问题,只要选择球内原有气体和即将充入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题.(2)抽气问题:从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看做是等温膨胀过程.(3)灌气问题:将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,把大容器中的剩余气体和多个小容器中的气体视为整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:容器漏气过程中气体的质量不断发生变化,属于变质量问题. 如果选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.(5)气体混合问题:两个或两个以上容器的气体混合在一起的过程也是变质量气态变化问题.通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题来处理思路;1.将变转化为不变,因为我们只学会处理不变的规律.通过巧妙选取合适的研究对象,使这类问题转化为定质量的气体问题,从而利用气体实验定律或理想气体状态方程解决2.利用克拉珀龙方程其方程为pV=nRT。
这个方程有4个变量:p是指理想气体的压强,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数,对任意理想气体而言,R是一定的,约为8.31J/(mol·K)。
(补充分太式,密度式写法)【典例1】一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V0,开始时内部封闭气体的压强为p0.经过太阳曝晒,气体温度由T0=300 K升至T1=350 K.(1)求此时气体的压强;(2)保持T1=350 K不变,缓慢抽出部分气体,使气体压强再变回到p0.求集热器内剩余气体的质量与原来总质量的比值.判断在抽气过程中剩余气体是吸热还是放热,并简述原因.解析(1)由题意知气体体积不变,由查理定律得p0 T0=p1 T1得p1=T1T0p0=350300p0=76p0(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V2,由玻意耳定律可得p1V0=p0V2则V2=p1V0p0=76V0所以集热器内剩余气体的质量与原来总质量的比值为ρV0ρ·76V0=67因为抽气过程中剩余气体温度不变,故内能不变,而剩余气体的体积膨胀对外做功.由热力学第一定律ΔU=W+Q可知,气体一定从外界吸收热量.答案(1)76p0(2)67;吸热,原因见解析【典例2】用真空泵抽出某容器中的空气,若某容器的容积为V,真空泵一次抽出空气的体积为V0,设抽气时气体温度不变,容器里原来的空气压强为p,求抽出n次空气后容器中空气的压强是多少?解析设第1次抽气后容器内的压强为p1,以整个气体为研究对象.因为抽气时气体温度不变,则由玻意耳定律得pV=p1(V+V0),所以p1=VV+V0p以第1次抽气后容器内剩余气体为研究对象,设第2次抽气后容器内气体压强为p2,由玻意耳定律有p1V=p2(V+V0),所以p2=VV+V0p1=(VV+V0)2p以第n-1次抽气后容器内剩余气体为研究对象,设第n次抽气后容器内气体压强为p n,由玻意耳定律得p n-1V=p n(V+V0)所以p n=VV+V0p n-1=(VV+V0)n p故抽出n次空气后容器内剩余气体的压强为(VV+V0)n p.答案(VV+V0)n p例3 一个篮球的容积是2.5 L,用打气筒给篮球打气时,每次把105Pa 的空气打进去125cm3.如果在打气前篮球里的空气压强也是105Pa,那么打30次以后篮球内的空气压强是多少Pa?(设在打气过程中气体温度不变)解析由于每打一次气,总是把ΔV体积,相等质量、压强为p0的空气压到容积为V0的容器中,所以打n次气后,共打入压强为p0的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为p0、体积为V0+nΔV;打气后容器中气体的状态为末状态:压强为pn、体积为V0.令V2为篮球的体积,V1为n次所充气体的体积及篮球的体积之和则V1=2.5L+30×0.125L由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解;例4 某容积为20L的氧气瓶里装有30atm的氧气,现把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中氧气的压强为2atm,如每个小钢瓶中原有氧气压强为1atm.问最多能分装多少瓶?(设分装过程中无漏气,且温度不变)(提示):先将大、小钢瓶中的氧气变成等温等压的氧气,再分装.、例5 如图1所示,两个充有空气的容器A、B,用装有活塞栓的细管相连通,容器A浸在温度为t1=-23℃的恒温箱中,而容器B浸在t2=27℃的恒温箱中,彼此由活塞栓隔开.容器A的容积为V1=1L,气体压强为p1=1atm;容器B的容积为V2=2L,气体压强为p2=3atm,求活塞栓打开后,气体的稳定压强是多少?解析活塞栓打开后时,B中气体压强较大,将有一部分气体从B中进入A中,如图2,进入A中的气体温度又变为t1=-23℃,虽然A中气体温度不变,但由于质量发生变化,压强也随着变化(p增大),这样A、B两容器中的气体质量都发生了变化,似乎无法用气态方程或实验定律来解,需要通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题.例6.一个容器内装有一定质量的理想气体,其压强为 6.0×105pa,温度为47℃,但因该容器漏气,试求最终容器内剩余气体的质量为原有质量的百分之几?已知外界大气压强为p0=1.0×105Pa,气温为27℃.解析设想漏出的气体被收集在另一个容器中,这样变质量问题转化为定质量问题.V1为初始状态体积,也等于末状态剩余气体体积,末状态剩余气体和漏出气体属于同温同压气体,二者具有相同密度.则剩余气体与原来气体质量之比为:mm0=ρV1ρV2=V1V2=0.18,即剩余气体质量为原来气体质量的18%.【练习】氧气瓶的容积是40L,其中氧气的压强是130atm,规定瓶内氧气压强降到10atm 时就要重新充氧。
变质量气体问题的两种处理方法赏析作者:杨宗礼任海燕来源:《中学生数理化·高考理化》2022年第05期在利用理想气体的实验定律或状态方程解题时,研究对象应是一定质量的理想气体,但是在实际问题中,气体的质量可能是变化的。
当遇到变质量气体问题时,可以先通过恰当选取研究对象,将变质量问题转化为定质量问题,再利用气体实验定律列式求解,也可以利用理想气体状态方程分态式求解。
下面对2021年河北省普通高中学业水平考试中的一道变质量气体问题进行深入探讨,归纳出求解这类问题的两种方法,希望对同学们的复习备考有所帮助。
题目:某双层玻璃保温杯夹层中有少量空气,温度为27℃时,压强为3.0x103Pa。
(1)当夹层中空气的温度升至37℃时,求此时夹层中空气的压强。
(2)当保温杯外层出现裂隙后,静置足够长时间,求夹层中增加的空气质量与原有空气质量的比值。
设环境温度为27℃,大气压强为1.0x105Pa。
命题意图:本题借助日常生活中常用的双层玻璃保温杯设置情境,考查考生运用理论知识解释生活现象,学以致用的能力。
(1)问属于定质量气体问题,较为简单,根据查理定律列式求解即可;(2)问属于变质量气体问题,有一定的难度,需要巧选分析思路,灵活运用物理规律求解。
解析:(1)当夹层中空气的温度由27℃升至37℃时,做等容变化,根据查理定律得,其中T1=(273+27)K=300 K, T2=(273+37)K=310K,p1=3.0x 103Pa,解得P2=3.1x103Pa。
(2)思路一:恰当选取研究对象,将变质量问题转化为定质量问题。
方法1:当保温杯外层出现裂隙后,静置足够长时间,夹层中的空气压强和大气压强相等。
设夹层中容积为V,以静置后夹层中的所有空气为研究对象,则p。
V=p1V1,其中p。
=1.0x10°Pa,p1=3.0x103Pa,解得。
增加的空气的体积。
因为同温同压下空气的质量之比等于体积之比,所以增加的空气质量与原有空气质量之比方法2:设夹层中容积为V,以夹层中原有的空气为研究对象,根据题意得p1=3.0x103Pa,p2=1.0x105 Pa,这部分空气做等温变化,根据玻意耳定律得p1V=p2V2,解得。
理想气体变质量问题方法总结理想气体变质量问题,是指在理想气体状态下,气体质量发生变化的一类问题。
这类问题的研究对象是理想气体,因此需要遵循理想气体定律。
解决这类问题的方法主要包括以下几种:1. 理想气体定律 (pV = nRT):理想气体定律是解决理想气体变质量问题的基础,其中 p 表示压强,V 表示体积,n 表示气体摩尔数,R 是气体常数,T 表示温度。
在变质量过程中,质量与摩尔数的关系为:m = nM,其中 m 是质量,M 是摩尔质量。
2. 质量守恒:在气体质量变化过程中,质量守恒原理仍然适用。
即:系统内气体的质量增加或减少,应等于与外界气体质量的交换量。
3. 能量守恒与热力学第一定律:在变质量过程中,热力学第一定律(能量守恒定律)仍然适用。
即:系统内气体能量的增加或减少,应等于从外界获得或释放的能量。
4. 过程分析法:根据气体在过程中所经历的具体状态,分析气体的状态参数(压强、体积、温度)之间的关系。
例如,等压过程、等温过程、等熵过程(绝热过程)等。
5. 状态方程与状态函数:状态方程是表示气体状态参数之间关系的方程,例如范德瓦尔斯方程。
状态函数是描述气体状态的函数,例如内能、焓、熵等。
通过状态方程与状态函数的求解,可以求出气体变质量过程中的状态参数。
6. 基尔霍夫定律及其他物理定律:在解决理想气体变质量问题时,还需要根据具体问题运用其他物理定律,如基尔霍夫定律、牛顿定律、连续性方程等。
通过以上方法的综合应用,可以解决理想气体变质量问题。
在解题过程中,首先应找出题目中所涉及的物理过程,然后根据物理过程选择合适的物理定律和方法进行求解。
最后,根据求解结果进行分析和讨论,得出问题的答案。
理想气体的四类变质量问题理想气体的四类变质量问题引言理想气体是热力学中的一个经典模型,它假设气体分子间的相互作用可以忽略,从而使得气体分子之间的碰撞完全弹性,能量只有在碰撞瞬间才会转移。
这种假设使得理想气体具有简单、易于处理的特点。
在实际应用中,我们经常需要研究理想气体的四类变质量问题,即等温过程、绝热过程、等压过程和等容过程。
本文将对这四类问题进行详细介绍。
一、等温过程定义:在等温过程中,系统的温度保持不变。
特点:由于系统温度不变,所以系统内部能量也不会发生改变。
物理图像:当系统发生等温膨胀时(如活塞式容器内的气体被加热),外界对系统做功,使得系统内部分子运动增加,从而导致压强增大;当系统发生等温压缩时(如活塞式容器内的气体被压缩),系统对外界做功,并且对外界吸收热量来保证温度不变,使得系统内部分子运动减少,从而导致压强减小。
理论公式:在等温过程中,理想气体的状态方程为:PV=nRT其中P表示气体的压强,V表示气体的体积,n表示气体的摩尔数,R 为气体常数,T为气体的温度。
根据热力学第一定律(能量守恒定律),可得等温过程中系统对外界所做的功为:W=nRTln(V2/V1)其中W为系统对外界所做的功,V1和V2分别表示初始和最终状态下气体的体积。
二、绝热过程定义:在绝热过程中,系统与外界不进行热量交换。
特点:由于系统与外界不进行热量交换,所以系统内部能量只有通过做功才能改变。
物理图像:当系统发生绝热膨胀时(如活塞式容器内的气体被突然放松),外界对系统不做功,并且由于没有热量传递进入系统内部,使得系统内部分子运动增加,从而导致压强降低;当系统发生绝热压缩时(如活塞式容器内的气体被突然压缩),系统对外界不做功,并且由于没有热量传递出去,使得系统内部分子运动减少,从而导致压强增加。
理论公式:在绝热过程中,理想气体的状态方程为:PV^γ=常数其中γ=Cp/Cv,Cp和Cv分别表示气体在定压和定容条件下的比热容。
运用气体定律解决变质量问题的几种方法解变质量问题是气体定律教学中的一个难点,气体定律的适用条件是气体质量不变,所以在解决这一类问题中就要设法将变质量转化为定质量处理。
常用的解题方法如下。
一、等效的方法在充气、抽气的问题中可以假设把充进或抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。
1.充气中的变质量问题设想将充进容器内的气体用一根无形的弹性口袋收集起来,那么当我们取容器和口袋内的全部气体为研究对象时,这些气体状态不管怎样变化,其质量总是不变的.这样,我们就将变质量的问题转化成质量一定的问题了.例1.一个篮球的容积是2.5L ,用打气筒给篮球打气时,每次把510Pa 的空气打进去3125cm 。
如果在打气前篮球里的空气压强也是510Pa ,那么打30次以后篮球内的空气压强是多少Pa ?(设在打气过程中气体温度不变)解析: 由于每打一次气,总是把V ∆体积,相等质量、压强为0p 的空气压到容积为0V 的容器中,所以打n 次气后,共打入压强为0p 的气体的总体积为n V ∆,因为打入的n V ∆体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为0p 、体积为0V n V +∆;打气后容器中气体的状态为末状态:压强为n p 、体积为0V .令2V 为篮球的体积,1V 为n 次所充气体的体积及篮球的体积之和则1 2.5300.125V L L =+⨯由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解。
1122p V p V ⨯=⨯55112210(2.5300.125)Pa 2.510Pa 2.5p V p V ⨯⨯+⨯===⨯2.抽气中的变质量问题用打气筒对容器抽气的的过程中,对每一次抽气而言,气体质量发生变化,其解决方法同充气问题类似:假设把每次抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。
气体变质量问题专题一、变质量问题的求解方法二、针对训练1.一病人通过便携式氧气袋供氧,便携式氧气袋内密闭一定质量的氧气,可视为理想气体.温度为C o 0时,袋内气体压强为atm 25.1,体积为L 50. 在C o 23条件下,病人每小时消耗压强为atm 0.1的氧气约为L 20. 已知阿伏加德罗常数为-123mo 100.6l ,在标准状况(压强atm 0.1、温度C o 0)下,理想气体的摩尔体积都为L 4.22.求:(1)此便携式氧气袋中氧气分子数;(2)假设此便携式氧气袋中的氧气能够完全耗尽,则可供病人使用多少小时.(两问计算结果均保留两位有效数字)2.“蹦蹦球”是儿童喜爱的一种健身玩具. 如图所示,小倩和同学们在室外玩了一段时间的蹦蹦球之后,发现球内气压不足,于是她便拿到室内放置了足够长的时间后用充气筒给蹦蹦球充气. 已知室外温度为C o 3 ,蹦蹦球在室外时,内部气体的体积为L 2,内部气体的压强为atm 2,室内温度为C o 27,充气筒每次充入L 2.0、压强atm 1的空气,整个过程中,不考虑蹦蹦球体积的变化和充气过程中气体温度的变化,蹦蹦球内气体按理想气体处理. 试求:(1)蹦蹦球从室外拿到室内足够长时间后,球内气体的压强;(2)小倩在室内想把球内气体的压强充到atm 3以上,则她至少充气多少次.3.(2020·全国Ⅰ卷)甲、乙两个储气罐储存有同种气体(可视为理想气体). 甲罐的容积为V ,罐中气体的压强为p ;乙罐的容积为V 2,罐中气体的压强为p 21. 现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等. 求调配后(1)两罐中气体的压强;(2)甲罐中气体的质量与甲罐中原有气体的质量之比.4.奥运会男子篮球比赛时所用篮球的内部空间体积是L .357,比赛时内部压强为kPa 170. 已知在C o 25,kPa 100时,气体摩尔体积约为L/mol5.24. 比赛场馆温度为C o 25,气体的摩尔质量为mol g /29,大气压为Pa 510.(1)若比赛前,男子专用篮球是瘪的(认为没有气体),用打气简充气,每次能将1个大气压,L 375.0的气体充入篮球,需要充气几次,才能成为比赛用的篮球;(2)比赛时篮球内部的气体质量是多少.5.恒温室内有容积为L 100的储气钢瓶,钢瓶中装有压强为0p 的理想气体,现使用两种方式抽取钢瓶中气体,第一种方式使用大抽气机,一次缓慢抽取L 10气体,第二种方式使用小抽气机,缓慢抽两次,每次抽取L 5气体. 求:(1)第一种方式抽气后钢瓶内气体的压强1p ;(2)第二种方式抽气后钢瓶内气体的压强2p ,并比较1p 和2p 大小关系.6.容器中装有某种气体,且容器上有一小孔跟外界大气相通,原来容器内气体的温度为C o 27,如果把它加热到C o 127,从容器中逸出的空气质量是原来质量的多少倍?7.容积为L 2的烧瓶,在压强为Pa 5100.1⨯时,用塞子塞住,此时温度为C o 27,当把它加热到C o 127时,塞子被打开了,稍过会儿,重新把塞子塞好,停止加热并使它逐渐降温到C o 27,求:(1)塞子打开前的最大压强;(2)逐渐降温C o 27时剩余空气的压强,8.一容积不变的热气球刚好要离开地面时,球内空气质量kg 150=m ,温度K 2801=T ,在热气球下方开口处燃烧液化气,使球内温度缓慢升高,热气球缓慢升空,当气球内空气温度K 3002=T 时,热气球上升到离地面m 10高处.(1)求热气球离地面m 10高时球内空气的质量;(2)若热气球上升到离地面m 10高处时停止加热,同时将气球下方开口处封住,求球内空气温度降为K 280时球内气体的压强与刚离开地面时的压强之比.9.汽车修理店通过气泵给储气罐充气,再利用储气罐给用户汽车轮胎充气. 某容积为0V 的储气罐充有压强为09p 的室温空气,要求储气罐给原来气体压强均为05.1p 的汽车轮胎充气至03p ,已知每个汽车轮胎的体积为400V ,室温温度为C o 27. (1)求在室温下储气罐最多能给这种汽车轮胎充足气的轮胎数n ; (2)若清晨在室温下储气罐给n 个汽车轮胎充足气后,到了中午,环境温度上升到C o 32,求此时储气罐中气体的压强p .10.如图所示,A 、B 是两只容积为V 的容器,C 是用活塞密封的气筒,它的工作体积为V 5.0,C 与A 、B 通过两只单向进气阀a 、b 相连,当气筒抽气时a 打开、b 关闭,当气筒打气时b 打开、a 关闭,最初A 、B 两容器内气体的压强均为大气压强0p ,活塞位于气筒C 的最右侧. (气筒与容器间连接处的体积不计,气体温度保持不变),求:(1)以工作体积完成第一次抽气结束后气筒C 内气体的压强1p ;(2)现在让活塞以工作体积完成抽气、打气各2次后,A 、B 容器内的气体压强之比.11.2020年,在“疫情防控阻击战”中,为了防止“新型冠状病毒”的扩散,需要专业防疫人员不断进行消毒作业(图1),比较简单的做法是利用农药喷雾器进行消毒. 图2为喷雾器的示意图,圆柱形喷雾器高为h ,内有高度为2h 的消毒水,上部封闭有压强为0p ,温度为0T 的空气. 将喷雾器移到室内,一段时间后打开喷雾阀门K ,恰好有消毒水流出. 已知消毒水的密度为 ,大气压强恒为0p ,重力加速度为g ,喷雾口与喷雾器等高. 忽略喷雾管的体积,将空气看作理想气体.(1)求室内的温度;(2)在室内用打气筒缓慢向喷雾器内充入空气,直到消毒水完全流出,求充入空气与原有空气的质量比.答案1.(1)24107.1⨯个 (2)h 4.3解析:(1)便携式氧气袋内的氧气可视为理想气体,设温度为C o 0时,袋内气体压强为1p ,标况下的压强为2p ,氧气在标况下的体积为2V ,假设发生等温变化,由玻意耳定律有:2211V p V p =, 解得L V 5.622=,物质的量为:mol V n 4.222=氧气分子数:24107.1⨯=⋅=A N n N 个(2)设氧气袋中的氧气在C o 23的体积为3V ,根据理想气体状态方程,有:232111T V p T V p =, 解得L V 77.673=, 可供病人使用的时间h V V t 4.303==2.(1)atm 920 (2)8次 解析:(1)设蹦蹦球从室外拿到室内足够长时间后,此过程气体体积不变,室外时:温度K 2701=T ,球内气体压强,atm 21=p ; 室内时:温度K 3002=T ,设球内气体压强为2p ,由查理定理得:2211T p T p =, 解得atm 9202=p (2)设至少充气n 次可使球内气体压强达到atm 3以上,以蹦蹦球内部气体和所充气体的整体为研究对象,由玻意耳定理可知,V p V n p V p 302)(=∆+, atm 10=p ,atm 33=p 解得8.7970==n , 故小倩在室内把球内气体的压强充到3个大气压以上,她至少需充气8次.3.(1)p 32 (2)32 解析:(1)假设乙罐中的气体被压缩到压强为p ,其体积变为1V ,由玻意耳定律有1)2(21pV V p =,① 现两罐气体压强均为p ,总体积为(1V V +). 设调配后两罐中气体的压强为'P ,由玻意耳定律有)2()('1V V p V V p +=+, ② 联立①②式可得p P 32'= ③(2)若调配后甲罐中的气体再被压缩到原来的压强p 时,体积为2V ,由玻意耳定律 2'pV V p = ④ , 设调配后甲罐中气体的质量与甲罐中原有气体的质量之比为k , 由密度的定义有V V k 2= ⑤, 联立③④⑤式可得32=k4.(1)17 (2)g 97.14解析:(1)设大气压强为p ,比赛时篮球内气体的压强为0p ,内部空间为0V ,设需要充气n 次,由玻意耳定律得00V p pnV =, 代入数据得17=n(2)设篮球内气体的压强为kPa p 1001=时的体积为1V ,由玻意耳定律得1100V p V p = 篮球内气体的质量M V V m m⨯=1(M 为气体摩尔质量,m V 为摩尔体积,)联立解得g m 97.14=5.(1)01110p (2)0441400p ; 21p p > 解析:(1)第一种方式为等温变化,初始体积为L V 1000=,压强为0p ,末态体积L V 1101=,压强为1p , 由玻意耳定律0011V p V p =, 解得011110p p = (2)第二种方式第一次抽取,末态压强为'2p ,体积L V 1052=, 由玻意耳定律可得002'2V p V p =, 解得0'2105100p p =, 同理第二次抽取,由玻意耳定律可得220'2V p V p =(由 联立解得 02441400p p =, 根据计算结果可得21p p >6. 41 解析:由于容器有小孔与外界相通,当温度升高时,气体将从小孔逸出,这是一个变质量问题.若取原来容器中一定质量的气体作为研究对象,假设在气体升温时,逸出的气体被一个无形的膜所密闭,就变成了质量一定的气体.设逸出的气体被一个无形的膜所密封,以容器 中原来的气体为研究对象,初态K 3001=T ,V V =1;末态K 4002=T ,V V V ∆+=2. 由盖-吕萨克定律:212211T V V T V T V T V ∆+==,得, 故3V V =∆.又因V V V m ∆=∆∆+=ρρm 1),( ,ρ为加热后空气密度. 所以41343m m 1==∆+∆=∆V VV V V )(ρρ7.(1)Pa 51033.1⨯ (2)Pa 4105.7⨯解析:(1)在塞子打开前,选瓶中的气体为研究对象:则有初态:Pa p 51100.1⨯=,K 3001=T ,末态:?2=p , K 4002=T ,根据查理定律2121T T p p = 可得:Pa p 521033.1⨯=(2)重新将塞子盖紧后,仍以瓶中的气体为研究对象,则有态:Pa p 5'1100.1⨯=,K 400'=T . 末态:?'2=p , K 300'2=T 由查理定律Pa p 4'2105.7⨯=8.(1)kg 14 (2)1514 解析:(1)设气球刚离开地面时球内空气密度为1ρ,体积为1V ,压强为1p ,气球上升到离地面m 10高处时球内空气密度为2ρ,气球上升过程做等压变化,则由盖-吕萨克定律有2211T V T V =, 其中101ρm V =, 202ρm V =, 热气球离地面m 10高时球内空气质量12V m ρ= 解得kg 14=m(2)设封住开口后,球内气体的压强为3ρ,降温过程气体做等容变化,由查理定律有 2233T p T p =,其中21p p =,K 2803=T , 解得151413=p p9.(1)160 (2)005.3p解析:(1)设充气前,将每个轮胎中的气体压缩至03p 时,体积为1V ,气体发生等温变化 初始时,轮胎内气体压强为05.1p ,体积为400V , 压缩后,轮胎内气体压强为03p ,体积为1V根据玻意耳定律有10003405.1V p V p ⋅=⋅, 轮胎内气体休积减少量为1040V V V -=∆ 以储气罐为研究对象,充气前,储气罐中气体的压强为09p ,体积为0V , 充气后,储气罐中的气体压强为03p ,罐中剩余的气体的体积与充入轮胎的气体的体积之和为V n V ∆+0 储气罐给汽车轮胎充气时,整个过程储气罐中的气体做等温变化,由玻意耳定律有 )(390000V n V p V p ∆+=⋅, 解得160=n(2)由题可知,从清晨到中午,充气后储气罐中的气体做等容变化清晨,储气罐中气体的压强为03p ,温度为K 3000=T 中午, 储气罐中气体的压强为p ,温度为K 305=T ,由查理定理有Tp T p =003, 解得005.3p p = 10.(1)032p (2)7:2 解析:(1)第一次抽气后,A 、C 内气体发生等温膨胀,应用玻意耳定律可得V p V p )15.0(10+=, 解得0132p p = (2)第一次打气后,C 、B 内气体发生等温压缩,应用玻意耳定律可得 V p V p V p 2015.0=+⋅, 同理,第二次抽气后,对A 、C 内气体,有V p V p )15.0(31+= 第二次打气后,对C 、B 内气体,有V p V p V p 4235.0=+⋅联立解得抽气、打气各两次后A 、B 内气体压强比为7:2:43=p p11.(1)00)21(T p h g ρ+ (2)ghp gh p ρρ++00232 解析:(1)设喷雾器的横截面积为S ,喷雾器内气体体积为0V ,室内温度为1T ,移到室内后气体压强为1p ,则有20h S V ⋅=,移到室内一段时间,对喷雾器内液面受力分析有 201h g p p ρ+=, 喷雾器移到室内后气体做等容变化,由查理定律有1100T p T p = 联立解得:001)21(T p h gT ρ+=(2)以充气结束后喷雾器内空气为研究对象,排完液体后,压强为2p ,体积为2V ,则有Sh V =2,对喷雾器内气体受力分析有gh p p ρ+=02, 若此气体经等温变化,压强为1p 时,体积为3V ,则由玻意耳定律有2231V p V p =,同温度下同种气体的质量比等于体积比,设打进气体质量为m ∆,则有0030V V V m m -=∆, 联立解得:ghp gh p m m ρρ++=∆000232。
物理变质量气体问题
物理变质量气体问题涉及到理解气体的物理性质和物态变化。
在物理学中,气体是一种无定形的物质,其分子间距离很大,分子之间的相互作用力很小,因此气体具有可压缩性、可扩散性、可溶性、可混合性等特性。
气体的质量是由其分子的质量、数量和速度所决定的。
在常温常压下,气体的体积和压强呈反比例关系,即波义尔定律。
而根据理想气体状态方程PV=nRT(P表示压强,V表示体积,n表示摩尔数,R表示气体常量,T表示温度),可以计算出气体的物理性质。
在物理变质量气体问题中,一个常见的问题是气体的物质量如何变化。
在理想气体的条件下,气体的质量不会改变。
但是在实际情况下,气体的物质量可能会发生变化。
例如在气体化学反应中,气体的物质量会因为反应而减少或增加。
此外,在气体升华、凝固和融化等相变过程中,气体的物质量也会发生变化。
总之,物理变质量气体问题需要考虑气体的物理性质和物态变化,以及气体化学反应等因素的影响。
通过理解和运用气体状态方程等相关知识,可以较好地解决这些问题。
高中物理之求解气体变质量问题的方法在利用气体的状态方程解题时,每个方程的研究对象都是一定质量的理想气体,但是在有些问题中,气体的质量可能是变化的。
下面来谈谈求解这类问题的方法。
一、恰当选取研究对象,将“变质量问题”转化为“定质量问题”运用理想气体状态方程解决问题时,首先要选取一定质量的理想气体作为研究对象。
对于状态发生变化过程中,气体质量发生变化的问题,如充气,漏气等,如何选择适当的研究对象,将成为解题的关键。
图1(a)例1、如图1(a)所示,一容器有孔与外界相通,当温度由300K升高到400K对,容器中溢出的气体质量占原来的百分之几?解法一:选取气体温度为300K时容器中的气体作为研究对象,当温度升高后,有一部分气体溢出,我们假设溢出的部分被一个“没有弹性可以自由扩张的气囊”装着,如图1(b)。
这样,当气体温度升高后,容器中的气体与“囊”中的气体质量之和便与初始状态相等。
于是,将“变质量问题”转化成了“定质量问题”。
由于本题压强未发生变化,状态参量列出如下:初状态:末状态:由盖吕萨克定律可知:得,则溢出的气体质量与原来总质量之比为:。
图1(c)解法二:选取气体温度为400K时容器中剩余的气体作为研究对象。
设所选对象在300K时的体积为,如图1(c)示。
以温度为300K时所选对象的状态为初状态,以温度为400K 时所选对象的状态为末状态,则:初状态:末状态:由盖吕·萨克定律可知:,说明最后剩余部分气体,在温度为300K时占总体积的75%,则溢出部分的气体占原来总质量的25%。
二、利用理想气体状态方程的推论,求解“变质量问题”一定质量的理想气体(),若分成n个状态不同的部分,则。
在利用此推论求解“变质量问题”时,要注意初状态的气体质量与末状态的各部分气体质量之和相等。
例2、潜水艇的贮气筒与水箱相连。
当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。
某潜水艇贮气筒的容积是,贮有压强为的压缩空气。
《气体》专题一 变质量问题对理想气体变质量问题,可根据不同情况用克拉珀龙方程、理想气体状态方程和气体实验定律进行解答。
方法一:化变质量为恒质量——等效的方法在充气、抽气的问题中可以假设把充进或抽出的气体包含在气体变化的始末状态中,即用等效法把变质量问题转化为恒定质量的问题。
方法二:应用密度方程一定质量的气体,若体积发生变化,气体的密度也随之变化,由于气体密度 m V ρ=,故将气体体积m V ρ=代入状态方程并化简得:222111T p T p ρρ=,这就是气体状态发生变化时的密度关系方程.此方程是由质量不变的条件推导出来的,但也适用于同一种气体的变质量问题;当温度不变或压强不变时,由上式可以得到:2211ρρp p =和T T 211ρρ=,这便是玻意耳定律的密度方程和盖·吕萨克定律的密度方程.方法三:应用克拉珀龙方程其方程为。
这个方程有4个变量:p 是指理想气体的压强,V 为理想气体的体积,n 表示气体物质的量,而T 则表示理想气体的热力学温度;还有一个常量:R 为理想气体常数,R=8.31J/mol.K=0.082atm.L/mol.K 。
方法四: 应用理想气体分态式方程若理想气体在状态变化过程中,质量为m 的气体分成两个不同状态的部分,或由若干个不同状态的部分的同种气体的混合,则应用克拉珀龙方程易推出:上式表示在总质量不变的前提下,同种气体进行分、合变态过程中各参量之间的关系,可谓之“分态式”状态方程。
1.充气中的变质量问题 设想将充进容器内的气体用一根无形的弹性口袋收集起来,那么当我们取容器和口袋内的全部气体为研究对象时,这些气体状态不管怎样变化,其质量总是不变的.这样,我们就将变质量的问题转化成质量一定的问题了.例1.一个篮球的容积是2.5L ,用打气筒给篮球打气时,每次把510Pa 的空气打进去3125cm 。
如果在打气前篮球里的空气压强也是510Pa ,那么打30次以后篮球内的空气压强是多少Pa ?(设在打气过程中气体温度不变)图1解析: 由于每打一次气,总是把V ∆体积,相等质量、压强为0p 的空气压到容积为0V 的容器中,所以打n 次气后,共打入压强为0p 的气体的总体积为n V ∆,因为打入的n V ∆体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为0p 、体积为0V n V +∆;打气后容器中气体的状态为末状态:压强为n p 、体积为0V .令2V 为篮球的体积,1V 为n 次所充气体的体积及篮球的体积之和则1 2.5300.125V L L =+⨯由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解。
分析变质量问题时,可通过巧妙地选择研究对象,使这类问题转化为一定质量的气体问题,用气体实验定律求解.
常见的几种变质量的情况
(1)打气问题:向球、轮胎中充气是一个典型的变质量的气体问题,只要选择球内原有气体和即将充入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题.
(2)抽气问题:从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题.分析时,将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看做是等温膨胀过程.
(3)灌气问题:将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题.分析这类问题时,把大容器中的剩余气体和多个小容器中的气体视为整体作为研究对象,可将变质量问题转化为定质量问题.
(4)漏气问题:容器漏气过程中气体的质量不断发生变化,属于变质量问题. 如果选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.
(5)气体混合问题:两个或两个以上容器的气体混合在一起的
过程也是变质量气态变化问题.通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题来处理
思路;
1.将变转化为不变,因为我们只学会处理不变的规律.通过巧妙选取合适的研究对象,使这类问题转化为定质量的气体问题,从而利用气体实验定律或理想气体状态方程解决
2.利用克拉珀龙方程其方程为pV=nRT。
这个方程有4个变量:p是指理想气体的压强,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数,对任意理想气体而言,R是一定的,约为8.31J/(mol·K)。
(补充分太式,密度式写法)
【典例1】一太阳能空气集热器,底面及侧面为隔热材料,顶面为透明玻璃板,集热器容积为V0,开始时内部封闭气体的压强为p0.经过太阳曝晒,气体温度由T0=300 K升至T1=350 K.
(1)求此时气体的压强;
(2)保持T1=350 K不变,缓慢抽出部分气体,使气体压强再变回到p0.求集热器内剩余气体的质量与原来总质量的比值.判断在抽气过程中剩余气体是吸热还是放热,并简述原因.
解析(1)由题意知气体体积不变,由查理定律得
p0 T0=p1 T1
得p1=T1
T0
p0=
350
300
p0=
7
6
p0
(2)抽气过程可等效为等温膨胀过程,设膨胀后气体的总体积为V2,由玻意耳定律可得p1V0=p0V2
则V2=p1V0
p0
=
7
6
V0
所以集热器内剩余气体的质量与原来总质量的比值为ρV0
ρ·7
6V0
=
6
7
因为抽气过程中剩余气体温度不变,故内能不变,而剩余气体的体积膨胀对外做功.由热力学第一定律ΔU=W+Q可知,气体一定
从外界吸收热量.答案(1)7
6
p0(2)
6
7
;吸热,原因见解析
【典例2】用真空泵抽出某容器中的空气,若某容器的容积为V,真空泵一次抽出空气的体积为V0,设抽气时气体温度不变,容器里原来的空气压强为p,求抽出n次空气后容器中空气的压强是多少?
解析设第1次抽气后容器内的压强为p1,以整个气体为研究对象.因为抽气时气体温度不变,则由玻意耳定律得
pV=p1(V+V0),所以p1=
V
V+V0
p
以第1次抽气后容器内剩余气体为研究对象,设第2次抽气后容器内气体压强为p2,由玻意耳定律有
p1V=p2(V+V0),所以p2=
V
V+V0
p1=(
V
V+V0
)2p
以第n-1次抽气后容器内剩余气体为研究对象,设第n次抽气后容器内气体压强为p n,
由玻意耳定律得p n-1V=p n(V+V0)
所以p n=
V
V+V0
p n-1=(
V
V+V0
)n p
故抽出n次空气后容器内剩余气体的压强为(
V
V+V0
)n p.
答案(
V
V+V0
)n p
例3 一个篮球的容积是2.5 L,用打气筒给篮球打气时,每次把105Pa 的空气打进去125cm3.如果在打气前篮球里的空气压强也是105Pa,那么打30次以后篮球内的空气压强是多少Pa?(设在打气过程中气体温度不变)
解析由于每打一次气,总是把ΔV体积,相等质量、压强为p0的空气压到容积为V0的容器中,所以打n次气后,共打入压强为p0的气体的总体积为nΔV,因为打入的nΔV体积的气体与原先容器里空气的状态相同,故以这两部分气体的整体为研究对象.取打气前为初状态:压强为p0、体积为V0+nΔV;打气后容器中气体的状态为末状态:压强为pn、体积为V0.
令V2为篮球的体积,V1为n次所充气体的体积及篮球的体积之和则V1=2.5L+30×0.125L
由于整个过程中气体质量不变、温度不变,可用玻意耳定律求解;
例4 某容积为20L的氧气瓶里装有30atm的氧气,现把氧气分装到容积为5L的小钢瓶中,使每个小钢瓶中氧气的压强为2atm,如每个小钢瓶中原有氧气压强为1atm.问最多能分装多少瓶?(设分装过程中无漏气,且温度不变)
(提示):先将大、小钢瓶中的氧气变成等温等压的氧气,再分装.
、
例5 如图1所示,两个充有空气的容器A、B,用装有活塞栓的细管相连通,容器A浸在温度为t1=-23℃的恒温箱中,而容器B浸在
t2=27℃的恒温箱中,彼此由活塞栓隔开.容器A的容积为V1=1L,气体压强为p1=1atm;容器B的容积为V2=2L,气体压强为p2=3atm,求活塞栓打开后,气体的稳定压强是多少?
解析活塞栓打开后时,B中气体压强较大,将有一部分气体从B中进入A中,如图2,进入A中的气体温度又变为t1=-23℃,虽然A
中气体温度不变,但由于质量发生变化,压强也随着变化(p增大),这样A、B两容器中的气体质量都发生了变化,似乎无法用气态方程或实验定律来解,需要通过巧妙的选取研究对象及一些中间参量,把变质量问题转化为定质量问题.
例6.一个容器内装有一定质量的理想气体,其压强为 6.0×105pa,温度为47℃,但因该容器漏气,试求最终容器内剩余气体的质量为原有质量的百分之几?已知外界大气压强为p0=1.0×105Pa,气温为27℃.
解析设想漏出的气体被收集在另一个容器中,这样变质量问题转化为定质量问题.
V1为初始状态体积,也等于末状态剩余气体体积,末状态剩余气体和漏出气体属于同温同压气体,二者具有相同密度.则剩余气体与原来气体质量之比为:
mm0=ρV1ρV2=V1V2=0.18,即剩余气体质量为原来
气体质量的18%.
【练习】氧气瓶的容积是40L,其中氧气的压强是130atm,规定瓶内氧气压强降到10atm 时就要重新充氧。
有一个车间,每天需要用1atm的氧气400L,这瓶氧气能用几天?假定温度不变。
理想气体状态方程解法:
由V1→V2:p1V1=p2V2,
V2==L=520L,
由(V2-V1)→V3:p2(V2-V1)=p3V3
V3==L=4800L
则=12(天)
克拉伯龙方程解法:
由PV=nRT及n=(m为气体质量,M为某种气体的摩尔质量,在本题中M为氧气的摩尔质量)得:m=
设氧气瓶中压强为130atm时氧气的质量为m1,此时的压强为P1、体积为V1、温度为T1,氧气瓶中压强为10atm时氧气的质量为m2,此时的压强为P2、体积为V2、温度为T2,每天所用氧气的质量为m3,此时的压强为P3、体积为V3、温度为T3,所用天数为N,根据题意可得:m1=m2+Nm3,
根据题意可知:V1=V2,T1=T2=T3,带入数据可得:N=12(天)
通过比较我们不难发现,对于变质量问题用克拉伯龙方程解决要比用理想气体状态方程解决方便许多,尤其是处理打气问题、抽气问题、气体分装问题时很容易理解。