第5节 原子荧光光谱分析法
- 格式:ppt
- 大小:1.35 MB
- 文档页数:16
第4章原子荧光光谱分析4.1 原子荧光光谱的产生和特性4.2 原子荧光光谱分析的定量关系4.3 原子荧光光谱仪器4.4 蒸气发生样品导入技术4.5 蒸气发生-原子荧光光谱分析技术4.6 蒸气发生-原子荧光光谱分析的干扰4.7 蒸气发生-原子荧光测量要点4.8 非蒸气发生原子荧光光谱分析技术4.1 原子荧光光谱的产生和特性原子荧光光谱分析法是上世纪60年代中期发展起来的一种新的痕量分析方法。
原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。
在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。
气态自由原子处于基态,当吸收激发光源发出的一定频率的辐射能量后,原子由基态跃迁至高能态,即处于激发状态。
处于激发态的原子很不稳定,在极短的时间(≈10-8s)内即会自发地释放能量返回到基态。
若以辐射的形式释放能量,则所发射的特征光即为原子荧光。
原子荧光是光致发光,所以当激发光源停止照射之后,再发射过程立即停止。
4.1.2.1 共振荧光共振荧光是指激发波长与发射波长相同的荧光。
由于原子的激发态和基态之间共振跃迁的概率一般比其他跃迁的概率大得多,所以共振跃迁产生的谱线是最有用的分析谱线。
当原子处于由热激发产生的较低的亚稳能级,则共振荧光也可从亚稳能级上产生:称为热助共振荧光。
4.1.2.2 非共振荧光非共振荧光是指激发波长与发射波长不同的荧光。
(1)斯托克斯荧光当发射荧光波长比激发光波长长时,即为斯托克斯荧光。
①直跃线荧光直跃线荧光是指激发谱线和荧光谱线的高能级相同的荧光。
原子受到光辐射激发,从基态跃迁到较高的激发态,然后直接跃迁到能量高于基态的亚稳态能级,发射出波长比激发光波长要长的原子荧光。
类似的,当原子处于由热激发产生的较低亚稳能级,再通过吸收非共振线而激发的直跃线荧光称为热助直跃线荧光。
②阶跃线荧光阶跃线荧光是指当激发谱线和发射谱线的高能级不同时所产生的荧光,也分为正常阶跃线荧光和热助阶跃线荧光两类。
原子荧光光谱分析法原子荧光光谱分析法具有许多优点。
首先,它具有高选择性。
不同元素的原子荧光光谱具有独特的发射谱线,因此可以通过分析谱线的特征来确定元素的种类。
其次,它具有高灵敏度。
原子荧光光谱的灵敏度可以达到ppm(百万分之一)甚至ppb(十亿分之一)的级别,因此可以准确测量低浓度元素的含量。
此外,该方法还具有无损、快速、简便、高效的特点。
原子荧光光谱分析的操作步骤主要包括:试样的制备、仪器的校准和测量。
试样的制备过程通常包括溶解、溶解质的去除、稀释等步骤,以确保分析的准确性。
仪器的校准是为了消除仪器的系统误差,一般是通过测量已知浓度的标准样品来进行校准。
校准后,样品可以直接进行测量,得到原子荧光光谱。
根据光谱峰的强度和位置,可以确定样品中元素的种类和含量。
原子荧光光谱分析法可以应用于不同领域的元素分析。
例如,在环境科学中,可以用来分析水和土壤中的重金属元素,以评估环境污染的程度。
在材料科学和工业生产中,可以用来分析金属合金中的成分,以确保产品质量。
在生物医学领域,可以用来分析人体组织中的元素,以研究人体健康和疾病。
然而,原子荧光光谱分析方法也存在一些限制。
首先,由于原子荧光光谱需要能量激发原子才能产生光谱,因此只有具有较低能级的原子才能产生明显的荧光,高能级原子的荧光光谱往往比较弱。
其次,由于原子荧光光谱需要对样品进行激发,因此对于不同的元素需要不同的激发能量和波长,这增加了分析的复杂性。
此外,原子荧光光谱在测量过程中还容易受到背景噪声的干扰,影响测量结果的准确性。
总的来说,原子荧光光谱分析法是一种重要的分析技术,具有高选择性、高灵敏度、无损、快速、简便、高效等特点。
在各个领域的元素分析中有广泛的应用前景,是研究和应用的重要手段。
随着技术的不断发展,原子荧光光谱分析法将能够提供更加准确、灵敏、高效的元素分析方法。
原子荧光光谱的分析原理和注意事项分析原子荧光光谱工作原理原子荧光光谱仪,可用于黄金矿山中原矿及尾矿、载金炭及解析炭、解析贵、贫液以及氰化浸金液中金的测定。
同时也充分地质冶金行业对于小于0.1ppb微量金的测试需求。
该款仪器具有灵敏度高,优于石墨炉原子吸取,媲美ICP—MS;测试速度快,每次数据仅需5秒;测试成本低,每个样品测试成本仅需0.08元。
该产品适用于大量测试化探样品中金元素的试验室。
工作原理:液态样品经雾化器雾化后形成气溶胶,气溶胶在预混合雾化室中与燃气充分混合均匀,再通过燃烧的热量使进入火焰的试样蒸发、熔融、分解成基态原子,基态原子被高性能空心阴极灯激发至高能态,处于高能态的原子不稳定,在去激发的过程中以光辐射的形式发射出原子荧光。
原子荧光的强度与被测元素在样品中的含量成正比,从而测定样品中金的含量。
注意事项:1、原子荧光光谱法是一种痕量和超痕量分析方法。
因此,在测定较高含量样品时,应预先稀释后进行测定,如不慎碰到极高含量时(特别是Hg)则管路系统将受到严重污染。
可将载流/样品进样管放入10%HCl(V/V)溶液中,启动蠕动泵不断进行清洗,如仍旧难以清洗干净时,则需更换聚四氟乙稀管路,一般情况下,均可得明显改善,如仍有残余难以清除情况下,则需对石英炉管情况,依照说明书将石英炉管拆下,用2030%王水浸泡24小时左右。
然后再用去离子水清洗干净,晾干或置于烘箱内烘干后使用。
2、为保持仪器表面清洁,可用洗涤剂稀释后用干净的纱布浸湿后擦拭,再用干净湿纱布擦洗。
3、仪器中的透镜应保持清洁,如发觉不洁现象,可用脱脂棉蘸乙醇和乙醚的混合液拧干后擦拭。
(混合液为:30%乙醇和70%乙醚)4、原子化室内简单受酸气和盐类的侵蚀,因此透镜前帽盖和原子化器上会有白色沉淀物形成的斑点,可用干净的纱布擦拭,以保持清洁。
5、更换点火的电炉丝要依照说明书要求,将备有专用的炉丝换上即可,不可将炉丝剪短,否则阻值发生变化,与输人电压不能匹配。
原子荧光光谱分析利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。
原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。
当激发光源停止照射之后,发射荧光的过程随即停止。
原子荧光可分为3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。
共振荧光是所发射的荧光和吸收的辐射波长相同。
只有当基态是单一态,不存在中间能级,才能产生共振荧光。
非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。
非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。
直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。
阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。
直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。
反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。
敏化原子荧光是激发态原子通过碰撞将激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射的荧光。
根据荧光谱线的波长可以进行定性分析。
在一定实验条件下,荧光强度与被测元素的浓度成正比。
据此可以进行定量分析。
原子荧光光谱仪分为色散型和非色散型两类。
两类仪器的结构基本相似,差别在于非色散仪器不用单色器。
色散型仪器由辐射光源、单色器、原子化器、检测器、显示和记录装置组成。
辐射光源用来激发原子使其产生原子荧光。
可用连续光源或锐线光源,常用的连续光源是氙弧灯,可用的锐线光源有高强度空心阴极灯、无极放电灯及可控温度梯度原子光谱灯和激光。
单色器用来选择所需要的荧光谱线,排除其他光谱线的干扰。
原子化器用来将被测元素转化为原子蒸气,有火焰、电热、和电感耦合等离子焰原子化器。
检测器用来检测光信号,并转换为电信号,常用的检测器是光电倍增管。
显示和记录装置用来显示和记录测量结果,可用电表、数字表、记录仪等。
原子荧光光谱法1. 基本原理
2. 原子化方法(光源)
3. 仪器结构:与原子吸收光谱法仪器类似,只是入射光与出射光相互垂直
4. 特点:检出限低、干扰少、吸收谱与发射谱线比较单一、标准曲线线性范围宽(3~5个数量级)
5. 实验方法(与原子吸收光谱法类似)
冷原子化法:Hg
氢化物发生法
原理:As、Bi、Ge、Pb、Se、Sn、Te的氢化物常温为气态
氢化物发生方法
硼氢化钾(钠)-酸还原体系(特点:适用以上
8种以及其他3种元素的分析Hg、Cd、Zn)
金属-酸还原体系
氢化物发生器:组成是进样系统+混合反应器+气液分离器+载气系统
一般氢化物可用电加热或火焰加热的方式使氢化物解离成原子
特点:无基体干扰、进样效率高、存在液相和气相的干扰
荧光类型
定量关系:I f=Kc(I f:发射的荧光强度;c:浓度)
共振荧光:发射光与吸收共振频率相同的光辐射,若原子先被热激发至亚稳态E1
再吸收光辐射跃迁至E2,最后在辐射相同频率的光,就叫热助共振荧光
在原子荧光分析共振振荧光最常用(荧光强度最大)
非共振荧光
敏化荧光:受激发的原子把激发能传递给另一个原子,此原子再发出荧光
火焰原子化法观察不到敏华荧光,石墨炉原子化法可以
Stokes荧光:发射光频率<吸收光频率
反Stokes荧光:发射光频率>吸收光频率
荧光淬灭:一非辐射的形式释放激发能量
机理有:与自由原子碰撞、与自由原子碰撞后形成不同激发态
与分子碰撞、与分子碰撞后形成不同激发态、与电子碰撞、化学淬灭反应
标准加入法
工作曲线法。
原子荧光光谱法原理
原子荧光光谱法是一种用于定量分析元素的分析技术。
它基于原子在受激激发的情况下发射特定波长的荧光光谱的原理。
原子荧光光谱法利用光源对样品中的原子进行激发。
当原子从基态转变为激发态时,它们会吸收入射光的能量。
随后,原子会从激发态返回基态,并发射出与其原子结构和能级差相关的特定波长的荧光光谱。
对荧光光谱进行测量和分析可以提供关于样品中存在的元素的信息。
每种元素都有其特定的荧光光谱,这使得可以通过测量荧光光谱来确定样品中元素的存在和浓度。
原子荧光光谱法的分析过程通常涉及以下步骤:
1. 准备样品:将样品制备成可满足荧光光谱测量条件的形式,例如溶液或固体样品的溶解。
2. 光源激发:使用合适的光源来激发样品中的原子,通常是使用强度足够的波长适当的光源。
3. 荧光光谱测量:测量样品荧光光谱的波长和强度。
光谱仪通常用于高分辨率地记录荧光光谱。
4. 分析和定量:通过比较样品的荧光光谱与标准样品的光谱,可以确定样品中元素的存在和浓度。
采用原子荧光光谱法的优点包括高灵敏度、较低的检测限、宽线性范围和多元素分析能力。
它广泛应用于各种行业,包括环境、食品、药物和矿产等领域的元素分析。
原子荧光光谱法原子荧光光谱法一、概述原子荧光光谱法是一种专门用于分析原子的物质结构和组成的方法。
该方法利用了原子的特性发射出特定波长的光线来进行分析,具有高灵敏度和精确度等优点。
它广泛应用于化工、冶金、电子、环保等领域中。
二、工作原理原子荧光光谱法的工作原理是将待检物样品进入火焰或等离子体中加热到极高温度,使其中原子被激发到激发态,然后随着原子的自发跃迁,从激发态跃迁回基态时,发出一定波长的特定光线,通过仪器检测出这些发射光谱,再进行计算和分析得到样品中元素成分的定量分析结果。
三、操作流程1.准备样品:将待分析物质制成高纯度的化合物或纯金属样品。
2.样品预处理:将样品加入溶剂中,加热或酸化等方式使其转变成原子迹状态。
3.样品的雾化:将样品雾化成细小的颗粒,通过进一步的气体等离子体激励,使得原子处于激发态。
4.测量光谱:通过分光仪等仪器测量样品中元素特征光谱,得出样品元素成分的信息。
5.结果分析:根据光谱结果,采用定量方法对待分析物质的成分进行分析和计算,获得定量分析结果。
四、应用领域原子荧光光谱法适用于分析大量金属元素,可用于纯金属、杂质金属等检测。
它被广泛应用于冶金、化工、电子、环保等领域。
比如用于水质、土壤、废水等环保领域的检测,能够检测出其中的重金属元素,为环保工作提供有力的技术保障。
五、存在的问题尽管原子荧光光谱法在分析中具有很大的优势,在实际应用中仍然存在一些问题。
比如由于仪器灵敏度限制,使用样品的环境也会对结果产生影响。
此外,样品的制备过程也会对结果产生重要影响。
对于不同样品的处理方法还需进一步研究。
综上所述,原子荧光光谱法是一种非常重要的化学分析方法,应用广泛。
在实际操作和结果分析时,需要注意一些问题。
未来,我们需要根据实际的样品情况,不断地改进研究方法,提高分析的准确性和可靠性。
教案(七)开课单位:化学化工学院课程名称:分析化学专业年级:2008级化学专业任课教师:杨季冬/牛卫芬教材名称:分析化学(下)2010-2011学年第1 学期第一节概述早在1802年,渥朗斯顿在研究太阳的光谱时,就惊奇地发现了太阳的连续光谱中出现了无法解释的暗线。
1820年,布鲁斯特认为这些谱线是由于太阳外围的大气圈对太阳光的吸收而产生的。
1860年,本生和克希荷夫在研究金属的火焰光谱时,发现钠原子蒸气发出的光通过温度较低的钠原子蒸气时,就会产生钠谱线的吸收,并且吸收谱线的位置正好和太阳光谱中的D暗线重合。
这就用实验的手段证实了太阳光谱中的D 暗线,正是由于太阳大气圈中的钠原子对太阳光谱中的钠辐射产生吸收的结果。
这是人类第一次认识到原子吸收现象。
直到1955年,才由澳大利亚物理学家瓦尔西首先提出利用原子吸收现象,可以对某些金属元素进行分析。
从此以后,原子吸收光谱法就逐渐成为一种强有力的分析手段,出现在现代仪器分析的行列中。
1 特点:(1)检出限低,10-10~10-14 g;(2)准确度高,1%~5%;(3)选择性高,一般情况下共存元素不干扰;(4)应用广,可测定70多个元素。
2 缺点:难熔元素、非金属元素测定困难,不能进行多元素同时测定。
第二节原子吸收光谱法的原理原子吸收光谱法是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。
基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。
原子吸收光谱位于光谱的紫外区和可见区。
在通常的原子吸收测定条件下,原子蒸气中基态原子数近似等于总原子数。
在原子蒸气中(包括被测元素原子),可能会有基态与激发态存在。
根据热力学的原理,在一定温度下达到热平衡时,基态与激发态的原子数的比例遵循Boltzman分布定律。
N i / N0 = g i / g0exp(- E i / kT)N i与N0分别为激发态与基态的原子数;g i / g0为激发态与基态的统计权重,它表示能级的简并度;T为热力学温度;k为Boltzman常数;E i为激发能。
原子荧光光谱法定量
原子荧光光谱法(Atomic Fluorescence Spectroscopy,AFS)是一种用于定量分析的光谱技术,通常用于检测和测定液体样品中的金属元素。
下面是使用原子荧光光谱法进行定量分析的一般步骤:
1.样品制备:收集待测样品,必要时对样品进行前处理,以确保
合适的样品状态和浓度范围。
2.原子化:将样品中的金属元素原子化。
这通常通过火焰、电感
耦合等离子体(ICP)、石墨炉等手段来实现。
原子化的目的是将金属元素从其化合物中转化为自由的原子态。
3.激发和发射:通过使用激发源(通常是辐射源,如光源或激光)
激发原子的电子,导致金属原子发射荧光辐射。
每个金属元素都有独特的光谱线,这些光谱线可以用于唯一地识别和测定该元素。
4.分析光谱:通过使用荧光光谱仪测量发射的荧光光谱。
光谱中
的荧光峰的强度与样品中金属元素的浓度成正比。
5.制备标准曲线:使用一系列已知浓度的金属元素标准溶液,绘
制标准曲线。
这将用于将光谱信号转换为元素浓度。
6.定量分析:将样品中的光谱信号与标准曲线进行比较,从而确
定样品中金属元素的浓度。
7.质量控制:进行质量控制,确保分析的准确性和可靠性。
这包
括使用质控样品、重复分析等。
原子荧光光谱法的优势在于其高灵敏度、选择性和多元素分析能
力。
然而,需要注意的是,对于不同元素,可能需要调整光谱测量条件,并考虑矩阵效应等因素。