人教a版高中数学必修五:全册配套19
- 格式:doc
- 大小:87.50 KB
- 文档页数:8
人教A版高中数学必修五全册教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教A版高中数学必修五全册教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教A版高中数学必修五全册教案(word版可编辑修改)的全部内容。
人教A 版高中数学必修五全册教案1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数.●教学过程一.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大.能否用一个等式把这种关系精确地表示出来?二。
讲授新课[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关B C A系。
如图,在Rt ∆ABC 中,设BC=a,AC=b ,AB=c , 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c==,则sin sin sin ab cc A B C ===从而在直角三角形ABC 中,sin sin sin a bcA B C ==思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,(1)当∆ABC 是锐角三角形时,设边AB 上的高是CD,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得sin sin c b C B =, b a 从而sin sin abA B =sin cC= A c B (2)当∆ABC 是钝角三角形时,以上关系式仍然成立。
2019年数学高考真题剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.在难度上会有一些差异,但在试卷结构、命题方向上基本都是相同的.试题稳中求新,稳中求变.与往年相比,三角、数列、立体几何、圆锥曲线、函数与导数等依然是考查的重点,注重基础知识,凸显主干知识.试卷结构、题型保持一致,各题型所占分值与分值分布没有变化,试题顺序有较大变化,考查方式有所改变,难度明显增加,客观题与去年的难度相当,主观题难易梯度明显增加,解决了没有区分度的诟病.今年试题立足学科素养,落实关键能力,加强数学应用,渗透数学文化.以真实情境为载体,贴近生活,联系社会实际,注重能力考查,增强综合性、应用性,在各部分内容的布局和考查难度上都进行了调整和改变,这在一定程度上有助于考查学生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重点知识和重点内容,同时有助于打破考试题的僵硬化,更好地提升学生的综合分析能力,打破了传统的应试教育.2019年全国卷对必修5解三角形的考查,通常会有一道大题,相对来说难度不大,有时也会应用到圆锥曲线或立体几何的计算中.线性规划根据新课标的要求,考查越来越少,今年只有全国Ⅱ、Ⅲ卷文科进行了考查.基本不等式往年很少单独考查,经常综合到其他知识当中,但今年的全国Ⅰ卷文、理的第23题考查了基本不等式,取代了绝对值不等式.全国卷对数列的考查难度不大,通常都是数列基本量的计算,今年全国Ⅰ卷中概率大题不但成了压轴,同时还综合了数列的考查.自主命题的省市对数列的考查难度相对大一些,尤其在江苏卷、北京理科中,数列的考查难度较大,经常结合数列知识进行创新.下面列出了2019年全国Ⅰ、Ⅱ、Ⅲ卷及各地区必修5所考查的全部试题,请同学们根据所学知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学的内容的小综合试题,同学们可根据目前所学习的内容,有选择性地试做!)穿越自测一、选择题1.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( ) A .6 B .5 C .4 D .3 答案 A解析 ∵a sin A -b sin B =4c sin C ,∴由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(4c 2+b 2)2bc =-3c 22bc =-14,∴bc =6.故选A.2. (2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 答案 C解析由题意知⎩⎨⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎨⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C. 3. (2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n 答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎨⎧a 1+4d =5,4a 1+6d =0,解得⎩⎨⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.4.(2019·浙江高考)设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a 2n +b ,n ∈N *,则( )A .当b =12时,a 10>10B .当b =14时,a 10>10 C .当b =-2时,a 10>10 D .当b =-4时,a 10>10 答案 A解析 解法一:考察选项A ,a 1=a ,a n +1=a 2n +b =a 2n +12,∵⎝ ⎛⎭⎪⎫a n -122=a 2n -a n +14≥0,∴a 2n ≥a n -14. ∵a n +1=a 2n +12>0,∴a n +1≥a n -14+12=a n+14>a n ,∴{a n }为递增数列.因此,当a 1=0时,a 10取到最小值,现对此情况进行估算.显然,a 1=0,a 2=a 21+12=12,a 3=a 22+12=34,a 4=a 23+12=1716,当n >1时,a n +1>a 2n ,∴lg a n +1>2lg a n ,∴lg a 10>2lg a 9>22·lg a 8>…>26lg a 4=lg a 644,∴a 10>a 644=⎝ ⎛⎭⎪⎫1+11664=C 064+C 164⎝ ⎛⎭⎪⎫1161+C 264⎝ ⎛⎭⎪⎫1162+…+C 6464⎝ ⎛⎭⎪⎫11664=1+64×116+64×632×1162+…+⎝ ⎛⎭⎪⎫11664=1+4+7.875+…+⎝ ⎛⎭⎪⎫11664=12.875+…+⎝ ⎛⎭⎪⎫11664>10,因此符合题意,故选A. 解法二:由已知可得a n +1-a n =a 2n +b -a n =a n -122+b -14.对于选项B ,当a =12,b =14时,a n =12恒成立,所以排除B ;对于选项C ,当a =2或-1,b =-2时,a n =2或-1恒成立,所以排除C.对于选项D ,当a =1±172,b =-4时,a n =1±172恒成立,所以排除D.故选A.5.(2019·浙江高考)若实数x ,y满足约束条件⎩⎨⎧x -3y +4≥0,3x -y -4≤0,x +y ≥0,则z =3x +2y的最大值是( )A .-1B .1C .10D .12 答案 C 解析如图,不等式组表示的平面区域是以A (-1,1),B (1,-1),C (2,2)为顶点的△ABC 区域(包含边界).作出直线y =-32x 并平移,知当直线y =-32x +z2经过C (2,2)时,z 取得最大值,且z max =3×2+2×2=10.故选C.6.(2019·北京高考)若若x ,y 满足|x |≤1-y ,且y ≥-1,则3x +y 的最大值为( )A .-7B .1C .5D .7 答案 C解析由|x |≤1-y ,且y ≥-1,得⎩⎨⎧x -y +1≥0,x +y -1≤0,y ≥-1.作出可行域如图阴影部分所示. 设z =3x +y ,则y =-3x +z . 作直线l 0:y =-3x ,并进行平移.显然当直线z =3x +y 过点A (2,-1)时,z 取最大值,z max =3×2-1=5.故选C. 7.(2019·天津高考)设变量x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6答案 C解析 由约束条件作出可行域如图中阴影部分(含边界)所示.∵z =-4x +y 可化为y =4x +z ,∴作直线l 0:y =4x ,并进行平移,显然当直线z =-4x +y 过点A (-1,1)时,z 取得最大值,z max =-4×(-1)+1=5.故选C.8.(2019·全国卷Ⅲ)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D,2x +y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ②p ∨q ③p ∧q ④p ∧q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④ 答案 A 解析解法一:画出可行域如图中阴影部分所示. 目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 的纵截距.显然,直线过点A (2,4)时,z min =2×2+4=8,即z =2x +y ≥8.∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.故选A.解法二:取x =4,y =5,满足不等式组⎩⎨⎧x +y ≥6,2x -y ≥0,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.故选A.二、填空题9.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案3π4解析∵b sin A+a cos B=0,∴asin A=b-cos B.由正弦定理,得-cos B=sin B,∴tan B=-1.又B∈(0,π),∴B=3π4.10.(2019·全国卷Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为________.答案63解析由余弦定理得b2=a2+c2-2ac cos B.又∵b=6,a=2c,B=π3,∴36=4c2+c2-2×2c2×1 2,∴c=23,a=43,∴S△ABC =12ac sin B=12×43×23×32=6 3.11.(2019·北京高考)设等差数列{a n}的前n项和为S n,若a2=-3,S5=-10,则a5=________,S n的最小值为________.答案0-10解析∵a2=a1+d=-3,S5=5a1+10d=-10,∴a1=-4,d=1,∴a5=a1+4d=0,∴a n=a1+(n-1)d=n-5.令a n<0,则n<5,即数列{a n}中前4项为负,a5=0,第6项及以后为正.∴S n的最小值为S4=S5=-10.12.(2019·全国卷Ⅲ)记S n为等差数列{a n}的前n项和.若a3=5,a7=13,则S10=________.答案 100解析 ∵{a n }为等差数列,a 3=5,a 7=13,∴公差d =a 7-a 37-3=13-54=2,首项a 1=a 3-2d =5-2×2=1,∴S 10=10a 1+10×92d =100.13.(2019·全国卷Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S5=________. 答案 4解析 由a 1≠0,a 2=3a 1,可得d =2a 1, 所以S 10=10a 1+10×92d =100a 1, S 5=5a 1+5×42d =25a 1,所以S 10S 5=4.14.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________. 答案 58解析 设等比数列的公比为q ,又a 1=1,则a n =a 1q n -1=q n -1. ∵S 3=34,∴a 1+a 2+a 3=1+q +q 2=34, 即4q 2+4q +1=0,∴q =-12, ∴S 4=1×⎣⎢⎡⎦⎥⎤1--1241--12=58. 15.(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 答案 1213解析 由a 24=a 6,得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.∴S 5=13×(1-35)1-3=1213.16.(2019·北京高考)若x ,y 满足⎩⎨⎧x ≤2,y ≥-1,4x -3y +1≥0,则y -x 的最小值为________,最大值为________. 答案 -3 1解析 x ,y 满足的平面区域如图所示.设z =y -x ,则y =x +z .把z 看作常数,则目标函数是可平行移动的直线,z 的几何意义是直线y =x +z 的纵截距,通过图象可知,当直线y =x +z 经过点A (2,3)时,z 取得最大值,此时z max =3-2=1.当经过点B (2,-1)时,z 取得最小值,此时z min =-1-2=-3.17.(2019·全国卷Ⅱ)若变量x ,y 满足约束条件⎩⎨⎧2x +3y -6≥0,x +y -3≤0,y -2≤0,则z =3x -y 的最大值是________.答案 9解析 作出已知约束条件对应的可行域(图中阴影部分),由图易知,当直线y =3x -z 过点C 时,-z 最小,即z 最大.由⎩⎨⎧ x +y -3=0,2x +3y -6=0,解得⎩⎨⎧x =3,y =0, 即C 点坐标为(3,0),故z max =3×3-0=9.18.(2019·天津高考)设x >0,y >0,x +2y =5,则(x +1)(2y +1)xy 的最小值为________.答案 43解析 ∵x >0,y >0,∴xy >0. ∵x +2y =5,∴(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +6xy =2xy +6xy≥212=4 3.当且仅当2xy =6xy 时取等号.∴(x +1)(2y +1)xy 的最小值为4 3.三、解答题19.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C . (1)求cos B 的值; (2)求sin (2B +π6)的值.解 (1)在△ABC 中,由正弦定理b sin B =csin C , 得b sin C =c sin B .由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a .因为b +c =2a ,所以b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a22·a ·23a=-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78,故sin ⎝ ⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716.20.(2019·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C 2=b sin A . (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解 (1)由题设及正弦定理得sin A sin A +C2=sin B sin A . 因为sin A ≠0,所以sin A +C2=sin B . 由A +B +C =180°,可得sin A +C 2=cos B2, 故cos B 2=2sin B 2cos B 2.因为cos B 2≠0,所以sin B 2=12,所以B2=30°,所以B =60°. (2)由题设及(1)知△ABC 的面积S △ABC =34a . 由(1)知A +C =120°,由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形, 故0°<A <90°,0°<C <90°.结合A +C =120°,得30°<C <90°,所以12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32.21.(2019·江苏高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =2,cos B =23,求c 的值; (2)若sin A a =cos B 2b ,求sin ⎝ ⎛⎭⎪⎫B +π2的值.解 (1)因为a =3c ,b =2,cos B =23,由余弦定理,得cos B =a 2+c 2-b 22ac ,即23=(3c )2+c 2-(2)22×3c ×c ,解得c 2=13.所以c =33.(2)因为sin A a =cos B2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb , 所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ), 故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255. 因此sin ⎝ ⎛⎭⎪⎫B +π2=cos B =255.22.(2019·北京高考)在△ABC 中,a =3,b -c =2,cos B =-12. (1)求b ,c 的值; (2)求sin(B -C )的值.解 (1)由余弦定理b 2=a 2+c 2-2ac cos B ,得 b 2=32+c 2-2×3×c ×-12.因为b =c +2,所以(c +2)2=32+c 2-2×3×c ×-12,解得c =5,所以b =7. (2)由cos B =-12得sin B =32. 由正弦定理得sin C =c b sin B =5314.在△ABC 中,∠B 是钝角,所以∠C 为锐角, 所以cos C =1-sin 2C =1114.所以sin(B -C )=sin B cos C -cos B sin C =437.23.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C , 故由正弦定理得b 2+c 2-a 2=bc . 由余弦定理得cos A =b 2+c 2-a 22bc =12. 因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C , 即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24.24.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.解 (1)设{a n }的公差为d . 因为a 1=-10,所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=-30.25.(2019·全国卷Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.解 (1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0. 解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+(2n -1)=n 2.26.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.27.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解 (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ). 又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1, 所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.28.(2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎨⎧ 3q =3+2d ,3q 2=15+4d ,解得⎩⎨⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以,{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n .(2)a 1c 1+a 2c 2+…+a 2n c 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2nb n )=⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n ) =3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,② ②-①得,2T n =-3-32-33-…-3n +n ×3n +1=-3(1-3n )1-3+n ×3n +1=(2n -1)3n +1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).29.(2019·天津高考)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n =⎩⎨⎧1,2k <n <2k +1,b k,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式; ②求∑i =12na i c i (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎨⎧ 6q =6+2d ,6q 2=12+4d ,解得⎩⎨⎧d =3,q =2, 故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n .所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)①a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. ②∑i =12na i c i =∑i =12n[a i +a i (c i -1)]=∑i =12n a i +∑i =1na 2i (c 2i -1)=⎝ ⎛⎭⎪⎫2n×4+2n (2n -1)2×3+∑i =1n (9×4i -1) =(3×22n -1+5×2n -1)+9×4(1-4n )1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).30.(2019·浙江高考)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =a n 2b n,n ∈N *,证明:c 1+c 2+…+c n <2n ,n ∈N *. 解 (1)设数列{a n }的公差为d ,由题意得⎩⎨⎧ a 1+2d =4,a 1+3d =3a 1+3d ,解得⎩⎨⎧a 1=0,d =2.从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列,得 (S n +1+b n )2=(S n +b n )(S n +2+b n ). 解得b n =1d (S 2n +1-S n S n +2). 所以b n =n 2+n ,n ∈N *. (2)证明:c n =a n2b n =2n -22n (n +1)=n -1n (n +1),n ∈N *.我们用数学归纳法证明.①当n =1时,c 1=0<2,不等式成立; ②假设当n =k (k ∈N *)时不等式成立,即 c 1+c 2+…+c k <2k . 那么,当n =k +1时, c 1+c 2+…+c k +c k +1<2k +k(k +1)(k +2)<2k+1k+1<2k+2k+1+k=2k+2(k+1-k)=2k+1,即当n=k+1时不等式也成立.根据①和②,不等式c1+c2+…+c n<2n对任意n∈N*成立.31.(2019·北京高考)已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<…<i m),若a i1<a i2<…<a im,则称新数列a i1,a i2,…,a im为{a n}的长度为m 的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n}的长度为p的递增子列的末项的最小值为a m0,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m0<a n0;(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s 的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s -1个(s=1,2,…),求数列{a n}的通项公式.解(1)1,3,5,6.(答案不唯一)(2)证明:设长度为q,末项为a n0的一个递增子列为a r1,a r2,…,a rq-1,a n0.由p<q,得a rp≤a rq-1<a n0.因为{a n}的长度为p的递增子列末项的最小值为a m0,又a r1,a r2,…,a rp是{a n}的长度为p的递增子列,所以a m0≤a rp.所以a m0<a n0.(3)由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设a p1,a p2,…,a pm-1,2m-1是数列{a n}的长度为m,末项为2m-1的递增子列,则a p1,a p2,…,a pm-1,2m-1,2m是数列{a n}的长度为m+1,末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n }中不超过2m +1的数为1,2,…,2m -2,2m -1,2m +1,所以{a n }的长度为m +1且末项为2m +1的递增子列个数至多为2×2×2×…×2(m -1)个×1×1=2m-1<2m .与已知矛盾.最后证明:2m 排在2m -3之后(m ≥2且m 为整数).假设存在2m (m ≥2),使得2m 排在2m -3之前,则{a n }的长度为m +1且末项为2m +1的递增子列的个数小于2m .与已知矛盾.综上,数列{a n }只可能为2,1,4,3,…,2m -3,2m,2m -1,…. 经验证,数列2,1,4,3,…,2m -3,2m,2m -1,…符合条件. 所以a n =⎩⎨⎧n +1,n 为奇数,n -1,n 为偶数.32.(2019·江苏高考)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M-数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M-数列”{c n }(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k +1成立,求m 的最大值.解 (1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由⎩⎨⎧ a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎨⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得⎩⎨⎧a 1=1,q =2.因此数列{a n }为“M-数列”. (2)①因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ).当n ≥2时,由b n =S n -S n -1,得 b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *.因为数列{c n }为“M-数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k ,其中k =1,2,3,…,m (m ∈N *). 当k =1时,有q ≥1;当k =2,3,…,m 时,有ln k k ≤ln q ≤ln kk -1.设f (x )=ln xx (x >1),则f ′(x )=1-ln x x 2. 令f ′(x )=0,得x =e.列表如下:因为ln 22=ln 86<ln 96=ln 33, 所以f (k )max =f (3)=ln 33.取q =33,当k =1,2,3,4,5时,ln k k ≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.33.(2019·全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1. 证明:(1)1a +1b +1c ≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc=1a +1b +1c .当且仅当a =b =c =1时,等号成立. 所以1a +1b +1c ≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1, 故有(a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(c +a )3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24. 当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.由Ruize收集整理。
人教版高中数学(理)必修5(实验班)全册同步练习及答案人教版高中数学(理)必修5(实验班)全册同步练习及答案1.1.1 正弦定理一、选择题,,,ABCa,101(在中,,,,则 ( ) B,60C,45c,A( B( 103,10(31),C( D(103 10(31),,ABC2.在中,下列关系式中一定成立的是 ( )abA,sinabA,sinA( B(abA,sinabA,sinC( D(abc,,,,ABC,a,133. 在中,已知,,则 ( ) A,60sinsinsinABC,,8323926323A( B( C( D( 33322,ABC中,已知aBbAtantan,,则此三角形是 ( ) 4. 在A(锐角三角形 B(直角三角形C(钝角三角形 D(直角或等腰三角形,,,,,,,,,,,,,,,,,,AC,1AB,4,ABCABAC 5. 在锐角中,已知,,,则的值为( ) S,3,ABC,2,4,22A( B( C( D(,ABCbCa,4bc,,5AB6. 在中,,,分别为角,,的对边,且,, ac,ABCtantan33tantanBCBC,,, ,则的面积为 ( )333333A( B( C( D( 444二、填空题2π,ABCb,1c,37(在中,若,,C,,则a,________( 38(已知a,b,c分别是?ABC的三个内角A,B,C所对的边(若a,1,b,3,A,C,2B,则sinC,________(三、解答题,ABC9(根据下列条件,解.,b,4c,8 (1)已知,,,解此三角形; B,30,,b,2 (2)已知,,,解此三角形. B,45C,75,B25,ABCbCa,210. 在中,,,分别为内角A,B,的对边,若,,,,Caccos,425,ABCS求的面积.1.1.1正弦定理一、选择题D 3.B 4.D 5.B 6.C 1.B 2.二、填空题7(8. 11三、解答题,cBsin8sin309. 解:(1)由正弦定理得 sin1C,,,b4,,,cb,由知,得 30150,,CC,9022,从而, A,60acb,,,43,,(2)由ABC,+=180 得 A,60,abbAsin2sin60, ??a,,,6 ,sinsinABsinsin45B,bCsin2sin75 c,,,,31同理,sinsin45BB432cos2cos1B,,10. 解:由知 cos21B,,,,255420,,B,sin1cosBB,,, 又,得 5,,,,,sinsin[()]sin()ABCBC,72 ,,,sincoscossinBCBC10acaCsin10,ABC,c,,在中,由知 sinsinACsin7A111048?,,,,,,SacBsin2. 227571.1.2 余弦定理一、选择题,ABC,ABC1(在中,已知,则的最小角为 ( ) a,8,b,43,c,13,,,,A( B( C( D(12344,ABC2(在中,如果,则角等于 ( ) A(a,b,c)(b,c,a),3bc0000A( B( C( D(3060120150,ABC3(在中,若,则其面积等于 ( ) a,7,b,3,c,82128A(12 B( C( D(63 2,ABCsin2sincosABC,,ABC4(在中,若,并有,那么(a,b,c)(b,c,a),3bc 是 ( )A(直角三角形 B(等边三角形C(等腰三角形 D(等腰直角三角形abc,,,,ABCb,1,5.在中,A,60,,,则 ( ) S,3,ABCsinsinsinABC,,8323926339A( B( C( D( 326336(某班设计了一个八边形的班徽(如右图),它由腰长为1,顶角为的四个等腰,三角形及其底边构成的正方形所组成,该八边形的面积为 ( )2sin2cos2,,,,sin3cos3,,,,A( B(2sincos1,,,,3sin3cos1,,,,C( D(二、填空题,ABC7(在中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______ .,ABCbCAB8. 在中,a,,c分别为角,,的对边,若,(3)coscosbcAaC,,cosA,则 .三、解答题0a、B、CS9(在?ABC中,已知,求及面积. b,5,c,53,A,30310(在?ABC中,a,b,c分别为角A,B,C的对边(已知:b,2,c,4,cosA,. 4(1)求边a的值;(2)求cos(A,B)的值(1.1.2余弦定理一、选择题1.B2.B3.D4.B5.B6.A二、填空题37( 238.3三、解答题9. 解由余弦定理,知220222,5,(53),2,5,53sin30,25a,b,c,2bccosA0a,5a,bB,A,30? 又??00C,180,A,B,120?112530sin5(53)sin30S,bcA,,,,22422210. 解:(1)a,b,c,2bccosA322,2,4,2×2×4×,8~?a,22. 437ab(2)?cosA,~?sinA,~,~ 44sinAsinB22214即,.?sinB,. sinB87452又?b<c~?B为锐角(?cosB,. 8?cos(A,B),cosAcosB,sinAsinB 352714112,×,×,. 4848161.1.3 正、余弦定理的综合应用一、选择题,ABCsin:sin:sin5:7:8ABC,1(在中,若,则的大小是 ( ) ,B,5,,2,A( B( C( D(6363 ,,ABCbCC2(在中,,,分别为角,,的对边,如果,,那么角ca,3ABB,30ac等于 ( ),,,,A( B( C( D(12010590751,ABC3(的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为( ) 3 929292A( B( C( D( 9224813,ABCa,7,b,8,cosC,4(在中,若,则最大角的余弦是 ( ) 141111A(, B(, C(, D(, 5867,ABC,ABC,A5( 在中,满足条件,3sinA,cosA,1,AB,2cm,BC,23cm的面积等于( )33323A( B( C( D( 2Acb,2,ABCbC,ABCsin,AB6(在中, (,,分别为角,,的对边),则的形状ac22c 为 ( ) A(正三角形 B(直角三角形C(等腰直角三角形 D(等腰三角形二、填空题02,ABC3x,27x,32,0A,607(已知在中,,最大边和最小边的长是方程的BC两实根,那么边长等于________.222,ABCbCAB8(已知锐角的三边a,,c分别为角,,的对边,且()tanbcaA,,,3bc,则角A的大小_________.三、解答题,ABCbCABac9((2)coscosacBbC,,在中,,,分别为角,,的对边,且满足.B(1)求角的大小;ac,,4,ABC(2)若,,求的面积( b,71,ABCbC10(在中,,,分别为角A,B,的对边,已知. cos2C,,ac4sinC(1)求的值;a,22sinsinAC,b(2)当,时,求及的长( c1.1.3正、余弦定理的综合应用一、选择题A 3.C 4.C 5.C 6.B 1.C 2.二、填空题,7( 78.60三、解答题9. 解:(1)由正弦定理得a,2RsinA~b,2RsinB~c,2RsinC~代入(2a,c)cosB,bcosC~整理,得2sinAcosB,sinBcosC,sinCcosB~即2sinAcosB,sin(B,C),sinA. 又sinA>0~?2cosB,1~π由B?(0~π)~得B,. 3(2)由余弦定理得222b,a,c,2ac?cosB2,(a,c),2ac,2accosB.π将b,7~a,c,4~B,代入整理~得ac,3. 31333??ABC的面积为S,acsinB,sin60?,. 2241210. 解:(1)因为cos2C,1,2sinC,,~ 410所以sinC,?~ 410又0<C<π~所以sinC,. 4ac(2)当a,2,2sinA,sinC时,由正弦定理,~得c,4. sinAsinC162由cos2C,2cosC,1,,~且0<C<π得cosC,?. 442222由余弦定理c,a,b,2abcosC~得b?6b,12,0~解得b,6或26~,,b,6~b,26~所以,或, ,c,4~,c,4.1.2应用举例(二)一、选择题,,1. 在某测量中,设在的南偏东,则在的 ( ) ABBA3427,,,,,,A.北偏西 B. 北偏东 C. 北偏西 D. 南偏西342755335533,, 55332(台风中心从地以20 km/h的速度向东北方向移动,离台风中心30 km内的A 地区为危险区,城市在的正东40 km处,城市处于危险区内的时间为( ) BABA.0.5 hB.1 hC.1.5 hD.2 hCDCa,C3(已知、、三点在地面同一直线上,,从、两点测得的点DBDA仰角分别为、,则A点离地面的高AB等于 ,,,,(),( ),,,,,,,,acoscosacoscosasinsinasinsinA( B( C( D( sin(,,,)cos(,,,)sin( ,,,)cos(,,,)4.有一长为1公里的斜坡,它的倾斜角为20?,现要将倾斜角改为10?,则坡底要伸长( )A(1公里 B(sin10?公里 C(cos10?公里 D(cos20?公里,BAEABE5. 如右图,在某点处测得建筑物的顶端的仰角为,沿方向前进30 CAD米至处测得顶端的仰角为2θ,再继续前进103米至处,测得顶端A的仰角为4θ,则θ的值为 ( )A(15? B(10?C(5? D(20?6(一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60?,另一灯塔在船的南偏西75?西,则这只船的速度是每小时( )33A.5海里 B.5海里 C.10海里 D.10海里? 二、填空题,,12nmile AB5010(我舰在敌岛7南偏西相距的处,发现敌舰正由岛沿北偏西的10nmile h2方向以/的速度航行,我舰要用小时追上敌舰,则需要速度的大小为 .北 20m8(在一座高的观测台顶测得地面一水塔塔顶仰角为,,6045,塔底俯角为,那么这座塔的高为___ ____. A45? 三、解答题B15?C,9nmile 9(如图,甲船在处,乙船在处的南偏东方向,距A有并以AA45,20nmile h28nmile h/的速度沿南偏西方向航行,若甲船以/的速度航行用多15少小时能尽快追上乙船,10.在海岸AA处发现北偏东45?方向,距处(3,BA1)海里的处有一艘走私船,在处北偏西75?方向,CA距处2海里的处的我方缉私船,奉命以103海里/小时的速度追截走私船,此时走私船正以10海B里/小时的速度,从处向北偏东30?方向逃窜(问:缉私船应沿什么方向行驶才能最快截获走私船,并求出所需时间(1.2应用举例(二) 一、选择题1.A2.B3.A4.A5.A6.C二、填空题7(14nmile/h8. 20(1+3)m三、解答题9. 解:设用t h,甲船能追上乙船,且在C处相遇。
特别说明:《新课程高中数学训练题组》是根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。
本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。
本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。
本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。
本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。
目录:数学5(必修)数学5(必修)第一章:解三角形 [基础训练A组]数学5(必修)第一章:解三角形 [综合训练B组]数学5(必修)第一章:解三角形 [提高训练C组]数学5(必修)第二章:数列 [基础训练A组]数学5(必修)第二章:数列 [综合训练B组]数学5(必修)第二章:数列 [提高训练C组]数学5(必修)第三章:不等式 [基础训练A组]数学5(必修)第三章:不等式 [综合训练B组]数学5(必修)第三章:不等式 [提高训练C组]新课程高中数学训练题组(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A > 则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060, 则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .06030或 B .06045或 C .060120或 D .015030或6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
课时作业(十九)
1.已知数列{a n }中,a 1=2,a n +1=a n +2n(n ∈N *),则a 100的值是( ) A .9 900 B .9 902 C .9 904 D .11 000
答案 B
解析 a 100=(a 100-a 99)+(a 99-a 98)+…+(a 2-a 1)+a 1 =2(99+98+…+2+1)+2 =2·99·(99+1)2+2=9 902.
2.已知数列{a n }中,a 1=1,a n +1=a n
1+2a n
,则这个数列的第n 项a n 为( ) A .2n -1 B .2n +1 C.
1
2n -1
D.12n +1 答案 C 解析 ∵a n +1=
a n 1+2a n ,∴1a n +1=1
a n
+2. ∴⎩
⎪⎨⎪⎧⎭⎪⎬⎪
⎫1a n 为等差数列,公差为2,首项1
a 1
=1.
∴1a n =1+(n -1)·2=2n -1,∴a n =12n -1
. 3.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1
n ),则a n 等于( )
A .2+lnn
B .2+(n -1)lnn
C .2+nlnn
D .1+n +lnn
答案 A
4.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n 等于( )
A .2n -1
B .2n -1-1
C .2n +1
D .4n -1 答案 A
5.一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2
倍):
A.68 B.132
C.133 D.260
答案 B
解析前7行中共有1+2+22+…+26=27-1=127个数,则第8行中的第5个数是127+5=132.
6.若数列{a
n }的前n项和为S
n
,a
1
=2,且对于任意大于1的整数n,点(S
n
,
S n-1)在直线x-y-2=0上,则数列{a
n
}的通项公式为__________.
答案a
n
=4n-2
7.数列{a
n }中,a
1
=3,a
n+1
-2a
n
=0,数列{b
n
}的通项满足关系式a
n
b
n
=(-
1)n,(n∈N*),则b
n
=__________.
答案(-1)n 3·2n-1
8.在数列{a
n }中,a
1
=1,a
n+1
=
n+1
n
a
n
,则数列{a
n
}的通项公式a
n
=________.
答案n
解析a
n =
a
n
a
n-1
·
a
n-1
a
n-2
·…·
a
3
a
2
·
a
2
a
1
·a1
=
n
n-1
·
n-1
n-2
·…·
3
2
·
2
1
=n.
9.已知数列{a
n }满足a
n+1
=3a
n
+2,且a
1
=1,则a
n
=________.
答案2×3n-1-1
解析设a
n+1+A=3(a
n
+A),化简得a
n+1
=3a
n
+2A.
又a
n+1=3a
n
+2,∴2A=2.则A=1.
∴a
n+1+1=3(a
n
+1),即
a
n+1
+1
a
n
+1
=3.
∴数列{a n +1}是等比数列,首项为a 1+1=2,公比为3. 则a n +1=2×3n -1,即a n =2×3n -1-1.
10.(2013·新课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +1
3,则{a n }的通项
公式是a n =________.
答案 (-2)n -1 解析 ∵S n =23a n +1
3,①
∴当n ≥2时,S n -1=23a n -1+1
3.②
①-②,得a n =23a n -23a n -1,即a n
a n -1=-2.
∵a 1=S 1=23a 1+1
3
,∴a 1=1.
∴{a n }是以1为首项,-2为公比的等比数列. ∴a n =(-2)n -1.
11.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n
n 的最小值为________.
答案 21
2
解析 在a n +1-a n =2n 中,令n =1,得a 2-a 1=2;令n =2,得a 3-a 2=4,…,a n -a n -1=2(n -1).
把上面n -1个式子相加,得a n -a 1=2+4+6+…+2(n -1)=
(2+2n -2)(n -1)2=n 2-n ,∴a n =n 2-n +33.∴a n
n =n 2
-n +33n =n +33n
-1≥233-
1,当且仅当n =
33
n
,即n =33时取等号,而n ∈N *,∴“=”取不到.∵5<33<6,∴当n =5时,a n n =5-1+335=535,当n =6时,a n n =6-1+336=636=212,∵
53
5>212,∴a n n 的最小值是21
2
. 12.(2012·湖北)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;
(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解析 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d. 由题意得⎩⎨
⎧ 3a 1+3d =-3,
a 1(a 1+d )(a 1+2d )=8,
解得⎩⎨
⎧
a 1=2,d =-3
或⎩⎨
⎧
a 1=-4,d =3.
所以由等差数列通项公式,可得
a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.
(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=⎩⎨
⎧
-3n +7, n =1,2,
3n -7, n ≥3.
记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4; 当n =2时,S 2=|a 1|+|a 2|=5;
当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)
=5+
(n -2)[2+(3n -7)]2=32n 2-11
2
n +10.
当n =2时,满足此式.
综上,S n
=⎩⎨⎧
4, n =1,
32n 2
-11
2
n +10, n>1.
►重点班·选作题 13.已知S n =4-a n -12n -2,求a n 与S n .
解析 ∵S n =4-a n -
12
n -2
,∴S n -1=4-a n -1-12n -3
.
∴S n -S n -1=a n =a n -1-a n +12
n -3
-
12n -2
.。