UNSUENO气体放电过程分析
- 格式:pdf
- 大小:720.27 KB
- 文档页数:31
气体放电过程的分析摘要:气体电介质,特别是空气,是电力系统中最重要的绝缘介质。
对气体放电过程进行分析,研究气体电介质的绝缘特性具有十分重要的意义。
而气体放电又受气体间隙、环境电场影响,其过程的分析需要各种理论的支持。
Abstract: The dielectric gas, particularly air, is the most important power system insulation medium. Analysis of the gas discharge process, the insulation of the dielectric properties of the gas has very important significance. But also by the gas gap discharge, environmental electric field, the process of analysis requires the support of various theories.关键字:气体放电、带电质点、气体间隙、电子崩、汤逊理论、流注理论Keywords: Gas discharge, charged particles, gas gap, electronic avalanche, Thompson theory, theory of flow injection一、气体中带电质点的产生与消失1.气体中带电质点的产生气体的特点:气体的分子间距很大,极化率很小,因此,介电常数都接近于1。
纯净的、中性状态的气体是不导电的,只有气体中出现了带电质点(电子、正离子、负离子)以后,才可能导电,并在电场作用下发展成为各种形式的气体放电现象。
气体导电的原因:气体中出现了带电质点(电子、正离子、负离子)以后,游离出来的自由电子、正离子和负离子在电场作用下移动,从而形成气体电介质的电导层。
气体放电过程的分析干燥气体通常是良好的绝缘体,但当气体中存在自由带电粒子时,它就变为电的导体。
这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。
依气体压力、施加电压、电极形状、电源频率的不同,气体放电有多种多样的形式。
主要的形式有暗放电、辉光放电、电弧放电、电晕放电、火花放电、高频放电等。
20世纪70年代以来激光导引放电、电子束维持放电等新的放电形式,也日益受到人们的重视。
暗放电暗放电主要是非自持放电(但自持放电的某些区域中有暗放电存在)。
关于暗放电的理论是英国物理学家J.S.汤生于1903年提出的,故这种放电也称为汤生放电。
汤生理论的物理描述是:设外界催离素在阴极表面辐照出一个电子,这个电子向阳极方向飞行,并与分子频繁碰撞,其中一些碰撞可能导致分子的电离,得到一个正离子和一个电子。
新电子和原有电子一起,在电场加速下继续前进,又能引起分子的电离,电子数目便雪崩式地增长。
这称为电子繁流(图2)。
气体放电汤生根据上述物理描述,推导出抵达阳极的电子数目n u为式中n0为阴极发射的电子数;d为阴极阳极间距离;α为汤生第一电离系数。
上式表明,电子数目随距离d指数增长。
在一些光电器件中,特意充入一些惰性气体,使光电阴极发射的电子在气体中进行繁流,以得到光电流的放大,提高器件的灵敏度。
放电中产生的正离子最后都抵达阴极。
正离子轰击阴极表面时,使阴极产生电子发射;这种离子轰击产生的次级电子发射,称为r过程。
r过程使放电出现新的特点,这就是:r过程产生的次级电子也能参加繁流。
如果同一时间内,由于r过程产生的电子数,恰好等于飞抵阳极的电子数,放电就能自行维持而不依赖于外界电离源,这时就转化为自持放电。
辉光放电低压气体在着火之后一般都产生辉光放电。
若电极是安装在玻璃管内,在气体压力约为 100帕且所加电压适中时,放电就呈现出明暗相间的 8个区域(图4)。
图中下方的曲线表示光强的分布,按从阴极到阳极的顺序分为7个区。
气体放电过程分析摘要:在电力系统和电气设备中,气体常作为绝缘介质。
气体作为绝缘介质有着诸多优点,如空气的廉价和广泛性,SF6气体的电气好强度行等,因此在电力系统中内广泛应用。
至于放电过程,在不均匀电场中,气隙较小时,间隙放电大致可分为电子崩、流注和主放电阶段。
长间隙的放电则可分为电子崩、流注、先导和主放电阶段。
间隙越长,先导过程就发展得越充分。
间隙越长,先到过程就发展的越充分。
气体放电受诸多因素的影响,主要表现为电场形式、电压波形、气体的性质和状态等。
In power system and electric equipment, gas often as insulating medium。
Gas has many merits as insulating medium, such as air of cheap and universality, SF6 gas electrical good strength line, so in the power system widely in the application。
In uneven electric, air gap is lesser, discharge gap can be roughly divided into electronic fracture, lingers and main discharge stage. Long clearance discharge is can be divided into electronic fracture, lingers, pilot and main discharge stage。
Clearance is longer, the first to process development is more sufficient。
Gas discharge under the influence of various factors, main performance for electric form, voltage waveform, the properties of the gas and state, etc。
气体放电过程分析报告一、气体放电的定义气体放电是人们在自然界与日常生活中常常碰到的现象,如闪电、日光灯等,它一般是指在电场作用下或其他激活方法使气体电离,形成能导电的电离气体。
气体放电是产生低温等离子体的主要途径。
所谓的低温等离子体是区别于核聚变中高温等离子体而言的。
低温等离子体物理与技术在经历了一个由20世纪60年代初的空间等离子体研究向80年代和90年代以材料及微电子为导向的研究领域的重大转变之后,现在已经成为具有全球影响的重要课题,其发展对于高科技经济的发展及传统工业的改造有着巨大的影响。
二、气体放电过程分析气体放电的经典理论主要有汤森放电理论和流注放电理论等。
1903年,为了解释低气压下的气体放电现象,汤森(J.S.Townsend)提出了气体击穿理论,引入了三个系数来描述气体放电的机理,并给出了气体击穿判据。
汤森放电理论可以解释气体放电中的许多现象,如击穿电压与放电间距及气压之间的关系,二次电子发射的作用等。
但是汤森放电解释某些现象也有困难,如击穿形成的时延现象等;另外汤森放电理论没有考虑放电过程中空间电荷作用,而这一点对于放电的发展是非常重要的。
电子雪崩中的正离子随着放电的发展可以达到很高的密度,从而可以明显的引起电场的畸变,进而引起局部电子能量的加强,加剧电离。
针对汤森放电理论的不足,1940年左右,H.Raether及Loeb、Meek等人提出了流注(Streamer)击穿理论,从而弥补了汤森放电理论中的一些缺陷,能有效地解释高气压下,如大气压下的气体放电现象,使得放电理论得到进一步的完善。
近年来,随着新的气体放电工业应用的不断涌现及实验观测技术的进一步发展,将放电理论与非线性动力学相结合,利用非线性动力学的方法来研究气体放电中的各种现象成为气体放电研究中的重要内容。
汤逊理论通过引入“电子崩”的概念,较好地解释了均匀电场中低气压短间隙的气体放电过程,通过这个理论可以推导出有关均匀电场中气隙的击穿电压及其影响因素的一些实用性结论。