九年级数学上册第一次月考试卷分析(张春)
- 格式:doc
- 大小:35.00 KB
- 文档页数:2
数学月考质量分析初三数学初三月考质量分析一试卷整体分析:1、题目难度系数不大。
注重学生基础知识和基本技能的考查,整个试卷上的题目能够做到起点低。
针对学生来说得分点,容易得分,能够做到考察学生对基础知识的掌握程度和基本解题技巧及方法的运用。
2、所考察的知识点全面、覆盖面大,考试的内容均能设计到,而且所考察的重点突出,相对比较合理,但部分考察的内容超出考试范围,小部分考察的内容较难,部分学生不能够动手去做。
二、学生答题情况分析:1、从整体试卷的难易情况看,此次数学测试题难度适中,以常规题居多,但从检测情况来看,部分学生答题情况欠佳,下面逐题简要说明:第一题选择题,因为起点低,基础性强,学生得分情况比较好,但7、8题稍有点难度,从而得分情况不是很好;第二题填空题,因为比较容易,得分情况也比较好,但最后两题有些偏难。
其中第15小题多数同学是靠猜想得出的结论;第16小题,由于前面有范例,从而降低了难度,中上水平的同学都能做出来。
第三大题,此题整体难度不大,得分情况还是很好,但少数同学仍然是计算出了问题,说明基础掌握不扎实,尤其是第18小题、19小题得分较差,重要原因是学生灵活性不够,运用数学知识解决数学问题的能力不强。
第22、23小题证明题,出现两极分化现象,优秀的学生解答思路清晰、书写完整,而基础差的同学根本不会证明,逻辑思维混乱,不知如何证明。
最后一题得分率较低,主要是教师对于这一方面的类型题训练不够,再加上学生不能将问题中的主要信息进行提炼,将实际问题能化为数学问题进行解决。
2、学生在解答试卷的过程中存在的问题:、①对初中数学中的概念、法则、性质、公式的理解存储、提取、应用均存在明显的差距,不理解概念的实质,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致运算推理出现错误;②运算技能偏低,训练不到位,由此造成的失分现象严重,计算上产生的错误几乎遍及所有涉及到计算的问题,我们的考生的确存在一批运算的“低能儿”,运算能力差是造成他们数学成绩偏低的主要原因之一;③在推理论证过程中不能合乎逻辑地、准确地表述自己的思想,出现层次不清,逻辑不严密,语言表述混乱的现象。
九年级第一次月考成绩分析一、整体表现分析平均分与及格率:对比上一次考试或年级平均水平,观察整体成绩是否有所提升或下降。
例如,如果上次考试的平均分为75分,而本次考试的平均分为78分,则说明整体成绩有所提升。
分析及格率的变化,了解有多少学生达到了基本的学习要求。
假设上次考试的及格率为80%,而本次考试的及格率为85%,则说明更多学生达到了学习要求。
优秀率与低分率:统计获得高分(如90分以上)的学生比例,以评估顶尖学生的学习状况。
例如,如果上次考试的优秀率为10%,而本次考试的优秀率为15%,则说明更多学生取得了优异成绩。
关注低分(如60分以下)学生的比例,识别需要特别关注和辅导的群体。
假设上次考试的低分率为5%,而本次考试的低分率为3%,则说明低分学生数量有所减少。
分数分布:绘制成绩分布图,观察成绩是否呈现正态分布,或者是否存在极端值。
例如,如果成绩分布呈现出明显的两极分化现象,则需要进一步分析原因并采取措施。
分析不同分数段的学生数量,了解成绩集中的趋势。
例如,如果大多数学生的分数集中在70-80分段,则说明该分数段是学生的主要成绩区间。
二、科目差异分析各科平均分对比:比较不同科目的平均分,找出学生普遍表现较好或较差的科目。
例如,如果语文科目的平均分为80分,而数学科目的平均分仅为60分,则说明数学是学生普遍表现较差的科目。
分析科目间的差异原因,如教学方法、课程难度等。
针对数学科目表现较差的情况,可以分析是否是教学方法不当或课程难度过大导致的。
科目内分数波动:观察同一科目内不同学生的分数波动情况,了解该科目的教学效果是否均衡。
例如,如果数学科目内部分学生的分数波动较大,则说明该科目的教学效果不够均衡。
分析波动较大的原因,如教学内容掌握不均、考试难度设置不合理等。
针对数学科目分数波动较大的情况,可以分析是否是教学内容掌握不均或考试难度设置不合理导致的。
三、学生个体差异分析进步与退步学生:识别出成绩有显著进步或退步的学生,分析其背后的原因。
让知识带有温度。
九年级数学第一次月考质量分析第一次月考九年级上册数学质量分析(2022--2022学年第一学期)一、考试成果分析二、试卷分析本次考试试卷题量同中考题量,难易程度偏低,第1—23题所有是课本上的练习题,较全面的反应了同学第一个月的学习基本状况。
1、考查范围:九年级上册其次十一章一元二次方程,其次十二章二次函数。
2、考试题型分析:第一题挑选题:主要考查同学对数学基本概念和计算的把握状况,都是很直接的,惟独第7小题是综合性的,14个小题共42分;其次题填空题:主要考查同学对二次根式基本概念、运算和一元二次方程基本概念、解法的把握状况,4个小题共20分;第三题解答题:主要考查同学解一元二次方程把握状况,第22、23两题是综合性题,试验班同学完成比较好,这部分5个题共58分。
3、同学简单失分的题目及缘由:第3题;对二次函数的概念不清;第5题是一个难题,要求同学能按照语言的描述转化为数知识题;第7题:按照已知条件来确定正确的图形,好多学生都没有选对;第13题:没有理解“二次函数的图像性质”的含义;第15题:这是一套有理数的运用题目,有的学生不会按照可能浮现的状况分类研究;第19题:无数学生不能按照一元二次方程的题型挑选适当办法解方程。
三、本次考试反映出的问题第1页/共2页千里之行,始于足下1、做题策略欠佳。
突出表现在解决问题中,此次的解决问题全是考查一元一次方程和二次函数,因为同学概念不清、运算能力差、分析问题不够全面、不会运用数学学问有解决实际问题,导致了分数考不高。
2、运算不娴熟。
运算是本章学习的重中之重,相当一部分的学生连最基本的运算都不会,数学必须从运算做起,惟独会算了,才干去分析其它的问题。
四、措施1、培养学习学习数学爱好,注意对同学基本运算能力的培养。
2、培养同学仔细做题的习惯,注重培养同学解题的一些策略。
灵便的处理试题。
平常的练习和单元测试中重视这方面的提醒。
这次考试反映了一些问题,通过对试卷的分析,总结了一些教训。
初三数学试卷分析及反思1.12.23.3初三数学第一次月水平检测试卷分析,这要求同学们对基本概念熟练掌握对基本技能熟练运用,我们在教学中可采用灵活多样的反馈矫正形式,我们要主动辅导及时令其矫正,及格率为优秀率为及格率为优秀率为。
初三数学试卷分析及反思2017-09-27 03:00:34 | #1楼初三数学第一次月水平检测试卷分析本次检测总体感觉题量适宜,题目难度适宜。
试卷所考查学生的知识点主要是全等三角形和轴对称的一部分,具有全面性、重复性、重点突出三大特点,同时与能力考查紧密结果,这就要求同学们在学习过程中首先一定要注重基本概念、基础知识,把根基打牢,然后就是要学会灵活运用,提高思维能力。
每一个题仅仅是考察了学生必学必会,也就是应知应会的知识,不偏不怪,至于学生得分低,成绩差,关键是平时的知识落实不到位,这给我们提出了警示,下面就学生的答题情况做简单的分析:从几何方面,主要侧重考察全等三角形,技巧性强,是学习中的重点难点。
这要求同学们对基本概念熟练掌握,对基本技能熟练运用。
只是死记硬背还不可以,同学们还要具备一定的抽象思维能力。
在学习过程中多动动手,发挥空间想象。
从试卷学生得分情况看:一、选择题:学生出错较多的是2、7、8第2题学生读不懂题意,导致选择错误,应在此方面加强训练。
第7题考察学生对全等三角形判定方法的掌握,但是很多学生一看到是直角三角形忽视一般三角形的判定方法。
第8题考察了学生画图分析的能力,但是现在学生依赖性很强,没有很好的审题,导致出错。
二、填空题:最后一题失分较多,是由于图形比较复杂,学生没有很好的读图。
三、解答题:题目覆盖面较广,知识点较全。
16至19题属于较为简单的题目,直接能够解决,20题需两次全等的证明。
最后问题,要求同学们对学过的知识能够融会贯通,具备发散思维的习惯,解决问题。
通过考试,我们发现了平时工作中的不足,有的题目应不惜多花费时间,让学生理解透彻,使模糊的问题变得清楚明白,重点知识作到重点复习,达到提高成绩的目的。
初三月考数学试卷分析
一、试卷基本情况
试题紧扣教材,体现了新课标的理念和基本要求,注重对于基础知识和基本技能的考查。
题型适当,难易适中,题量适度,共22个小题。
二、考试概况
试卷满分为120分.全卷共三个大题,其中选择题12个小题,填空题5个小题,解答题5个小题,三班均分70分,四班均分74分平,及格率为54.% ,优生率为28%,(90分以上)最高分120分。
第三大题
1、加强基础知识的教学,重视双基,平时的教学要进一步体现面向全体学生的原则。
2、重视概念、公式定理的教学,提高学生的计算能力。
3、加强综合题的训练,提高学生的创新能力和应变能力。
4、课堂教学中板书不可忽视,让学生不仅听懂,而且会规范的书写。
5、今后教学要进一步加强教学观念的更新,更加重视教学过程,同时还要一如既往地抓好双基。
6.掌握命题的基本原则。
(1)考查学生的基本运算能力、思维能力和空间观念的同时,着重考查学生运用数学知识分析和解决实际问题的能力。
(2)试题立意,以“两个意识”(创新意识、应用意识)和“四种能力”(运算能力、空间想象能力、逻辑思维能力和应用数学知识解决简单实际问题的能力)并举立意,试题要体现出数学的教育价值。
因此,我们在平时的教学中要在这些方面下工夫。
7、加强对学生思想、意志和心理素质等“非智力因素”的指导与训练,培养学生良好的书写习惯(解题周密、严谨、书写规范、简练),减少过失性的失分。
严格要求学生书写工整,认真作业,认真考试。
把最满意的答案交给老师。
九年级上册数学抽考试质量分析为了总结经验,吸取教训,取长补短,改进教学,提升质量,提高成绩,在全面评估xx学年度第x学期抽考质量检测九年级数学试卷、学生答题情况以及检测成绩后,做出如下总结剖析。
一、试题分析。
xx学年度第x学期抽考检测九年级数学试卷全卷分值100分,考试时间100分钟。
全卷共三道大题24道小题,包括10道单项选择题,8道填空题,6道解答题,实行线下考试、交叉阅卷。
全卷试题题量适宜,难度基本偏高,全面涉及到本学期目前教学的全部内容,重点考察一元二次方程、二次函数、概率、旋转等内容。
试卷内容比较灵活多样,对基础知识、生活实践、看图做题等都有考察,尤其是把课本知识融入生活实践中的这类题型,最能体现素质教育,同时也强调了数学教学与现实生活的紧密联系。
二、考情分析。
本人任教九年级(3)班数学教学,三率和为47.92:平均成绩35.92分,优秀率0.00,及格率12.00,未达到预期目标。
最高73分,最低9分,高低分之间相差近64分,相差悬殊,由此可知本班学生数学两极分化十分严重。
从学生答卷情况来看,大部分在平时能够重视数学课程,能够花功夫按时完成数学科目各项作业,课堂参与度高,对数学课程有兴趣,能够花时间预习复习数学课程的学生都取得了比较理想的成绩。
但总体而言,一是学生数学基础较差:如三分之一的学生不会解一元二次方程,三分之二会方法,但有的不会计算及化简等;二是学生思想问题、学习态度不端正;三是学生太懒了,依赖性太强。
三、教情分析。
1、紧扣书本内容适当拓展,巩固学生基础。
2、认真备课、备学生,预测教学中会遇到的问题,根据学生层次进行第二次备课,课上及时解决问题。
3、认真督促学生按时完成每节课课后作业,按时批改,对存在的问题耐心批改提示,必要时及时全班反馈。
4、通过适当的练习,掌握规律,做到熟能生巧。
本人充分利用练习课时间,对学生耐心讲解辅导。
通过分析质量检测成绩可以看出,以上教学措施基本正确有效。
九年级数学上册第一次月考试卷分析第一篇:九年级数学上册第一次月考试卷分析初三数学第一次月考试卷分析一、基本概况这次数学期中考试,九年级(1)(2)班参考28人,及格人数24人,及格率,85.7%,优秀人数11人,优秀率39.3%.二、试题分析这次考试主要考察了初三数学第二十三章的内容。
主要内容有,旋转的定义、旋转的性质及应用、中心对称的定义、中心对称的性质及应用、中心对称图形、以及旋转作图以及旋转与三角形四边形的综合应用。
试卷的总体难度适宜,注重基础,加大知识点的覆盖面,控制题目的烦琐程度,整体布局力求合理有序,提高应用题的考查力度,注重知识的拓展与应用.三.存在问题1、两极分化2、基础比较差,知识间的内在联系理不清3、分析,推理,灵活应变能力不强4、审题能力不强5、前期基本的数学模型没有掌握到位,6、解决问题的方法不灵活,欠缺方法总结四、今后工作思路1.在教学中,尽可能针对不同层次的学生采取不同的方法。
对于基础较差的学生主要就是落实双基,让他们能拿到基本分;对于学有余力的学生,要适当给他们“吃点偏饭”,使他们的能力得到较快的提高,力争在中考中取得优异的成绩。
2、教学中要重在凸现学生的学习过程,培养学生的自主学习的能力。
在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。
尤其是在教学中,要让学生的思维得到充分的展示,让他们自己来分析题目,设计解题的策略,多做分析和编题等训练。
3、强化过程意识,暴露思维过程数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
九年级数学第一次月考试卷分析报告一、基本情况九年级数学第一次月考试卷是按照中考卷题型及题量设计,全卷共25道题,覆盖了第二十一章、第二十二章的基本知识点,试题呈现方式多样化,主观性试题的类型丰富:开放题、探究题、应用题、操作题等占一定的分值比例,题型结构搭配比例基本适当,各知识点分值比例分配比较合理恰当,总体难度和难度结构分布合理,符合学生的实际情况。
本校平均分:79、9,优秀率:47、9%,及格率:90%。
二、考生答题情况分析选择题(1—9)和填空题(13—17)均为基础题,主要考查学生对九年级数学中的基本概念、基本技能和基本方法的理解和运用。
从统计考生答卷情况来看,对于大部分小题考生的得分率普遍较高。
某些试题涉及知识虽然基础,但背景新颖,需要考生具备一定的“学习”能力。
考试结果表明,对于这样的试题,有相当一部分学生存在能力上的欠缺。
例如:第2,8题。
第2题学生往往讨论不全面只解答一种情况漏第二种情况导致失分,所以选择题能得满分的考生不多。
第19题是基本根式运算题,虽然涉及到化简根式,但情形简单仍不失基础性。
第20、21题以一元二次方程有无实数根为基础,考察学生对一元二次方程有两个实施根的理解,21题连带复习八年级下册的勾股定理的逆定理知识,很多同学对上学期的知识忘记的比较多,导致此题失分率高,得满分的同学较少。
第23题是一元二次方程与实际问题的应用,此题需要考虑全面,记得加上公共部分的面积,这是这题失分的所在,24题的难度层次分明,逐级递进,可以引导学生逐步深入思考第25题考查的内容是根据具体问题中的数量关系,建立适当的数学模型解决实际问题,体现了分类、数形结合等重要的数学思想方法,内涵比较丰富,对分析问题和解决问题的能力要求较高。
可以说,开放与探究是本试卷的亮点。
三、试卷对课程理念的体现,对科学特点的体现数学试卷呈现出许多新意,重视试题的教育价值的功能,体现新课程改革理念,既体现了数学学科的基本特点,又给学生创造了灵活、综合地运用基础知识、基本技能,探索思考的空间与机会。
九年级数学第一次月考试卷分析一、试题分析本次考试的试题难度适宜,能够考查学生的基础知识、基本技能和数学思想方法。
部分题目可以直接运用公式、定理、性质、法则解决,无需繁难的计算和证明,对教学有很好的导向作用。
二、从学生得分情况上分析本次考试的成绩比较理想,我所代的(1)(2)班中有20人得到了120分以上,不及格的人数只有10人。
相比以前,学生对知识的掌握更加牢固,运算也更加仔细认真,分析解决问题的能力也有所提高。
三、从学生的失分情况上分析教情与学情1.基础题和中档题的落实还需要加强。
例如,一些中档题本应该是学生必会的,但得分情况并不理想。
这是因为在教学中,我们对研究困难的学生关注不够,课堂密度不够大,双基的落实也不够到位。
2.学生数学能力的培养还需要加强。
1)审题和数学阅读理解能力较弱。
例如第25题,学生根本没有读懂题目,也没有考虑到应该分两种情况;还有第26题,其实在航海问题中已经讲过这种类型,但学生根本没有理解此题,造成思维混乱,无从下手,导致严重失分。
2)计算能力较弱。
从阅卷中可以看出,一部分学生的计算能力较弱。
例如第21题和第22题,本应该是送分题,但学生因为粗心或记错一个三角函数值而出错;另外,最基本的方程也未得满分。
3)运用数学思想方法解决数学问题的能力还需加强。
试卷设置了一些涉及到开放性、探究性、应用性的问题,例如第18题和第26题等。
从阅卷和得分情况可以看出,学生的得分率都不高,说明学生所学知识较死,应变能力也不好。
这说明平时教学中,注重的只是告诉学生怎么解,而忽略了为什么这么解,也就是只有结果没有过程。
造成学生应变能力差,题目稍有变化,就不知如何下手。
学生不会综合运用所学知识结合数学思想去解决问题,这也是优秀率低的一个主要原因。
四、今后几点措施1.加强对课程标准的研究。
例如从本次试卷中可以体现出来的:立足基础性、注重能力性、感受时代性、强调应用性、渗透探究性、关注创新性、重视综合性、体验过程性。
九年级数学第一次月考试质量分析张春一、成绩统计概况:九(5)班:参考人数60人平均68.35 及格人数27人优生10人九(12)班:参考人数51人平均64.59 及格人数23人优生9人总人数111人均分66.62分及格人数50 及格率45% 优秀人数19 优秀率17.1%二、试卷结果分析试卷特点1、面向全体学生,注重基础知识与基本技能的考查.2、题型多样化,注重学生各方面能力的考查,如计算能力,推理能力,探究能力等,在这张试卷上均有体现.3、知识涉及面广,考查的知识点较全面.本次考试学生存在问题:1、学生对数学概念理解不透,学生对概念的理解还处于机械地应用,以至解题时概念不清,不能正确地选出答案。
如选择题第3题和第6题。
2、学生探究能力不强,如填空题第11、14题。
大部分学生能算出1个答案而忽略了另外一种情况。
3、几何论证欠严密,部分学生思路混乱。
如解答题第16题.4、学生审题能力不强,有学生误会题意,导致题目做不出来。
如第17题.在找等量关系时应在500千克的基础上减少.可以设定价和在盈利10元的基础上增加的价格.但是很多学生将者两者建立等量关系时弄混淆.5、学生能力差距明显,对基本题还能应付,但对有一些能力要求的题目得分较低,如第解答题第16题.6、部分优生在本次考试中由于粗心等原因没有考出应有水平.有待改进.三、今后举措1.教师在教学前,首先要认真学习《课标》,掌握《课标》的新理念,在这一理念指导下,去理解教材,而不要单纯地由教材到教材,需研究教材中的练习与习题,了解教材对技能的深度要求.并作适当的提高与延伸.2、注重基础知识的学习和培养解题习惯.3、落实课堂,提高课堂45分钟效益,多让学生分析问题,开拓思维,课堂上注重数学思想方法的渗透。
数学不是其他科,不是记忆为主而是理解应用为主.要求达到举一反三的能力.4、关注学生的发展,并做好防差补差工作,从以下几点入手: (1)加强对后进生的个别辅导,增强自信. (2)作业批改细致化,个别学生面批加以辅导.(3)分层教学,对优生要有提高.对差生适当降低要求,让他们也获得成功的喜悦.5、分析问题的能力,探索、创新能力要继续加强.现在的学生学习很有惰性,真正自己花时间去思考的时候很少.基本上是机械的代公式解题或者凭印象解题.这样的学习方法是不可取的.6、不断提高教师自身素质,增强教师个人魅力,提高学生学习数学兴趣。
九年级数学第一次月考试卷分析
张春
一、基本概况
这次数学期中考试,九年级(4)(13)班参考108人,及格人数61人,及格率58%,优秀人数19人,优秀率17%.
二、试题分析
这次考试主要考察了初三数学第二十一章的内容。
主要内容有二次函数的定义、图像、性质及二次函数与方程不等式的关系,二次函数的应用。
试卷的总体难度适宜,注重基础,加大知识点的覆盖面,控制题目的烦琐程度,整体布局力求合理有序,提高应用题的考查力度,注重知识的拓展与应用.
三.存在问题
1、两极分化
2、基础比较差,知识间的内在联系理不清
3、分析,推理,灵活应变能力不强
4、审题能力不强
5、前期基本的数学模型没有掌握到位,
6、解决问题的方法不灵活,欠缺方法总结
四、今后工作思路
1.在教学中,尽可能针对不同层次的学生采取不同的方法。
对于基础较差的学生主要就是落实双基,让他们能拿到基本分;对于学有余力的学生,要适当给他们“吃点偏饭”,使他们的能力得到较快的提高,力争在中考中取得优异的成绩。
2、教学中要重在凸现学生的学习过程,培养学生的自主学习的能力。
在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。
尤其是在教学中,要让学生的思维得到充分的展示,让他们自己来分析题目,设计解题的策略,多做分析和编题等训练。
3、强化过程意识,暴露思维过程
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学
生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
4、关注过程,引导探究创新。
数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知、发现规律的能力。
这样既能使学生对知识有深层次的理解,又能让学生在探索的过程中学会探索的科学方法。
让学生的学习不仅知其然,还知其所以然。
5.教学中继续渗透数学思想方法教学。
数学思想方法教学应渗透到教学的全过程中,使学生不仅学好概念法则等内容,而且把蕴含其中的数学思想通过不断的积累内化为自己的经验,形成解决问题的自觉意识。
6.加强对学生学习方法的指导和学习能力的培养。
在后面的教学中应注重在课堂教学中发挥学生的主体作用,不光要传授知识,更应传授学习和考试的方法(包括培养学生养成反思的习惯,如何使学生复习的效率更高,在考试时如何审题,如何在考试中减少无谓的失分,尽可能获取分数,如何保持考场上平和的心态等),注重学生能力的培养。
今后的教学过程中,数学思想的教学要作为一个重点内容,使一部分优秀的学生真正能灵活运用数学思想解决实际问题,提高优秀率。
7.继续培养学生反思总结的习惯。
每次考完我要好好分析、研究学生的试卷,分析一下学生错误的主要原因,最好是分析到每个学生,指出学生的问题所在,反思自己在前一阶段中的得与失,从中获取经验和教训,并及时调整自己的教学,使自己的后一阶段的教学中更有针对性。
另外,还应该培养学生养成反思的习惯,使学生的学习更有针对性、主动性和实效性,使学生能力的提高更快。