青海省西宁市2012年中考数学试题
- 格式:doc
- 大小:3.85 MB
- 文档页数:10
西宁市2009年高中招生考试数 学 试 卷(试卷满分120分,考试时间120分钟)考生注意:1.答卷前将密封线以内的项目填写清楚;2.用钢笔或圆珠笔直接答在试卷上.一、细心填一填(本大题共12小题15空,每空2分,共30分.只要你理解概念,仔细运算,相信你一定会填对的!) 1.写出一个小于4-的有理数 ;在函数y =中,自变量x 的取值范围是 .2.一元二次方程2x x =的解为 ;二元一次方程组5731x y x y +=⎧⎨-=⎩的解为 .3.为应对2008年以来的世界金融危机,中国政府出台了多项政策以阻止我国经济继续下滑,其中一项是4万亿元经济刺激方案.将4万亿元用科学记数法可表示为 元. 4.如图1,等腰梯形ABCD 的周长为18,腰4AD =,则等腰梯形ABCD 的中位线EF = .5.如图2,若将飞镖投中一个被平均分成6份的圆形靶子,则落在阴影部分的概率是 .6.在正方形网格中,ABC △的位置如图3所示,则cos B ∠的值为 .7.如图4,要测量池塘两端A B 、的距离,可先取一个可以直接到达A 和B 的点C ,连结AC 交延长到D ,使12CD CA =,连结BC 并延长到E ,使12CE CB =,连结ED ,如果量出DE 的长为25米,那么池塘宽AB 为 米.8.二次函数21522y x x =-+-的图象的顶点坐标为 .9.已知圆锥的底面半径为2cm ,母线长是4cm ,则圆锥的侧面积是 cm 2.(结果保留π). 10.如图5,矩形AOBP 的面积为6,反比例函数ky x=的图象经过点P ,那么k 的值为 ;直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图6DC FE A B 图1 图2 AC B 图3 A BD CE 图4所示,则关于x 的不等式12k x b k x +>的解为 .11.如图7,在126⨯的网格图中(每个小正方形的边长均为1个单位),A ⊙的半径为1,B ⊙的半径为2,要使A ⊙与静止的B ⊙相外切..,那么A ⊙由图示位置需向右平移 个单位.12.如图8,某建筑物直立于水平地面,9BC =米,30B ∠=°,要建造楼梯,使每阶台阶高度不超过20厘米,那么此楼梯至少要建 阶(最后一阶不足20厘米按一阶计算,1.732).二、精心选一选(本大题共8个小题,每小题3分,共24分.每小题给出的四个选项中,只有一个符合要求,请把你认为正确的选项序号填入下面相应题号的表格内.只要你掌握概念,认真思考,相信你一定会选对!) 13.下面计算正确的是( ) A .122-=- B2=± C .326()m n m n =D .624m m m ÷=14.如图9,下列交通标志中既是中心对称图形,又是轴对称图形的是( ) 15.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在A .3.5小时和4小时B .4小时和4.5小时C .4小时和3.5小时 D .4.5小时和4小时 16.用直尺和圆规作一个角等于已知角,如图10,能得出A O B AOB '''∠=∠的依据是( ) A .(S .S .S ) B .(S .A .S ) C .(A .S .A )D .(A .A .S )图51k x b +图7AC图8A .B .C .D . 图9D A BCOO 'D ' A ' B 'C '图1017.下列事件中是必然事件的是( ) A .西宁一月一日刮西北风 B .抛掷一枚硬币,落地后正面朝上 C .当x 是实数时,20x ≥D .三角形内角和是360°18.在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的钢笔盒送给了一位灾区儿童.这个铅笔盒(图11)的左视图是( )19.为执行“两免一补”政策,某地区2007年投入教育经费2500万元,预计2009年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是( )A .225003600x =B .22500(1%)3600x +=C .22500(1)3600x +=D .22500(1)2500(1)3600x x +++=20.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图12,已知矩形纸片ABCD (矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ; (2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则AFE ∠=( ) A .60° B .67.5° C .72° D .75°三、认真答一答(本大题共8个小题,满分66分.解答须写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本小题满分7分)计算:101|3|1)22-⎛⎫-+-⨯ ⎪⎝⎭.22.(本小题满分7分)请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.21a - 2a a - 221a a -+然后请你自选一个合理的数代入求值.图11A . B . C . D . A B C D 图12如图13,在ABCD 中, (1)尺规作图(不写作法,保留作图痕迹):作ABC ∠的平分线BE 交AD 于E ;在线段BC 上截取CF DE =;连结EF .(2)求证:四边形ABFE 是菱形.24.(本小题满分8分) 阅读下列材料并填空:(1)探究:平面上有n 个点(2n ≥)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?我们知道,两点确定一条直线.平面上有2个点时,可以画2112⨯=条直线,平面内有3个点时,一共可以画3232⨯=条直线,平面上有4个点时,一共可以画4362⨯=条直线,平面内有5个点时,一共可以画 条直线,……平面内有n 个点时,一共可以画 条直线.(2)迁移:某足球比赛中有n 个球队(2n ≥)进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛? 有2个球队时,要进行2112⨯=场比赛,有3个球队时,要进行3232⨯=场比赛,有4个球队时,要进行 场比赛,……那么有20个球队时,要进行 场比赛.25.(本小题满分8分)已知:如图14,AB 为O ⊙的直径,AB AC =,O ⊙交BC 于D ,DE AC ⊥于E . (1)请判断DE 与O ⊙的位置关系,并证明; (2)连结AD ,若O ⊙的半径为52,3AD =,求DEA DBC 图13 图14B《西海都市报》(2009年05月21日)文章《创卫让西宁焕发出勃勃生机》报道说:“西宁创建卫生城市已到了关键阶段,西宁处处焕发出勃勃生机.”省城西宁,无论是市容环境,还是市民意识,都发生了可喜的变化.西宁市教育局对全市约11000名九年级学生就西宁创建卫生城市知识的了解情况进行了问卷调查.现随机抽取了部分学生的答卷进行统计分析,然后按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了扇形统计图(如图15)和条形统计图(如图16).请你根据图中信息回答下列问题:(1)本次问卷调查的样本容量是 ; (2)扇形统计图中,圆心角α= ; (3)补全条形统计图;(4)根据以上信息,请提出一条合理化的创卫建议: . 27.(本小题满分9分)已知一只口袋中放有x 只白球和y 只红球,这两种球除颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从袋中取一只球,取出白球的概率是34. (1)试写出y 与x 的函数关系式;(2)当3x =时,第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表法,求两次摸到都是白球的概率.图16很好25% 一般 α 较差5%较好50%图15已知OABC 是一张矩形纸片,6AB =.(1)如图17,在AB 上取一点M ,使得CBM △与CB M '△关于CM 所在直线对称,点B '恰好在边OA 上,且OB C '△的面积为24cm 2,求BC 的长;(2)如图18.以O 为原点,OA OC 、所在直线分别为x 轴、y 轴建立平面直角坐标系.求对称轴CM 所在直线的函数关系式;(3)作B G AB '∥交CM 于点G ,若抛物线216y x m =+过点G ,求这条抛物线所对应的函数关系式.CB O AM B '图17图18。
广东省2012年初中毕业生学业考试数学答案解析 一、选择题1.【答案】A【解析】根据负数的绝对值等于它的相反数,得|5|5-=故选A【提示】根据绝对值的性质求解.【考点】绝对值2.【答案】B【解析】66400000 6.410=⨯【提示】科学记数法的形式为10n a ⨯,其中110a ≤<,n 为整数.【考点】科学记数法—表示较大的数3.【答案】C【解析】6出现的次数最多,故众数是6【提示】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【考点】众数4.【答案】B【解析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:131, , ,故选:B . 【提示】主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【考点】简单组合体的三视图5.【答案】C【解析】设此三角形第三边的长为x ,则104104x -<<+,即614x <<,四个选项中只有11符合条件.【提示】设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【考点】三角形三边关系二、填空题6.【答案】2(5)x x -【解析】原式2(5)x x =-【提示】首先确定公因式是2x ,然后提公因式即可.【考点】因式分解——提公因式法7.【答案】3x >【解析】移项得,39x >,系数化为1得:3x >.【提示】先移项,再将x 的系数化为1即可.【考点】解一元一次不等式8.【答案】50︒【解析】圆心角AOC ∠与圆周角ABC ∠都对AC ,2AOC ABC ∴∠=∠,又25ABC ∠=︒,则50AOC ∠=︒【提示】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【考点】圆周角定理9.【答案】1【解析】根据题意得:3030x y -=⎧⎨-=⎩,解得:33x y =⎧⎨=⎩.则20122012313x y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【提示】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【考点】非负数的性质:算术平方根,非负数的性质:绝对值10.【答案】13π-2430sin301AD AB A DF AD EB AB AE ==∠=︒∴=︒==-=,,,,36033【提示】过D 点作DF AB ⊥于点F ,可ABCD 和BCE △的高,观察图形可知阴影部分的面积为ABCD 的面积-扇形ADE 的面积-BCE △的面积,计算即可求解.【考点】扇形面积的计算,平行四边形的性质三、解答题(一)11.【答案】1-【提示】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值12.【答案】1-【解析】解,原式222299x x x x -+=-=-,当4x =时,原式2491=⨯-=-.【提示】先把整式进行化简,再把4x =代入进行计算即可. 【考点】整式的混合运算——化简求值13.【答案】51x y =⎧⎨=⎩ 【解析】解:①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =,故此不等式组的解为:51x y =⎧⎨=⎩【提示】先用加减消元法求出x 的值,再用代入法求出y 的值即可. 2AD ABC ∠是BDC ∠是【提示】((2)先根据等腰三角形的性质及三角形内角和定理求出【答案】证明:AB CD ∥ABO ∠=ABO CDO ∴△≌△,AB CD ∴=,∴四边形ABCD 是平行四边形.【提示】先根据AB CD ∥可知ABO CDO ∠=∠,再由BO DO AOB DOC =∠=∠,,即可得出ABO CDO △≌△,故可得出AB CD =,进而可得出结论.【考点】平行四边形的判定,全等三角形的判定与性质四、解答题(二)16.【答案】(1)20%(2)8640【解析】(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得25000(1)7200x +=. 解得120.220% 2.2x x ===-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200120%8640x +=⨯=万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.【提示】(1)设年平均增长率为x ,根据题意2010年公民出境旅游总人数为25000(1)x +万人次,2011年公民出境旅游总人数25000(1)x +万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约7200(1)x +万人次.【考点】一元二次方程的应用 ,AB AC =(此点与B 重合,舍去)【提示】(1)先把(4,2)代入反比例函数解析式,易求k ,再把0y =代入一次函数解析式可求B 点坐.(2)假设存在,然后设C 点坐标是(,0)a ,=,借此无理方程,易得3a =或5a =,其中3a =和B 点重合,舍去,故C 点坐标可求. 【解析】在直角三角形在直角三角形BD BC -解得:300AB =米,答:小山岗的高度为300米.【提示】首先在直角三角形ABC 中根据坡角的正切值用AB 表示出BC ,然后在直角三角形DBA 中用BA 表示出BD ,根据BD 与BC 之间的关系列出方程求解即可.【考点】解直角三角形的应用——仰角俯角问题,解直角三角形的应用——坡度坡角问题19.【答案】(1)1911⨯ 1112911⎛⎫⨯- ⎪⎝⎭ (2)1(21)(21)n n -+ 11122121n n ⎛⎫⨯- ⎪-+⎝⎭【解析】(1)根据观察知答案分别为1911⨯和1112911⎛⎫⨯- ⎪⎝⎭.(2)根据观察知答案分别为1(21)(21)n n -+和11122121n n ⎛⎫⨯- ⎪-+⎝⎭. (3)1234100a a a a a +++++1111111111111112323525727921992011111111111123355779199201111220112002201100201⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=-+-+-+-++- ⎪⎝⎭⎛⎫=- ⎪⎝⎭=⨯=【提示】(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1.(2)分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算. )求使分式)2223x xy x y --使分式的值为整数的使分式的值为整数的【考点】列表法与树状图法,分式有意义的条件,分式的化简求值21.【答案】(1)证明:BDC '△由BDC △翻折而成,90C BAG C D AB CD AGB DGC ABG ADE ∠=∠=︒'==∠=∠'∴∠=∠,,,,在:ABG C DG '△≌△中,BAD C AB C D ABG ADC '∠=∠⎧⎪'=⎨⎪'∠=∠⎩,ABG C DG ∴'△≌△.(2)724(3)256【解析】(2)由(1)可知ABG C DG ∴'△≌△,GD GB AG GB AD ∴=∴+=,,设AG x =,则8GB x =-,在22Rt ABG AB AG BG +=△中,2,即2226(8)x x +=-,解得74x =, 747tan 624AG ABG AB ∴∠=== (3)AEF △是DEF △翻折而成,EF ∴垂直平分AD ,142HD AD ∴==, 7tan tan 24ABG ADE ∴∠=∠=, 777=424246EH HD ∴=⨯⨯=, EF 垂直平分AD ,AB AD ⊥,HF 是ABD △的中位线,116322HF AB ∴==⨯=,725366EF EH HF =+=+=. 【提示】(1)根据翻折变换的性质可知90C BAG ∠=∠=︒,C D AB CD '==,AGB DGC '∠=∠,故可得出结论.(2)由(1)可知GD GB =,故A G G B A D +=,设A G x =,则8G B x =-,在Rt ABG △中利用勾股定理即可求出AG 的长,进而得出tan ABG ∠的值.(3)由AEF △是DEF △翻折而成可知EF 垂直平分AD ,故142HD AD ==,再根据tan ABG ∠即可得出EF 的长,同理可得HF 是ABD △的中位线,故可得出HF 的长,由EF EH HF =+即可得出结论.【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质,解直角三角形22.【答案】(1)99AB OC ==,(2)21092s m m =<<() (3)118 729π )ED BC ∥ABC AB = ⎝192S AE OC m ==,212m =-+2729π52E S EF ==【提示】(1)已知抛物线的解析式,当0x =,可确定C 点坐标;当0y =时,可确定A B 、点的坐标,进而确定AB OC 、的长.(2)直线l BC ∥,可得出AED ABC △、△相似,它们的面积比等于相似比的平方,由此得到关于s m 、的函数关系式;根据题干条件:点E 与点A B 、不重合,可确定m 的取值范围.(3)第一小问、首先用m 列出AEC △的面积表达式,AEC AED △、△的面积差即为CDE △的面积,由此可的关于CDE S △、m 的函数关系式,根据函数的性质可得到CDE S △的最大面积以及此时m 的值.第二小问、过E 做BC 的垂线EF ,这个垂线段的长即为与BC 相切的E 的半径,可根据相似三角形BEF △、BCO △得到的相关比例线段求得该半径的值,由此得解.【考点】二次函数综合题。
探究“化矩为方”的剪拼中考题定安县南海学校张民“化矩为方”的剪拼问题是指将矩形经剪拼变换后,化成面积相等的正方形的问题.近几年的全国各省市的中考试题中出现了这方面的试题,还放在客观题的压轴题中,受到广大考生的热切关注.2011年天津市中考题第18题和2012年西宁市中考题第10题就是这样的试题.虽然,它们的命题的要求和题型不同,但它们所反应的就是“化矩为方”的问题.这两题分别从剪拼的图形操作与正方形边长的计算两个侧面提出问题,解答都具有一定的难度.那么,这两题之间是否互相关联?“化矩为方”是否有一般规律可循呢?这正是本文想要回答的问题.“化矩为方”问题涉及到图形面积的计算、相似三角形的知识,勾股定理与射影定理的应用,解一元二次方程问题以及实际作图操作问题等.因此,它考核的知识面比较广,思维层次比较高,实际作图操作的能力也要求较强,它还可以与中国古代名题“赵爽弦图”相联系,所以它很受命题者的青睐.一、试题回放及解法探究1.2011年天津市中考题第18题[题目]如图1,有一张长为5,宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(1)该正方形的边长为____(结果保留根号);(2)现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线并简要说明剪、拼的过程.解析:作为填空题,本题的考试形式十分新颖.第(1)小题容易得到答案,但第(2)小题要正确解答却较困难.命题者的意图是要考查学生综合运用知识解决问题的能力、考察学生动手画图操作的水平.此题的第(1)小题,很容易由面积不变,求得所拼得的正方形的边长为,但是,如何在图中作出,并且只能用两条裁剪线却比较难做到.(1);[设拼接的正方形的边长为x,由题意得,x2=3×5=15 ,解得x=](2)根据题意,所求正方形的边长为,因此解决此题的关键是要先剪出两条长度为,且互相垂直的线段作为所求正方形的相邻两边.这里首先要作出长度等于的线段,再作裁剪线.①作出长度等于的线段.这里介绍两种不同的作法:一种是直接利用勾股定理作图.如图2所示,在边AD上取AM=1,然后以M为圆心、长度4为半径画弧,交边(图1)A BCD(图2)A BCD·MN〕〕GFKEAB于点N,则AN==;另一种是利用直角三角形的射影定理作图.如图3所示, 在边AB上取AM=AD=3,过点M作HM⊥AB,交边 DC于点H,以AB的中点O为圆心、 AB为半径作半圆, 交MH于点N,则AN===.②画出裁剪线AK、BE.以A为圆心、AN为半径画 圆弧,与边DC交于点K,显然AK=,是其第一条裁剪线;再过点B作BE⊥AK,垂足 为 E,由 △ABE∽ △KAD,得=,∴ BE==.这BE就是所求的第二条裁剪线.先沿AK线剪第一刀,再 沿BE线剪第二刀.③如图2(或图3),平移△ABE至△KGF,再平移△ADK至△BCG. 则由此拼接成的四边形BEFG即为所求作的正方形. 这里需说明的一点是,利用射影定理求作 比例中 项 x=,还有另外一种作法:即 在 BA的延长线上取 AM=AD=3,然后以 MB为直径作半圆,交AD 的延 长线于点N, 则AN==,即为所求正方形的边长.2.2012年西宁市中考题第10题[题目] 如图4,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰好能拼一个正方形.若y=2,则x值等于( ). A.3 B.2 -1C.1+D.1+解析:由题意可尝试画出符合条件的正方形图形,如图5 所示.根据图4中矩形面积与图5中正方形的面积相等,即可 得 (x+y)y=x2, 即 x2-yx-y2=0, 解关于x的方程,得 x=(1±).将y=2代入, 即得 x1=1+ ,(∵x2=1-<0,故舍去).故本题答案应选C.解答本题时,能较准确地画出符合要求的正方形,并能确定正方形的 边长是解决问题的重点与关键.然而在解答完本题后,我们自然会问,如 何对图4中的矩形进行分割呢?即怎样在矩形长边上画出线段x的长呢? 下面给出一种作图,仅供参考. 由勾股定理,=,如图6,在矩形ABCD的边AB上,取AP=1,连接DP,∵ 已知AD=2, ∴ AP===.(图3)ABCD· N〕GFK EMH O (图4)xxx - yx - yy yyy (图5)x - yx - yx - yx - yy yyx再在PB上截取PM=PD,则AM=1+ . 所以 AM即为所求的正方形边长x.连接矩形对角线AC(这是第一条裁剪线),过点M作 MN⊥AB,交AC于点N;在CD边上截取CE=AM =x,过点E作 EF⊥CD,交 AC于点F,则 MN 与 EF就分别为另外两条裁剪线.这样连剪三刀,可将原矩 形裁剪成四块,再按图5的式样拼接,即可拼成一个与原 矩形面积相等的正方形.二、规律探索前面我们对2011年天津市和2012年西宁市的“化矩为方”中考题作了回放与解法探究,下面再就任意一个矩形的“化矩为方”问题作进一步的探索.已知矩形ABCD 中,AD=BC=a,AB=DC=b,且a≤b, 如图7所示.问题是:要求在有限步内,将该矩形剪拼成面积相等的正方形. 情况1:若a=b,显然 矩形 ABCD 已经是 正方形,乃无需进行 剪拼.情况2:若a<b,则需对矩形ABCD进行剪拼 应如何施行呢? 首先,如图8,在射线DC上取一点K,使DK= .∵<<=b, ∴ DK<DC,即点K在线段DC上,且不与点D、点C重合.此时AK = ==(这正是所求正方形的边长).过点B作BE⊥AK,垂足为E,易证 △ABE∽△KAD,∴==, ∴ BE===.AE====·.下面需分几种情况予以讨论: (1)当a<b≤2a时,AE=·≤·==AK,表明点E在线段AK上,且不与点A重合,即线段BE在矩形ABCD的内部,2011年天津题就是这种情况.此时,剪拼 方法如图9所示:先沿AK线剪第一刀,再沿BE线剪第二刀, 然后将区域⑴平移到区域①,区域⑵平移到区域②,即可将矩形 ABCD 拼接成面积相等的正方形BEHG (证明略).这里要特别指出的是,当b=2a时,剪拼方法将会更特殊 和简单一些,留给读者自己完成. (2)当2a<b≤5a时,AE=·>·==AK,表明点E在线段AK的延长线上.由BE ⊥AK 可知,∠ABE=90°-(图7)BCDAab(图8)BCDAKEab(图9)BC D AKEab HG(1) ①(2)②(图6)x x x - yx - yyyyy ABC D ME N F· ⌒ ⌒ P∠EAB=∠DAK<90°,此时线段BE一部分在 矩形ABCD内部,一部分在矩形ABCD的外部,如 图10所示.在线段AE上取一点H ,使得EH=AK, 并过H 作FH⊥AK,交AB于点F.设BE交DC 于点M,易证得 △AHF≌△KEM.此时,剪拼方法如图10所示:先沿AK线剪第一 刀,沿BM线剪第二刀,再沿FH线剪第三刀,然后将 区域⑴平移到区域①,区域⑵平移到区域②,区域⑶平 移到区域③,即可将矩形ABCD 拼成面积相等的正方形 BEHG(证明略).这里需指出下面两种特殊情况:一是,当b=4a时,此时剪拼方法十分特殊,只需剪一刀就可拼成一个面积相等的正方形,这里不再展开叙述,留于读者自己思考完成;二是,当b=5a时,除掉可用上面的一般方法外,还可以通过剪四刀(或以上多刀),拼成一个“赵爽弦图”(正方形),这问题我们将在下面的篇幅中予以探讨.(3)当b>5a时,此时长宽比大于5,若能将此矩形先剪拼成“1≤长宽比≤5”的矩形,那么就可转化成前面已讨论的情形,最终剪拼成一个面积相等的正方形.事实上,将“长宽比大于5”的矩形沿其两长边中点的连线剪开,可拼成一个新矩形,那么新矩形的长宽比就可缩小4倍,因此,只需经过若干次的“沿两长边中点的连线剪开”的方法进行剪拼,总可得到一个“1≤长宽比≤5”的新矩形,最后,总可以按上面讨论的情况1或情况2的裁剪方法,将任何矩形剪拼成面积相等的正方形.三、相关连接 1.“赵爽弦图”我国古代数学家赵爽利用“弦图(或称勾股圆方图)”(如图11)巧妙地证明了勾股定理,其证法之优美、精巧,令人叹为观止,它是证明勾股定理最著名的证法之一.特别是“弦图”一图蕴含两种证法更是举世无双,充分体现了我国古代的数学文明和数学文化,因此,2002年在北京召开的第24届国际数学大会为了纪念他,特意将“弦图”作为会标,这是中国人的智慧与 骄傲.近几年的中考试题中“赵爽弦图”备受青睐.“赵爽弦图”是由四个全等的直角三角形围成的,它们的斜边围成一 个大的正方形,中间也形成一个小的正方形,这就是说,大的正方形是由 四个全等的直角三角形和一个小正方形拼接而成的.因此,我们联系“化 矩为方”的问题,不妨会问:能否用一个矩形剪拼成“赵爽弦图”呢?回 答是肯定的.让我们先看下面的问题:[问题一]现有长为6.5 cm , 宽为2 cm 的矩形ABCD,如何将它 剪拼成面积相等的一个“赵爽弦图”(正方形)?解析:设拼成的正方形边长为xcm ,根据面积相等,即求得 x==A BCDKE H (1) (2)(3)①②③G(图10)MF(图11)(cm).因此,可采用勾股定理画出线段x的长. 具体剪拼方法如图12所示:(Ⅰ)在长边AB上取AE=EH=3,分别过点 E、H,作EF⊥AB交DC边于F,作FG⊥AB, 交DC边于G,这样将原矩形ABCD 分割三个小矩形: 矩形AEFD ,矩形EHGF 和矩形BCGH; (Ⅱ)取HG的中点P 、BC的中点Q,再分别连 接DE、EG与PQ;(Ⅲ)沿EF线、HG线剪第一刀、第二刀;再沿 DE线、EG线剪第三刀、第四刀;最后沿PQ线剪 第五刀,这样把原矩形剪成4个直角三角形和两个小 矩形,如图12;(Ⅳ)如图12所示,△DEF原地不动,将区域⑴移动放置于区域①,区域⑵移动放置于区域②,区域⑶移动放置于区域③,再分别把区域⑷、⑸移动放置于区域④、⑤.这样四边形DEMN就是所要拼接的“赵爽弦图”(证明略).问题一将一个特殊的矩形(长为6.5 cm ,宽为2cm )剪五刀,拼接成一个“赵爽弦图”.那么还有没有其他特殊的矩形也能拼成如是的“赵爽弦图”呢?前面已提及的长宽比等于5的矩形只需剪四刀就可实现.即有下面的问题二.[问题二] 如图13,矩形ABCD中,已知AD=BC=a,AB=DC=b=5a,请在此矩形中,剪拼出一个面积相等的“赵爽弦图”. 由于此矩形的面积为5a2,所以所求等积的 正方形的边长为x=a.∵ x=a=,∴ “弦图”中的直角三角形的直角边分别是a与 2a.于是本题完全可以 仿 照 上面 问题一的剪拼 方法施行,在此就不再展开叙述,留于读者自己动 手完成吧!问题一与问题二都是将一个矩形剪拼成一个等积的“赵爽弦图”,这也正是我们需介绍的另外一种“化矩为方”的剪拼方法.这里再给出分别为5cm×4cm 与12 . 5cm×8 cm 的两个矩形,请作图尝试一下,是否也可把它们剪拼成“赵爽弦图”?留给读者自己动手实践实践!2.2009年安徽省中考题第20题[试题] 如图14,将正方形沿图中虚线(其中x>y)剪成①、②、③、④四块图形,用这四块图形恰能拼成一个矩形(非正方形).(图12)(1) (2)(3)(4)(5) ①② ③④ ⑤AB CD EF G H MN2330.5↑ PQABCD (图13)a b=5a(1)画出拼成的矩形的简图; (2)求的值.解析:(1)观察图中四块各边之间的对应关系,寻找哪两个能拼在 一起.根据题意,拼成的矩形简图如图15所示.将图14中的区域①、 ②、③、④分别移至图15中区域⑴、⑵、⑶、⑷. (2)解法一:由拼接前后两个图形的面积相等得, [(x+y)+y]y=(x+y)2, 整理得 x2+xy-y2=0 . ∵ y≠0, 即有 ()2+-1=0,解得要=( ∵= <0,∴ 舍去 ).解法二:由拼成的矩形可知,即以对角线分开的直角三角 形中的两个大小直角三角形相似, ∴ 有=. 整理得 x2+xy-y2=0,解得 x=,因 x= <0,故舍去.所以 x=( -1), 即=.这道2009年的安徽省中考题与2012年西宁市中考题十分相似,仅是图形互相倒一下,所要求的问题稍稍改变了一点,实质上是非常雷同的,它们也正反映了“化矩为方”的另外一种剪拼方法.但这里需要说明的是,先需确定矩形的长[ 如在西宁市的试题 中,先由 x= (1+),画出线段x ,再 由x+y,求得矩形的长 ],然后才能根据此矩形作出题中的裁剪线,再进行剪拼.(完)(图15)⑴ ⑵⑶⑷(图14)xxxxyyyy① ①y ①②③ ④。
2024年青海省中考数学真题试卷(本试卷满分120分,考试时间120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合要求).1. 2024-的相反数是( )A. 2024B. 2024-C. 12024 D. 12024-2. 生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A. B. C. D.3. 如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A. 120︒B. 30︒C. 60︒D. 150︒4. 计算1220x x -的结果是( )A. 8xB. 8x -C. 8-D. 2x5. 如图,一次函数23y x =-的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是()A. 3,02⎛⎫- ⎪⎝⎭B. 3,02⎛⎫ ⎪⎝⎭C. ()0,3D. ()0,3-6. 如图,OC 平分AOB ∠,点P 在OC 上,PD OB ⊥,2PD =,则点P 到OA 的距离是( )A. 4B. 3C. 2D. 17. 如图,在Rt ABC △中,D 是AC 的中点,60BDC ∠=︒,6AC =,则BC 的长是( )A. 3B. 6C.D. 8. 化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是( )A. 加入絮凝剂的体积越大,净水率越高B. 未加入絮凝剂时,净水率为0C. 絮凝剂的体积每增加0.1mL ,净水率的增加量相等D. 加入絮凝剂的体积是0.2mL 时,净水率达到76.54%二、填空题(本大题共8小题,每小题3分,共24分).9. 8-的立方根是__________.10. 若式子13x -有意义,则实数x 的取值范围是________.11. 请你写出一个解集为x >________.12. 正十边形一个外角的度数是________.13. 如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个叉路口都随机选择一条路径,它获得食物的概率是________.14. 如图,线段AC BD 、交于点O ,请你添加一个条件:________,使AOB COD ∆∆.15. 如图,四边形ABCD 是O 的内接四边形.若50A ∠=︒,则BCD ∠的度数是________.16. 如图是由火柴棒摆成的图案,按此规律摆放,第(7)个图案中有________个火柴棒.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤).17. 计算0tan 45π︒+-.18. 先化简,再求值:11x y y x y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭,其中2x y =-. 19. 如图,在同一直角坐标系中,一次函数y x b =-+和反比例函数9y x=的图象相交于点()1,A m ,(),1B n .(1)求点A,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式9x b x-+>的解集. 20. 如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).21. (1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.22. 如图,直线AB 经过点C,且OA OB =,CA CB =.(1)求证:直线AB 是O 的切线;(2)若圆的半径为4,30B ∠=︒,求阴影部分的面积.23. 为了解学生物理实验操作情况,随机抽取小青和小海两名同学的10次实验得分,并对他们的得分情况从以下两方面整理描述如下:①操作规范性:①书写准确性:小青:1 1 2 2 2 3 1 3 2 1小海:1 2 2 3 3 3 2 1 2 1操作规范性和书写准确性的得分统计表:根据以上信息,回答下列问题:(1)表格中的=a________,比较21S和22S的大小________;(2)计算表格中b的值;(3)综合上表的统计量,请你对两名同学的得分进行评价并说明理由;(4)为了取得更好的成绩,你认为在实验过程中还应该注意哪些方面?24. 在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点33,2A⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx=-+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B处有一棵树,点B是OA的三等分点,小球恰好越过树的顶端C,求这棵树的高度.25. 综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形.数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用.以下从对角线的数量关系和位置关系两个方面展开探究.【探究一】如图1,在四边形ABCD中,E,F,G,H分别是各边的中点.求证:中点四边形EFGH是平行四边形.证明:①E,F,G,H分别是AB,BC,CD,DA的中点①EF,GH分别是ABC和ACD的中位线①12EF AC=,12GH AC=(____①____)①EF GH=.同理可得:EH FG=.①中点四边形EFGH是平行四边形.结论:任意四边形的中点四边形是平行四边形.(1)请你补全上述过程中的证明依据①________【探究二】从作图、测量结果得出猜想①:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想①,请你在探究一证明结论的基础上,写出后续的证明过程.【探究三】(3)从作图、测量结果得出猜想①:原四边形对角线垂直时,中点四边形是①________.(4)下面我们结合图3来证明猜想①,请你在探究一证明结论的基础上,写出后续的证明过程.【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.结论:原四边形对角线①________时,中点四边形是①________.2024年青海省中考数学真题试卷答案解析一、选择题.1. 【答案】A2. 【答案】D3. 【答案】C4.【答案】B5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】D二、填空题.9. 【答案】2-10. 【答案】3x ≠11. 【答案】0x >(答案不唯一)12. 【答案】36︒13. 【答案】1314. 【答案】OB OD =.(答案不唯一)15. 【答案】130°16. 【答案】15【解析】根据题意得:第(1)个图形有312=+根火柴棒 第(2)个图形有()5122=+⨯根火柴棒第(3)个图形有()7123=+⨯根火柴棒……第(n )个图形有()12n +根火柴棒①第(7)个图案中有12715+⨯=根火柴棒故答案为:15三、解答题.17. 【答案】18. 【答案】1x y +,1219. 【答案】(1)()1,9A ,()9,1B ,10y x =-+(2)0x <或19x <<【小问1详解】解:把点()1,A m 代入9y x =中,得:991m == ①点A 的坐标为()1,9,把点(),1B n 代入9y x =中,得:991n == ①点B 的坐标为()9,1把1x =,9y =代入y x b =-+中得:19b -+=①10b =①一次函数的解析式为10y x =-+【小问2详解】解:根据一次函数和反比例函数图象,得:当0x <或19x <<时,一次函数y x b =-+的图象位于反比例函数9y x =的图象的上方 ①9x b x-+>的解集为0x <或19x <<. 20. 【答案】最远点与最近点之间的距离AB 约是11m 解:根据题意得:CE AD ∥,5CD =①CE AD ∥,17α∠=︒,45β∠=︒①17A α∠=∠=︒,45CBD β∠=∠=︒在Rt ACD △中①5CD =①tan170.31CD AD=︒≈ ①()50.3116.1m AD ≈÷≈在Rt BCD 中,5m CD = ①tan 451CD AD=︒= ①()515m BD =÷=①()16.1511.111m AB AD BD =-≈-=≈.答:最远点与最近点之间的距离AB 约是11m .21. 【答案】(1)1x =或3x =(2或解:(1)2430x x -+=()()130x x --=1x =或3x =;(2)当两条直角边分别为3和1时根据勾股定理得,=当一条直角边为1,斜边为3时根据勾股定理得,=答:或22. 【答案】(1)详见解析(2) 83S π=阴影 【小问1详解】证明:连接OC①在OAB 中,OA OB =,CA CB =①OC AB ⊥又①OC 是O 的半径①直线AB 是O 的切线;【小问2详解】解:由(1)知90OCB ∠=︒①30B ∠=︒①903060COB ∠=︒-︒=︒ ①260483603OCD S ππ⋅==扇形 在Rt OCB △中,30B ∠=︒,4OC =①8OB =①BC ===①11422OCB S BC OC =⋅⋅=⨯=△83OCB OCD S S S π=-=阴影扇形. 23. 【答案】(1)2,2212S S >(2)2b =(3)详见解析 (4)详见解析【小问1详解】解:小青书写准确性从小到大重新排列为1,1,1,1,2,2,2,2,3,3中位数为2222a +== 观察折线图,知小青得分的比小海的波动大,则2212S S >故答案为:2,2212S S >;【小问2详解】解:小海书写准确性的平均数为13243338921010b ⨯+⨯+⨯++===(分); 【小问3详解】解:从操作规范性来分析,小青和小海的平均分相同,但小海的方差小于小青的方差 所以小海在物理实验操作中发挥稳定;【小问4详解】解:熟悉实验方案和操作流程;或注意仔细观察实验现象和结果;或平衡心态,沉着应对.24. 【答案】(1)272y x x =-+ (2)749,416⎛⎫ ⎪⎝⎭(3)这棵树的高为2【小问1详解】解:①点33,2A ⎛⎫ ⎪⎝⎭是抛物线2y x bx =-+上的一点 把点33,2A ⎛⎫ ⎪⎝⎭代入2y x bx =-+中,得:23332b -+= 解得72b = ①抛物线的解析式为272y x x =-+; 【小问2详解】 解:由(1)得:2277492416y x x x ⎛⎫=-+=--+ ⎪⎝⎭ ①抛物线最高点对坐标为749,416⎛⎫ ⎪⎝⎭;【小问3详解】解:过点A ,B 分别作x 轴的垂线,垂足分别是点E ,D①BOD AOE ∠=∠,90BDO AEO ∠=∠=︒①OBD OAE ∽△△ ①OD BD OB OE AE OA== 又①点B 是OA 的三等分点 ①13OB OA = ①33,2A ⎛⎫ ⎪⎝⎭①32AE =,3OE = ①13BD OB AE OA == 解得12BD =①13OD OB OE OA == 解得1OD =①点C 的横坐标为1将1x =代入272y x x =-+中,2751122y =-+⨯= ①点C 的坐标为51,2⎛⎫ ⎪⎝⎭①52CD =①51222CB CD BD =-=-= 答:这棵树的高为2.25. 【答案】(1)①中位线定理(2)证明见解析(3)①矩形(4)证明见解析(5)补图见解析;①AC BD ⊥且AC BD =;①正方形【解析】(1)①证明依据是:中位线定理;(2)证明:①E F G H 、、、分别是AB BC CD DA 、、、的中点 ①EF GH 、分别是ABC 和ACD 的中位线 ①12EF AC =,12GH AC = ①EF GH =.同理可得:EH FG =.①AC BD =①EF GH EH FG ===①中点四边形EFGH 是菱形.(3)①矩形;故答案为:矩形(4)证明①E F G H 、、、分别是AB BC CD DA 、、、的中点 ①EF GH 、分别是ABC 和ACD 的中位线①EF AC ∥,GH AC ∥①EF GH ∥.同理可得:EH FG ∥.①AC BD ⊥①90AOD AIH ∠=∠=︒,FEH AIH =∠∠①90AOD EFG FEH EHG ∠=∠=∠=∠=︒①中点四边形EFGH 是矩形.(5)证明:如图4,①E F G H 、、、分别是AB BC CD DA 、、、的中点 ①EF GH 、分别是ABC 和ACD 的中位线 ①12EF AC =,12GH AC = ①EF GH =.同理可得:EH FG =.①AC BD =①EF GH EH FG ===①中点四边形EFGH 是菱形.①AC BD ⊥由(4)可知90AOD EFG FEH EHG ∠=∠=∠=∠=︒①菱形EFGH 是正方形.故答案为:①AC BD ⊥且AC BD =;①正方形。
2024年青海省中考数学试卷及答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合要求). 1.(3分)﹣2024的相反数是()A.﹣2024B.2024C.D.﹣【分析】根据相反数的定义“只有符号不同的两个数是互为相反数”解答即可.【解答】解:﹣2024的相反数是2024,故选:B.【点评】此题考查了相反数的定义,熟记定义是解题的关键.2.(3分)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是()A.B.C.D.【分析】根据圆锥的侧面展开图是扇形即可得出答案.【解答】解:∵圆锥的侧面展开图是扇形.故选:D.【点评】此题主要考查了圆锥的侧面展开图,理解圆锥的侧面展开图是扇形是解决问题的关键.3.(3分)如图,一个弯曲管道AB∥CD,∠ABC=120°,则∠BCD的度数是()A.120°B.30°C.60°D.150°【分析】由平行线的性质推出∠BCD+∠ABC=180°,即可求出∠BCD的度数.【解答】解:∵AB∥CD,∴∠BCD+∠ABC=180°,∵∠ABC=120°,∴∠BCD=60°.故选:C.【点评】本题考查平行线的性质,关键是掌握两直线平行,同旁内角互补.4.(3分)计算12x﹣20x的结果是()A.8x B.﹣8x C.﹣8D.x2【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:原式=(12﹣20)x=﹣8x,故选:B.【点评】本题考查了合并同类项,系数相加字母及指数不变是解题关键.5.(3分)如图,一次函数y=2x﹣3的图象与x轴相交于点A,则点A关于y轴的对称点是()A.(﹣,0)B.(,0)C.(0,3)D.(0,﹣3)【分析】利用待定系数法求出点A的坐标,再根据轴对称变换的性质解决问题.【解答】解:对于一次函数y=2x﹣3,令y=0,可得x=,∴A(,0),∴点A关于y轴的对称点的坐标为(﹣,0).故选:A.【点评】本题考查一次函数的图象,一次函数的图象,关于x轴、y轴对称的点的坐标等知识,解题的关键是理解题意掌握轴对称变换的性质.6.(3分)如图,OC平分∠AOB,点P在OC上,PD⊥OB,PD=2,则点P到OA的距离是()A.4B.3C.2D.1【分析】过P作PE⊥AO于E,由角平分线的性质推出PE=PD=2,即可得到点P到OA的距离是2.【解答】解:过P作PE⊥AO于E,∵OC平分∠AOB,点P在OC上,PD⊥OB,∴PE=PD=2,∴点P到OA的距离是2.故选:C.【点评】本题考查角平分线的性质,关键是由角平分线的性质推出PE=PD.7.(3分)如图,在Rt△ABC中,D是AC的中点,∠BDC=60°,AC=6,则BC的长是()A.3B.6C.D.【分析】根据直角三角形斜边上的中线等于斜边的一半得BD=CD=AD=3,再根据∠BDC=60°得△BCD为等边三角形,然后根据等边三角形的性质可得出BC的长.【解答】解:∵点D是Rt△ABC斜边AC的中点,AC=6,∴BD=CD=AD=AC=3,∵∠BDC=60°,∴△BCD为等边三角形,∴BC=BD=3.故选:A.【点评】此题主要考查了等边三角形的判定和性质、直角三角形斜边上的中线,熟练掌握等边三角形的判定和性质是解决问题的关键.8.(3分)化学实验小组查阅资料了解到:某种絮凝剂溶于水后能够吸附水中悬浮物并发生沉降,从而达到净水的目的.实验得出加入絮凝剂的体积与净水率之间的关系如图所示,下列说法正确的是()A.加入絮凝剂的体积越大,净水率越高B.未加入絮凝剂时,净水率为0C.絮凝剂的体积每增加0.1mL,净水率的增加量相等D.加入絮凝剂的体积是0.2mL时,净水率达到76.54%【分析】观察函数图象可知,函数的横坐标表示体积,纵坐标表示净水率,根据图象上特殊点的意义即可求出答案.【解答】解:由题意得:当加入絮凝剂的体积为0.6mL时,净水率比0.5mL时降低了,故选项A说法错误,不符合题意;未加入絮凝剂时,净水率为12.48%,故选项B说法错误,不符合题意;絮凝剂的体积每增加0.1mL,净水率的增加量都不相等,故选项C说法错误,不符合题意;加入絮凝剂的体积是0.2mL时,净水率达到76.54%,故选项D说法正确,符合题意.故选:D.【点评】本题考查了函数的图象,解答本题的关键是明确题意,利用方程思想和数形结合的思想解答.二、填空题(本大题共8小题,每小题3分,共24分).9.(3分)﹣8的立方根是﹣2.【分析】根据立方根的定义进行计算即可.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是=﹣2,故答案为:﹣2.【点评】本题考查立方根,理解立方根的定义是正确解答的关键.10.(3分)若式子有意义,则实数x的取值范围是x≠3.【分析】根据分式中分母不能为0,即可解答.【解答】解:∵式子有意义,∴x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】本题考查了分式有意义的条件,解题的关键是熟练掌握分式有意义的条件.11.(3分)请你写出一个解集为x>的一元一次不等式2x>2(答案不唯一).【分析】根据不等式的解集的定义以及不等式的性质解答.【解答】解:2x>2(答案不唯一).故答案为:2x>2(答案不唯一).【点评】本题考查了不等式的解集,开放型题目,此类题目可以根据不等式的性质构造出不同的答案.12.(3分)正十边形一个外角的度数是36°.【分析】根据多边形的外角和等于360°进行解题即可.【解答】解:由题可知,360°÷10=36°.故答案为:36°.【点评】吧net考查多边形内角与外角,掌握多边形的外角和等于360°是解题的关键.13.(3分)如图,一只蚂蚁在树枝上寻觅食物,假定蚂蚁在每个叉路口都随机选择一条路径,它获得食物的概率是.【分析】根据图形可得蚂蚁向上爬的过程中有三条路径可以选择,其中获得食物的路径有一条,求出获得食物的概率即可.【解答】解:根据题意得:所有路径有三条,其中获得食物的路径有一条,则P(获得食物)=.故答案为:.【点评】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,AC和BD相交于点O,请你添加一个条件∠A=∠C,使得△AOB∽△COD.【分析】由∠A=∠C,∠AOB=∠COD(或∠B=∠D,∠AOB=∠COD),根据“两角分别相等的两个三角形相似”证明△AOB∽△COD,也可以由AB∥CD,根据“平行于三角形一边的直线和其它两边或两边的延长线相交所构成的三角形与原三角形相似”证明△AOB∽△COD,于是得到问题的答案.【解答】解:∵∠A=∠C,∠AOB=∠COD,∴△AOB∽△COD,故答案为:∠A=∠C.注:答案不唯一,如:∠B=∠D、AB∥CD.【点评】此题重点考查相似三角形的判定,适当选择相似三角形的判定定理证明△AOB∽△COD是解题的关键.15.(3分)如图,四边形ABCD是⊙O的内接四边形,∠A=50°,则∠C的度数是130°.【分析】根据圆内接四边形的对角互补计算即可.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A=50°,∴∠C=130°,故答案为:130°.【点评】本题考查的是圆内接四边形的性质,熟记圆内接四边形的对角互补是解题的关键.16.(3分)如图是由火柴棒摆成的图案,按此规律摆放,第(7)个图案中有15个火柴棒.【分析】观察图形的变化即可得第1个图形火柴棒的个数;摆第2个图案要用的火柴棒;摆第3个图案要用的火柴棒;即可得第n个图形的火柴棒个数,从而可求解.【解答】观察图形的变化可知:摆第1个图案要用火柴棒的根数为:3;摆第2个图案要用火柴棒的根数为:5=3+2=1+2×2;摆第3个图案要用火柴棒的根数为:7=3+2+2=1+3×2;…则摆第n个图案要用火柴棒的根数为:1+2n×1=2n+1;故第7个图案要用火柴棒的根数为:2×7+1=15.故答案为:15.【点评】本题主要考查规律型:图形的变化类,找出图形之间的联系,得出数字之间的运算规律,解题的关键是利用规律解决问题.三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤). 17.(6分)计算:﹣tan45°+π0﹣|﹣|.【分析】根据特殊角的三角函数值、零指数幂的性质、绝对值的性质和如何化简二次根式,进行计算即可.【解答】解:原式===.【点评】本题主要考查了实数的混合运算,解题关键是熟练掌握特殊角的三角函数值、零指数幂的性质、绝对值的性质和如何化简二次根式.18.(6分)先化简,再求值:(﹣)÷(﹣),其中x=2﹣y.【分析】根据分式的运算法则先化简原式,然后将x+y=2整体代入化简后的式子求值即可.【解答】解:原式=(﹣)÷(﹣)=÷===,∵x=2﹣y,∴x+y=2,∴原式=.【点评】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.19.(6分)如图,在同一直角坐标系中,一次函数y=﹣x+b和反比例函数y=的图象相交于点A(1,m),B(n,1).(1)求点A,点B的坐标及一次函数的解析式;(2)根据图象,直接写出不等式﹣x+b>的解集.【分析】(1)将点A、B坐标代入反比例函数解析式可得点A、B坐标,待定系数法求出直线AB解析式即可;(2)根据两个函数图象及交点坐标,直接写出不等式解集即可.【解答】解:(1)把点A(1,m)代入中得∴点A的坐标为(1,9),把点B(n,1)代入y=中,得,∴点B的坐标为(9,1),把x=1,y=9代入y=﹣x+b中得﹣1+b=9,b=10,∴一次函数的解析式为y=﹣x+10.(2)根据一次函数和反比例函数图象,可得:的解集为x<0或1<x<9,【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式是关键.20.(7分)如图,某种摄像头识别到最远点A的俯角α是17°,识别到最近点B的俯角β是45°,该摄像头安装在距地面5m的点C处,求最远点与最近点之间的距离AB(结果取整数,参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【分析】根据题意得CE∥AD,CD=5m,根据平行线的性质得到∠A=∠α=17°.∠CBD=∠β=45°,解直角三角形即可得到结论.【解答】解:根据题意得:CE∥AD,CD=5m,∵CE∥AD,∴∠A=∠α=17°.∠CBD=∠β=45°,在Rt△ACD中,∵CD=5,∴,∴AD=5×0.31=16.1(m),在Rt△BCD中,∵∠CBD=45°,∴∠BCD=90°﹣45°=45°,∴∠BCD=∠CBD=45°,∴BD=CD=5(m),∴AB=AD﹣BD≈16.1﹣5=11.1=11(m)答:最远点与最近点之间的距离AB约是11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确作出辅助线构造直角三角形是解题的关键.21.(8分)(1)解一元二次方程:x2﹣4x+3=0;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.【分析】(1)利用因式分解法即可求出方程的解;(2)根据勾股定理分类讨论即可求出答案.【解答】解:(1)x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3;(2)当3是直角三角形的斜边长时,第三边==2,当1和3是直角三角形的直角边长时,第三边==,∴第三边的长为2或.【点评】本题考查了解一元二次方程﹣因式分解法和勾股定理,利用分类讨论得出是解题关键.22.(8分)如图,直线AB经过点C,且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)若圆的半径为4,∠B =30°,求阴影部分的面积.【分析】(1)连接OC ,由OA =OB ,CA =CB ,得OC ⊥AB ,即可由OC 是⊙O 的半径,且AB ⊥OC ,证明直线AB 是⊙O 的切线;(2)由∠OCB =90°,∠B =30°,求得∠COD =60°,则BC =OC =4,求得S 阴影=S △OCB ﹣S扇形OCD=8﹣.【解答】(1)证明:连接OC ,∵OA =OB ,CA =CB ,∴OC ⊥AB ,∵直线AB 经过点C ,∴OC 是⊙O 的半径,∵OC 是⊙O 的半径,且AB ⊥OC ,∴直线AB 是⊙O 的切线.(2)解:∵OC ⊥AB ,∴∠OCB =90°,∵⊙O 的半径为4,∴OC =4,∵∠B =30°,∴∠COD =90°﹣∠B =60°,∴=tan60°=,∴BC =OC =4,∴S 阴影=S △OCB ﹣S 扇形OCD =×4×4﹣=8﹣,∴阴影部分的面积是8﹣.【点评】此题重点考查等腰三角形的“三线合一”、切线的判定与性质、三角形的面积公式及扇形的面积公式等知识,正确地作出辅助线是解题的关键.23.(8分)为了解学生物理实验操作情况,随机抽取小青和小海两名同学的10次实验得分,并对他们的得分情况从以下两方面整理描述如下:①操作规范性:②书写准确性:小青:1122231321小海:1223332121操作规范性和书写准确性的得分统计表:项目统计量学生操作规范性书写准确性平均数方差平均数中位数小青4 1.8a 小海4b2根据以上信息,回答下列问题:(1)表格中的a =2,比较和的大小>;(2)计算表格中b 的值;(3)综合上表的统计量,请你对两名同学的得分进行评价并说明理由;(4)为了取得更好的成绩,你认为在实验过程中还应该注意哪些方面?【分析】(1)根据中位数和方差的概念即可解答;(2)根据平均数的概念即可解答;(3)根据表中的上统计量,对两名同学的得分进行评价,理由合理即可;(4)针对分析,言之有理即可.【解答】解:(1)由题干可知小青中位数:=2,∴a=2;由图①来看,很明显小青的波动幅度要大于小海的波动幅度,∴>;故答案为:2,>.(2)小海的平均数;(3)情况①从操作规范性来分析,小青和小海的平均得分相等,但是小海的方差小于小青的方差,所以小海在物理实验操作中发挥较稳定;或:情况②从书写准确性来分析,小海的平均得分比小青的平均得分高,所以小海在物理实验中书写更准确;或:情况③从两个方面综合分析,小海的操作更稳定,并且书写的准确性更高,所以小海的综合成绩更好.(4)情况①熟悉实验方案和操作流程.或:情况②注意仔细观察实验现象和结果或:情况③平稳心态,沉稳应对.备注:第(3)(4)题答案不唯一,言之有理即可,至少列出一条.【点评】本题主要考查了中位数的定义、方差的概念和意义、平均数的计算公式等知识,熟练掌握相关知识是解题关键.24.(11分)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点A(3,)处.小球在空中所经过的路线是抛物线y=﹣x2+bx的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B处有一棵树,点B是OA的三等分点,小球恰好越过树的顶端C,求这棵树的高度.【分析】(1)依据题意,由点是抛物线y=﹣x2+bx上的一点,从而可得,求出b后即可得解;(2)依据题意,由抛物线为,进而可以得解;(3)依据题意,过点A、B分别作x轴的垂线,垂足分别是点E、D,又∠BOD=∠AOE,∠BDO=∠AEO,进而△OBD∽△OAE,故,又点B是OA的三等分点,则,则,从而,OE=3,故.最后求出=1,可得点C的横坐标为1,再将x=1代入,可得,则点C的坐标为,故,从而,即可得解.【解答】解:(1)由题意,∵点是抛物线y=﹣x2+bx上的一点,∴.∴.∴.∴抛物线的解析式为.(2)由题意,∵抛物线为,∴抛物线最高点的坐标为.(3)由题意,过点A、B分别作x轴的垂线,垂足分别是点E、D,又∠BOD=∠AOE,∠BDO=∠AEO,∴△OBD∽△OAE.∴.又∵点B是OA的三等分点,∴.∵,∴,OE=3.∴.∴.∴.∴.∴.∴.∴=1.∴点C的横坐标为1.将x=1代入,∴.∴点C的坐标为.∴.∴.答:这棵树的高度是2.【点评】本题主要考查了二次函数的应用,解题时要熟练掌握并灵活运用二次函数的性质是关键.25.(12分)综合与实践顺次连接任意一个四边形的中点得到一个新四边形,我们称这个新四边形为原四边形的中点四边形.数学兴趣小组通过作图、测量,猜想:原四边形的对角线对中点四边形的形状有着决定性作用.以下从对角线的数量关系和位置关系两个方面展开探究.【探究一】原四边形对角线关系中点四边形形状不相等、不垂直平行四边形如图1,在四边形ABCD中,E、F、G、H分别是各边的中点.求证:中点四边形EFGH是平行四边形.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF、GH分别是△ABC和△ACD的中位线,∴EF=AC,GH=AC(①_____).∴EF=GH.同理可得:EH=FG.∴中点四边形EFGH是平行四边形.结论:任意四边形的中点四边形是平行四边形.(1)请你补全上述过程中的证明依据①三角形中位线定理.【探究二】原四边形对角线关系中点四边形形状不相等、不垂直平行四边形AC=BD菱形从作图、测量结果得出猜想Ⅰ:原四边形的对角线相等时,中点四边形是菱形.(2)下面我们结合图2来证明猜想Ⅰ,请你在探究一证明结论的基础上,写出后续的证明过程.【探究三】原四边形对角线关系中点四边形形状不相等、不垂直平行四边形AC⊥BD②(3)从作图、测量结果得出猜想Ⅱ:原四边形对角线垂直时,中点四边形是②矩形.(4)下面我们结合图3来证明猜想Ⅱ,请你在探究一证明结论的基础上,写出后续的证明过程.【归纳总结】(5)请你根据上述探究过程,补全下面的结论,并在图4中画出对应的图形.原四边形对角线关系中点四边形形状③④结论:原四边形对角线③AC⊥BD且AC=BD时,中点四边形是④正方形.【分析】(1)根据三角形中位线定理即可得到结论;(2)根据三角形中位线定理得到EF=GH.同理可得:EH=FG.根据平行四边形的性质得到中点四边形EFGH是平行四边形,根据菱形的判定定理即可得到结论;(3)根据菱形的判定定理得到结论;(4)根据三角形中位线定理得到EH∥BD,EF∥AC,根据平行四边形的判定定理得到四边形EMON 是平行四边形,求得∠MEN=∠MON=90°,根据矩形的判定定理得到中点四边形EFGH是矩形;(5)根据正方形的判定定理即可得到结论.【解答】(1)解:①三角形中位线定理,故答案为:三角形中位线定理;(2)证明:∵AC=BD,∴EF=FG,∴中点四边形EFGH是菱形;(3)解:②矩形;故答案为:矩形;(4)证明:∵EH,EF分别是△ABD和△ABC的中位线,∴EH∥BD,EF∥AC,∴四边形EMON是平行四边形,又∵AC⊥BD,∴∠MON=90°,∴∠MEN=∠MON=90°,∴中点四边形EFGH是矩形;(5)解:③AC⊥BD且AC=BD;④正方形;理由:由(2)知中点四边形EFGH是菱形.由(4)知中点四边形EFGH是矩形,∴中点四边形EFGH是正方形.故答案为:AC⊥BD且AC=BD;正方形.。
2012年青海数学中考模拟试题(考试时间:120分钟;满分:120分)友情提示:Hi ,展示自己的时候到啦,你可要冷静思考、沉着答卷啊!祝你成功!1、请务必在指定位置填写座号,并将密封线内的项目填写清楚.2、本试题共有 22 道题:其中1—6 题为选择题, 请将所选答案的标号填写在本题后面给出表格的相应位置上;7—12 题为填空题,请将做出的答案填写在本题后面给出表格的相应位置上; 13—22 题,请在试题上给出的本题位置上做答.一、选择题(本题满分 18 分,共有 6 道小题,每小题 3 分)下列每小题都给出标号为 A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题 选对得分;不选、选错或选出的标号超过一个的不得分.请将1—6各小题所选答案的标号填写在第6小题后面表格的相应位置上.1、直径为6和10的两个圆相内切,则其圆心距 d 为( ) A .2 B .4 C .8D .162、甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( )A .B .C .D .3、小明将一个小玻璃球不慎从楼上掉落下来,下面的各图象中可以大致刻画出小玻璃球下落过程中(即落地前)的速度与时间的变化情况的是( )4、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1厘米,则这个圆锥的底面半径为( )厘米. A . B .C .D .25、根据如图所示的程序,若输入的 x 值为 - ,则输出的结果为( )A .B .C .D .6、若一个图形绕着一个定点旋转一个角α(0°<α≤180°)能够与原来的图形重合, 那么这个图形叫做旋转对称图形.例如:正三角形绕着它的中心旋转120°(如图1),能够与原来的正三角形重合,因而正三角形是旋转对称图形.图2是一个五叶风车的示意图,它也是旋转对称图形(α=72°).显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,是旋转对称图形的有( )B O 时间(t )C O 时间(t ) DO 时间(t )A O 时间(t )图1 图2OAB二、填空题(本题满分18 分,共有 6 道小题,每小题3分)请将7—12各小题的答案填写在12小题后面表格的相应位置上.7、化简:= _________________.8、在某一电路中,当电压保持不变时,电流I(安培)是电阻R(欧姆)的反比例函数,当电阻R=5 欧姆时,电流I = 2 安培.(1)列出电流I 与电阻R之间的函数关系式:(2)当电流I = 0.5 安培时,电阻R的值是_________9、如图,在太阳光下小明直立于旗杆影子的顶端处,此时小明影长为1.40 米,旗杆的影长为7 米,若小明的身高为 1.60米,则旗杆高为_________________米.10、如图是某城市三月份1到10日的最低气温随时间变化的统计图:根据条形统计图可知这10天中最低气温的众数是_______℃,最低气温的中位数是_______℃.11、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.12、观察下列各式:3 = 22-12 5 = 32-227 = 42-329 = 52-42 11 = 62-5213 = 72-62想一想,任意奇数(1除外)等于哪两个数的平方差?设n 为大于 1 的奇数,用关于n 的等式表示这个规律为:n = _________________.三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.13、为迎接2008年奥运会,青岛市政府欲在一新建广场上修建一个圆形大花坛,并在大花坛内M 点处建一个亭子,如果要经过亭子修一条穿越大花坛的小路.(1)如何设计小路才能使亭子M 位于小路的中点处(在图中画出表示小路的线段即可);(2)若大花坛的直径为30米,花坛中心 O 到亭子M 的距离为10米,则小路大约有多长?(精确到0.1 米)四、解答题(本题满分78分,共有9道小题)14、(本小题满分6分)2003年底,我国研制出一种抗“非典”新药,成年人按规定剂量服用后,每毫升血液中含药量 y (微克)(1微克 = 10-3毫克)与时间 x ( 小时)的关系满足:y = -x 2 + 4x .问:服药几小时,才能使每毫升血液中含药量达到 6微克? [解]:·· M O [解]:(2)(1)答:15、(本小题满分6分)小明和小亮一起测量底部可以到达的一棵大树AB的高度,按如下步骤进行:①在测点D处安置测倾器,测得大树顶部的仰角∠ACE = α;②量出测点D到大树底部B的水平距离BD = l ;③量出测倾器的高度DC = a;他们测得了三组数据后,制成了测点到大树的距离l,测倾器的高 a 的数据的条形统计图(如图1)和仰角α数据的折线统计图(如图2).请你根据两个统计图提供的信息,完成以下任务:(1)把统计图中的相关数据填入相应的表格中;(2)根据得到的样本平均数计算出树高AB(精确到0.1 m).[解]:(2)第三次图1第三次图2αDCAEB16、(本小题满分6分)小刚和小明用如图的两个转盘进行“配紫色”游戏,规则如下:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为 不公平,如何修改规则才能使该游戏对双方公平?[解]:17、(本小题满分8分)阅读下面内容:“如图1,以三角形ABC 三个顶点为圆心,以1为半径的三个圆(两两不相交)与三角形相交,则图中阴影部分的面积之和是多少?”我们可以用如下方法解决这个问题: 设以A 、B 、C 为圆心的三个扇形的圆心角的度数分别是 n 1、n 2、n 3 ,面积分别是S 1、S 2、S 3 ,由扇形面积公式可知 : S阴影部分= S 1 + S 2 + S3,∵在△ABC 中,∠A +∠B +∠C = 180° 即:n 1 + n 2 + n 3 = 180∴S阴影部分= S 1 + S 2 + S 3根据以上推理过程,回答下列问题:红蓝 红蓝黄密 封 线(1)以五边形ABCDE的顶点为圆心,以1为半径的五个圆(两两不相交,如图2)与五边形相交,则图中阴影部分的面积之和是多少?请说明理由.[解]:(2)试猜想,以n 边形的n 个顶点为圆心,以 1 为半径的n 个圆(两两不相交)与n 边形相S = ________________.18、(本小题满分8分)某印刷厂计划购买5台印刷机,现有胶印机、一体机两种不同设备,其中每台的价格、日印刷量如下表:经预算,该厂购买设备的资金不高于22万元.(1)该厂有几种购买方案?(2)若该厂每天的工作量为印刷17万张,为节约资金,应选择哪种购买方案?[解]:(1)AB C图1AB C图2DE学校_________________姓名_________________考试号_________________密封线(2)19、(本小题满分10分) 如图,以△ABC 的三边为边,在BC 的同一侧分别作三个等边三角形:△ABD 、△BCE 和△ACF .(1)四边形ADEF 是什么四边形?写出你的猜想并说明理由.(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?(写出猜想即可,不要求证明) (3)当△ABC 满足什么条件时,四边形ADEF 为菱形?(写出猜想即可,不要求证明)[解]:(1)EFCDA(2) (3)20、(本小题满分10分)某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图.注:甲、乙两图中的A 、B 、C 、D 、E 、F 、G 、H 所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本(生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分).请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益 = 售价-成本) (2)哪个月出售这种蔬菜,每千克的收益最大?说明理由. [解]:(1) (2)月月 甲图乙图21、(本小题满分12分)已知:如图1,在△ABC中,AB = AC =5 ,AD为底边BC上的高,且AD = 3.将△ACD 沿箭头所示的方向平移,得到△A'CD'(如图2),A'D' 交AB于E,A'C分别交AB、AD 于G、F,以D'D 为直径作⊙O,设BD'的长为x ,⊙O的面积为y .(1)求y与x 的函数关系式及自变量x的取值范围(不考虑端点);(2)当BD'的长为多少时,⊙O的面积与△ABD的面积相等?(π取3,结果精确到0.1)(3)连结EF,求EF与⊙O 相切时x 的值.[解]:(1)(2)(3)图1 图2 ACB DACD'DA'GE F←←22、(本小题满分12分)(1)已知:如图1,△ABC 为正三角形,点M 为 BC 边上任意一点,点N 为 CA 边上任意一点,且BM = CN ,BN 与AM 相交于Q 点,试求∠BQM 的度数.[解]:(2)如果将(1)中的正三角形改为正方形ABCD (如图2),点M 为BC 边上任意一点,点N 为CD 边上任意一点,且BM = CN ,BN 与AM 相交于Q 点,那么∠BQM 等于多少度呢?说明理由.[解]:图1AN CBMQ 图2AN CBMDQ(3)如果将(1)中的“正三角形”改为正五边形……正 n 边形,其余条件都不 变,请你根据(1)、(2)的求解思路,将你推断的结论填入下表:(注:正 多边形的各个内角都相等)……CMB AD Q EN N CMB AQ E D F C NDB AX Q 密 封 线亲爱的同学,请认真检查,不要漏题哟! 提示:。
西宁城区2016年高中招生考试数学试卷考生注意:1 .本试卷满分120分,考试时间120分钟。
2 .本试卷为试题卷,不允许作为答题卷使用,答题部分请在答题卡上作答, 否则无效。
3 .答题前考生务必将自己的姓名、准考证号、考点、考场、座位号写在答题 卡上,同时填写在试卷上。
4 .选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑(如需改动,用橡 皮擦干净后,再选涂其他答案标号)。
非选择题用毫米的黑色签字笔答在 答题卡相应位置,字体工整,笔迹清楚。
作图必须用2B 铅笔作答,并请加 黑加粗,描写清楚。
第I 卷(选择题共30分)一、选择题(本大题共10题,每题3分,共30分.在每题给出的四个选项中, 恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1 .的相反数是A. -B. -332 .下列计算正确的是A. 2a - 3a =6a C> 6a 4- 2t/ = 3a3 .下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是C. 3D.--3B. (— J 1=a bD. (- 2〃)' =—6/A.3c777, 4cm, 8cmB.8c7〃 , 1cm t15cmC . 5cm 9 5cm 9 1 \cmD • 13cm 9 12cm 9 20c,n4.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图葡信友善A B C DA B C D6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图1所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A. 1.2, 1.3B. 1.4, 1.3C. 1.4, 1.35D. 1.3, 1.37.将一张长方形纸片折叠成如图2所示的形状,则ZA3C=A. 73°B. 56°C. 68°D. 146°38.如图3,在A43C中,4 = 90。
2012年青海省西宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题列出的四个选项中,恰有一项是符合题目要求的,请将正确的序号填涂在答题卡上)1.(3分)2的相反数是()A.﹣2B.2C.D.2.(3分)2012年5月28日,我国《高效节能房间空气调节器惠民工程推广实施细则》出台,根据奥维咨询(AVC)数据测算,节能补贴新政能直接带动空调终端销售1.030千亿元.那么1.030保留两个有效数字的近似数是()A.1B.10C.1.0D.1.033.(3分)函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.4.(3分)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)25.(3分)用长分别为5cm、6cm、7cm的三条线围成三角形的事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是6.(3分)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是()A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆7.(3分)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A.45°B.120°C.60°D.90°8.(3分)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论()A.角的平分线上的点到角的两边的距离相等B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形9.(3分)如图,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1B.当x=3时,y的值小于0C.当x=1时,y的值大于1D.y的最大值小于010.(3分)如图,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰能拼一个正方形,若y=2,则x的值等于()A.3B.2﹣1C.1+D.1+二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请把最后结果填在答题纸对应的位置上.11.(2分)计算:a2b﹣2a2b=.12.(2分)分式方程=的解是.13.(2分)某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为.14.(2分)请你写出一个图象经过点(0,2),且y随x的增大而减小的一次函数解析式.15.(2分)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为cm.16.(2分)如图,反比例函数y=的图象与经过原点的直线相交于点A、B,已知A的坐标为(﹣2,1),则点B的坐标为.17.(2分)如图是某风景区的一个圆拱形门,路面AB宽为2m,净高CD为5m,则圆拱形门所在圆的半径为m.18.(2分)72人参加商店举办的单手抓糖活动的统计结果如下表所示,若抓到糖果数的中位数为a,众数为b,则a+b的值为.19.(2分)5张不透明的卡片,除正面画有不同的图形外,其它均相同.把这5张卡片洗匀后,正面向下放在桌上,从中随机抽取一张,与卡片上图形相对应的这种地板砖能进行平面镶嵌的概率是.20.(2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(﹣5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标.三、解答题:(本大题共8小题,第21、22题每小题7分、第23、24、25题每小题7分,第26、27小题10分,第28题12分,共70分.解答应写出文字说明、证明过程或演算步骤写在答题纸相应的位置上.)21.(7分)计算:.22.(7分)先化简,然后﹣1、0、2中选取一个合适的数作为x的值代入求值.23.(8分)如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1(1)如果∠BCD=30°,求AC;(2)如果tan∠BCD=,求CD.24.(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.25.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(10分)如图(1),AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O 相切于点C,AD⊥CD,垂足为D.(1)求证:△ADC∽△ACB;(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C、G两点,若题目中的其他条件不变,且AG=4,BG=3,求tan∠DAC的值.27.(10分)2012年6月9日召开的青海省居民阶梯电价听证会,征求了消费者、经营者和有关方面的意见,对青海省居民阶梯电价方案的必要性、可行性进行了论证.阶梯电价方案规定:若用电量为130°及以下,收费标准为0.38元/度.若月用电量为131度~230度,收费标准由两部分组成:①其中130度按0.38元/度收费;②超出130度的部分按0.42元/度收费.现提供一居民家某月电费发票的部分信息如下表所示:根据以上提供的信息解答下列问题:(1)如果月用电量x(单位:度)来表示,实付金额用y(单位:元)来表示,请你写出这两种情况实付金额y与月用电量x之间的函数关系式;(2)请你根据表中本月实付金额计算一下,这个家庭一个月的实际用电量;(3)若小芳和小华一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?28.(12分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,已知A(0,4)、C(5,0).作∠AOC的角平分线交AB于点D,连接DC,过D作DE⊥DC交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2﹣x+4经过A、C两点,连接AC.探索:若点P是x轴下方抛物线上一动点,求点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP长度有最大值?若存在,求出点P的坐标;若不存在,请你说明理由.2012年青海省西宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题列出的四个选项中,恰有一项是符合题目要求的,请将正确的序号填涂在答题卡上)1.(3分)2的相反数是()A.﹣2B.2C.D.【解答】解:∵2+(﹣2)=0,∴2的相反数是﹣2.故选:A.2.(3分)2012年5月28日,我国《高效节能房间空气调节器惠民工程推广实施细则》出台,根据奥维咨询(AVC)数据测算,节能补贴新政能直接带动空调终端销售1.030千亿元.那么1.030保留两个有效数字的近似数是()A.1B.10C.1.0D.1.03【解答】解:因为1.030保留两个有效数字是1,0,所以1.030保留两个有效数字的近似数是1.0;故选:C.3.(3分)函数y=的自变量x的取值范围在数轴上可表示为()A.B.C.D.【解答】解:∵y=,∴x﹣2≥0,解得x≥2,在数轴上表示为:故选:D.4.(3分)下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2【解答】解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选:B.5.(3分)用长分别为5cm、6cm、7cm的三条线围成三角形的事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是【解答】解:根据三角形的三边关系,5+6=11>7,所以用长为5cm、6cm、7cm 的三条线段一定能组成三角形,所以是必然事件.故选B.6.(3分)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是()A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆【解答】解:从上面可看到两个外切的圆.故选:A.7.(3分)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A.45°B.120°C.60°D.90°【解答】解:将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF时,A和B重合,即∠AOB是旋转角,∵四边形ABCD是正方形,∴∠BAO=∠ABO=45°,∴∠AOB=180°﹣45°﹣45°=90°,即旋转角是90°,故选:D.8.(3分)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论()A.角的平分线上的点到角的两边的距离相等B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形【解答】解:如图②,∵△CDE由△ADE翻折而成,∴AD=CD,如图③,∵△DCF由△DBF翻折而成,∴BD=CD,∴AD=BD=CD,点D是AB的中点,∴CD=AB,即直角三角形斜边上的中线等于斜边的一半.故选:C.9.(3分)如图,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1B.当x=3时,y的值小于0C.当x=1时,y的值大于1D.y的最大值小于0【解答】解:由图可知,当x>﹣1时,函数值y随x的增大而减小,A、当x=0时,y的值小于1,故本选项错误;B、当x=3时,y的值小于0,故本选项正确;C、当x=1时,y的值小于1,故本选项错误;D、y的最大值不小于1,故本选项错误.故选:B.10.(3分)如图,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰能拼一个正方形,若y=2,则x的值等于()A.3B.2﹣1C.1+D.1+【解答】解:如图所示,四块图形拼成一个正方形边长为x,根据剪拼前后图形的面积相等可得,y(x+y)=x2,∵y=2,∴2(x+2)=x2,整理得,x2﹣2x﹣4=0,解得x1=1+,x2=1﹣(舍去).故选:C.二、填空题:本大题共10小题,每小题2分,共20分,不需写出解答过程,请把最后结果填在答题纸对应的位置上.11.(2分)计算:a2b﹣2a2b=﹣a2b.【解答】解:a2b﹣2a2b,=(1﹣2)a2b,=﹣a2b.故答案为:﹣a2b.12.(2分)分式方程=的解是x=9.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.13.(2分)某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为0<x≤18.【解答】解:一般饮料和食品应在保质期内,即不超过保质期的时间内食用,那么该饮料的保质期可以用不等式表示为0<x≤18.14.(2分)请你写出一个图象经过点(0,2),且y随x的增大而减小的一次函数解析式y=﹣x+2.【解答】解:设函数y=kx+b(k≠0,k,b为常数),∵图象经过点(0,2),∴b=2,又∵y随x的增大而减小,∴k<0,可取k=﹣1.这样满足条件的函数可以为:y=﹣x+2.故答案为:y=﹣x+2.15.(2分)一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为40cm.【解答】解:设弧所在圆的半径为r,由题意得,,解得,r=40cm.故应填40.16.(2分)如图,反比例函数y=的图象与经过原点的直线相交于点A、B,已知A的坐标为(﹣2,1),则点B的坐标为(2,﹣1).【解答】解:点A与B关于原点对称,则B点的坐标为(2,﹣1).17.(2分)如图是某风景区的一个圆拱形门,路面AB宽为2m,净高CD为5m,则圆拱形门所在圆的半径为 2.6m.【解答】解:连接OA;Rt△OAD中,AD=AB=1米;设⊙O的半径为R,则OA=OC=R,OD=5﹣R;由勾股定理,得:OA2=AD2+OD2,即:R2=(5﹣R)2+12,解得R=2.6(米);故答案为:2.6.18.(2分)72人参加商店举办的单手抓糖活动的统计结果如下表所示,若抓到糖果数的中位数为a,众数为b,则a+b的值为20.【解答】解:第36与第37人抓到的糖果数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故答案为20.19.(2分)5张不透明的卡片,除正面画有不同的图形外,其它均相同.把这5张卡片洗匀后,正面向下放在桌上,从中随机抽取一张,与卡片上图形相对应的这种地板砖能进行平面镶嵌的概率是.【解答】解:∵这5个图形中只有正三角形,正方形,正六边形能够进行平面镶嵌,=.∴P(单独一种能镶嵌)故答案为:.20.(2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(﹣5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标(8,0)或(,0).【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6,OD=BD=×16=8,∴在Rt△AOD中,AD==10,∵E为AD中点,∴OE=AD=×10=5,①当OP=OE时,P点坐标(﹣5,0)和(5,0);②当OE=PE时,此时点P与D点重合,即P点坐标为(8,0);③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=OA=3,∴OK==4,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:5=:4,解得:OP=,∴P点坐标为(,0).∴其余所有符合这个条件的P点坐标为:(8,0)或(,0).故答案为:(8,0)或(,0).三、解答题:(本大题共8小题,第21、22题每小题7分、第23、24、25题每小题7分,第26、27小题10分,第28题12分,共70分.解答应写出文字说明、证明过程或演算步骤写在答题纸相应的位置上.)21.(7分)计算:.【解答】解:=3﹣2+1=3﹣1.22.(7分)先化简,然后﹣1、0、2中选取一个合适的数作为x的值代入求值.【解答】解:原式=•=,∵x≠0,x≠1,∴当选x=﹣1时,原式==﹣.23.(8分)如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1(1)如果∠BCD=30°,求AC;(2)如果tan∠BCD=,求CD.【解答】解:(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°==,又BC=1,则AC=;(2)在Rt△BDC中,tan∠BCD==,设BD=k,则CD=3k,又BC=1,利用勾股定理得:k2+(3k)2=1,解得:k=或k=﹣(舍去),则CD=3k=.24.(8分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠1=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠1=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==4,=8×4=32.所以,S菱形ABCD25.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了20名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.【解答】解:(1)(1+2)÷15%=20人;(2)C组人数为:20×25%=5人,所以,女生人数为5﹣3=2人,D组人数为:20×(1﹣15%﹣50%﹣25%)=20×10%=2人,所以,男生人数为2﹣1=1人,补全统计图如图;(3)画树状图如图:所有等可能结果:男男、男女、女男、女女、女男、女女,P(一男一女)==.26.(10分)如图(1),AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O 相切于点C,AD⊥CD,垂足为D.(1)求证:△ADC∽△ACB;(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C、G两点,若题目中的其他条件不变,且AG=4,BG=3,求tan∠DAC的值.【解答】(1)证明:连OC,如图∵直线CD与⊙O相切于C,∴OC⊥CD,又∵AD⊥CD,∴AD∥OC,∴∠1=∠2,∵OC=OA,∴∠1=∠3,∴∠2=∠3,又∵AB为⊙O的直径,∴∠ACB=90°,∴Rt△ADC∽Rt△ACB;(2)解:∵四边形ABGC为⊙O的内接四边形,∴∠B+∠ACG=180°,而∠ACG+∠ACD=180°,∴∠ACD=∠B,而∠ADC=∠AGB=90°,∴∠DAC=∠GAB,在Rt△ABG中,AG=4,BG=3,∴tan∠GAB==,∴tan∠DAC=.27.(10分)2012年6月9日召开的青海省居民阶梯电价听证会,征求了消费者、经营者和有关方面的意见,对青海省居民阶梯电价方案的必要性、可行性进行了论证.阶梯电价方案规定:若用电量为130°及以下,收费标准为0.38元/度.若月用电量为131度~230度,收费标准由两部分组成:①其中130度按0.38元/度收费;②超出130度的部分按0.42元/度收费.现提供一居民家某月电费发票的部分信息如下表所示:根据以上提供的信息解答下列问题:(1)如果月用电量x(单位:度)来表示,实付金额用y(单位:元)来表示,请你写出这两种情况实付金额y与月用电量x之间的函数关系式;(2)请你根据表中本月实付金额计算一下,这个家庭一个月的实际用电量;(3)若小芳和小华一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?【解答】解:(1)根据题意得:当x≤130时,y=0.38x,当130<x≤230时,y=0.42(x﹣130)+0.38×130,y=0.42x﹣5.2;(2)∵0.38×130=49.4<78.8,∴当y≥78.8时,用电量超出130度,∴0.42x﹣5.2=78.8,解得:x=200,答:这个家庭一个月的实际用电量是200度;(3)∵80度低于130度,∴收费标准为0.38元/度,∴80×0.38=30.4元,∵150度高于130度,∴超出的收费标准为0.42元/度,∴130×0.38+(150﹣130)×0.42=57.8元,答:小芳和小华一个月的实付金额分别为30.4元和57.8元.28.(12分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,已知A(0,4)、C(5,0).作∠AOC的角平分线交AB于点D,连接DC,过D作DE⊥DC交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2﹣x+4经过A、C两点,连接AC.探索:若点P是x轴下方抛物线上一动点,求点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP长度有最大值?若存在,求出点P的坐标;若不存在,请你说明理由.【解答】(1)解:OD平分∠AOC,∴∠AOD=∠DOC,∵四边形AOCB是矩形,∴AB∥OC,∴∠ADO=∠DOC,∴∠AOD=∠ADO,∴OA=AD(等角对等边),∴D点的坐标为(4,4),(2)证明:∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA,∵OA=AD,∴AD=BC,∵ED⊥DC,∴∠EDC=90°,∴∠ADE+∠BDC=90°,∴∠BDC+∠BCD=90°,∴∠ADE=∠BCD,在△ADE和△BCD中,,∴△ADE≌△BCD(ASA),(3)解:存在.∵二次函数的解析式为:y=x2﹣x+4,点P是抛物线上的一动点,∴设P点坐标为(t,t2﹣t+4),设AC所在的直线的函数关系式为y=kx+b,A(0,4)、C(5,0),∴,∴k=﹣,b=4,∴直线AC的解析式为y=﹣x+4,∵PM∥y轴,设M(t,﹣t+4),PM=﹣(t2﹣t+4)+(﹣t+4)=﹣t2+4t=﹣(t﹣)2+5,当t=时,PM有最大值为5,∴所求的P点坐标为(,﹣3).。
2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。
2019年青海省西宁市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)
1.-2的相反数是【】
A.2 B.1
2C.-
1
2D.-2
2.2019年5月28日,我国《高效节能房间空气调节器惠民工程推广实施细则》出台,根据奥维咨询(A VC)数据测算,节能补贴新政能直接带动空调终端销售1.030千亿元.那么1.030保留两个有效数字的近似数是【】
A.1 B.10 C.1.0 D.1.03
3.函数y=x-2的自变量x的取值范围在数轴上可表示为【】
4.下列分解因式正确的是【】
A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)
C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)2
5.用长分别为5cm、6cm、7cm的三条线段围成三角形的事件是【】
A.随机事件B.必然事件C.不可能事件D.以上都不是6.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是【】
A.两个外切的圆B.两个内切的圆
C.两个相交的圆D.两个外离的圆
7.如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线的交点O按顺时针方向旋转到△BCF,则旋转角是【】
A.45ºB.120ºC.60ºD.90º
8.折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴涵许多数学知识,我们还可以通过折纸验证数学猜想.把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论【】
A.角的平分线上的点到角的两边的距离相等
B.在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半
C.直角三角形斜边上的中线等于斜边的一半
D.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
9.如图,二次函数y=ax2+bx+c的图象过点(-1,1)、(2,-1).下列关于这个二次函数的叙述正确的是【】
A.当x=0时,y的值大于1 B.当x=3时,y的值小于0
C.当x=1时,y的值大于1 D.y的最大值小于0
10.如图,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰能拼一个正方形.若y=2,则x的值等于【】
A.3 B.25-1 C.1+5D.1+2
二、填空题(本大题共10小题,每小题2分,满分20分)
11.计算:a2b-2a2b=.
12.分式方程
2
x-3
=
3
x的解是.
13.某饮料瓶上这样的字样:Eatable D ate 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为.
14.请你写出一个图象过点(0,2),且y随x增大而减小的一次函数的解析式.
15.一条弧所对的圆心角为135º,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为c m.
16.如图,反比例函数y=k
x的图象与经过原点的直线交于点A、B,已知点A的坐标为(-2,1),
则点B的坐标是.
17.如图是某风景区的一个圆拱形门,路面AB宽为2m,净高CD为5m,则圆拱形门所在圆的半径为m.
18.72人参加商店举办的单手抓糖活动的统计结果如下表所示,若抓到糖果数的中位数为a,众数为
19.5张不透明的卡片,除正面有不同的图形外,其它均相同.把5张卡片洗匀后,正面向下放在桌上,从中随机抽取1张,与卡片上图形形状相对应的这种地板砖能进行平面镶嵌的概率是.
20.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,AC =12,BD =16,E 为AD 的中点,点
P 在x 轴上移动.小明同学写出了两个使△POE 为等腰三角形的P 点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P 点的坐标 .
三、解答题(本大题共8小题,满分70分)
21.(7分)计算:01
)3(2127-+⎪⎭
⎫
⎝⎛--π.
22.(7分)先化简
x -1 x ÷⎝
⎛⎭⎫
x - 2x -1 x ,再从-1、0、2中选取一个合适的数作为x 的值代入求值.
23.(8分)如图,在△ABC 中,∠ACB =90º,CD ⊥AB ,BC =1.
(1)如果∠BCD =30º,求AC ;
(2)如果tan ∠BCD = 1
3
,求CD .
24.(8分)如图,已知菱形ABCD ,AB =AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF .
(1)证明:四边形AECF 是矩形; (2)若AB =8,求菱形的面积.
25.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类:A—特别好、B—好、C—一般、D—较差,并将调查结果绘制成两幅不完整的统计图.请你根据统计图解答下列问题:
(1)本次调查中,张老师一共调查了名同学;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互
助学习,请用列表或画树状图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.
26.(10分)如图1,AB是⊙O的直径,C为⊙O上一点,直线CD与⊙O相切于点C,AD⊥CD,垂足为D.
(1)求证:△ACD∽△ABC;
(2)如图2,将直线CD向下平移与⊙O相交于点C、G,但其它条件不变.若AG=4,BG=3,
求tan∠CAD的值.
27.(10分)2019年6月9日召开的青海省居民阶梯电价听证会,征求了消费者、经营者和有关方面
的意见,对青海省居民阶梯电价发、方案的必要性、可行性进行了论证.阶梯电价方案规定:若每月用电量为130度以下,收费标准为0.38元/度;若每月用电量为131度~230度,收费标准由两部分组成:①其中130度,按0.38元/度收费,②超出130度的部分按0.42元/度收费.现提供一居民某月电费发票的部分信息如下表所示:
根据以上提供的信息解答下列问题:
(1)如果月用电量用x (度)来表示,实付金额用y (元)来表示,请你写出这两种情况实付金额y 与月用电量x 之间的函数关系式;
(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;
(3)若小芳和小华家一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?
28.(12分)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半
轴上,已知A (0,4)、C (5,0).作∠AOC 的平分线交AB 于点D ,连接CD ,过点D 作DE ⊥CD 交OA 于点E .
(1)求点D 的坐标;
(2)求证:△ADE ≌△BCD ;
(3)抛物线y = 4 5x 2- 24
5
x +4经过点A 、C ,连接AC .探索:若点P 是x 轴下方抛物线上一动点,
过点P 作平行于y 轴的直线交AC 于点M .是否存在点P ,使线段MP 的长度有最大值?若存在,求出点P 的坐标;若不存在,请说明理由.。