2015中考数学高分解题方法和技巧
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
2015年武汉市中考数学解题方法与技巧题号考点方法与技巧选择题1 ①相反数②倒数③绝对值④有理数的大小比较七(上)111-P看清题目,弄清概念。
注意:数轴上右边的数总比左边的数大2 函数的自变量的取值范围八上P106-3①二次根式:被开方数为非负数。
如:xy21-=、1-2x≥0、x≤21②分式:分母不为0.如:1+=xxy中x≠③31--=xxy则⎩⎨⎧≠≥∴≠-≥-3131xxxx且3 不等式组与数轴七下P141-1①解不等式时要注意两边同乘(除)以一个负数,不等号的方向要改变。
②解集:同大取大,同小取小,大小小大解中间。
③表示:大向右;小向左,等于号用实心。
4 概率中的有关命题的判断九上P131-1知道必然事件、不可能事件、随机事件的意义并会判断。
5 一元二次方程根与系数的关系九上P43-例4方程)0(02≠=++acbxax中,若其中两根X1、X2则acxxabxx=-=+2121,(特别要注意符号)6 用科学计数法表示七上P45-1①要求:运用科学记数法对大于1的数记数时,a×n10中,1≤∣a∣<10,而n要比原来的数位少1②有效数字:从左边第一个不是0的数字开始,到右边精确的数位为止,做时,一定要看清后面括号里的要求。
7 求角度八下P108-1 根据对称性原则,特别要结合三角形内角和等于180°定理解方程,求角度。
8 三视图九下P132-1 ①从三个维度理解几何体的三视图(主视图、左视图、俯视图),做时要看准要求,让你选择的是什么视图。
②②由三视图推导几何体的个数,可在俯视图中标出相应数字,也可实际由准备的橡皮块摆一摆9 根据数与形的特点找规律如果是有限个,可以直接图求解,若求无限个即规律很难发现时,可设函数求通式、观察、猜想、验证。
10 求圆中某角的三角函数值九上P89-14①勾股定理、三角函数、相似在此题中的运用;②圆中常见辅助线的作法;③注意圆周角的转换11 增长率问题①看清所给的统计图表所反映出的信息;②会计算信息中的缺失项,注意计算的准确率;③会根据实际生活理解题意,例如:若增长率为负,则下一年在上一年的基础上减少了;④有时可用排除法;12 几何多结论命题①注意相等边的转换②通过画图,两次特殊化、测量等方法来确定。
2015年中考数学压轴题解题技巧数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:(1)在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等(2)探索两个三角形满足什么条件相似等(3)探究线段之间的数量、位置关系等(4)探索面积之间满足一定关系时求x的值等,直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
2015年中考数学考前指导每次临近中考,师生普遍感到时间紧、任务重.出现教师疲惫,学生很累,家长焦虑的现象.为了更好地提高应试能力、激发应试潜质、调节应试心理,建议从以下几方面做起:一、加强应试技能训练1、认真审题,注重方法把好审题关是关键,审题时,要抓题眼、题干、题魂;要结合文字背景,对本题的图表信息进行分析、处理和加工,挖出隐含条件;要利用相关的知识储备,检索出解决问题的思路;要对于题目中的关键句、难理解语句多读几遍,必须弄清题意.选择题的解决方法有:直接法、间接法、筛选法、数形结合法、排除法、特殊值(图形)法、代入法、图像法、量一量、画一画、折一折等.解答题,审题时,还要分清主次,抓住重点,注意轻重缓急.2、知此知彼,百战百胜考试时,要充满自信,保持高昂的斗志.遇见容易题,不沾沾自喜;要深知,我易人也易,怎可大意?遇见似曾相识的题,不慌乱,不要老想在哪见过,煞费苦心,,犹豫不决;要静下来,寻求方法;遇到难题,不要惊慌,要冷静、沉着应战,相信我难人更难,从而调释自己的畏难情绪.3、先易后难,稳步答题考题的设计一般按照先易后难的顺序设计的,难易分配为6:3:1.为此要求从前往后依次做,个别卡壳的,不要太纠缠,可跳行,如有时间,再回头攻破.先做简单的、易做的,这样有助于缓解应试的紧张情绪.4、仔细答题,稳中求快由于数学试题总题量较多,在时间分配上要注意调控.多数学生感到时间紧,这是正常现象.答题效果在于简单的会做;会做的不失分;难题努力做,争取得点分;难题(大题)不求得满分,唯求总能得点分.平时训练表明:“要想得高分,基础题争取不失分”基础题做得好,就为中档和高档题赢得时间保证.其他涉及几何图形转化,统计和概率,解直角三角形,方程、函数的应用,图表题,阅读题,合情推理题,操作探究题等,要抓住主干知识,做到分析对口,理解到位,解题得法.不盲目解答,先找入口,理清思路,才有出路.5、注重方法,讲究策略考生答题,对于涉及几何图形转化,统计和概率,解直角三角形,方程、函数的应用,图表题,阅读题,合情推理题,操作探究题等,要抓住已知,剖析未知,要抓住主干知识,做到分析对口,理解到位,解题得法.不盲目解答,先找入口,理清思路,才有出路.要特别注意隐含条件;要关注要点,易错易混点;要关注主要的数学方法:换元、配方、待定系数、消元等.6、注重思想,构建模型数学考试强调解题思想的重要性,初中阶段需要掌握的数学思想主要有:数形结合、分类讨论、方程与函数以及划归与转化等.在解题时有意渗透这种思想,能有效地寻求思路,能从总体上得到解题的入口,起到引领考生初步进入解题的关口.如平面直角坐标系的建立,就搭建数形结合的平台,函数图像问题,方程(组)解的问题,可以通过数形结合的思想加以解决.判断等腰三角形,直角三角形,相似三角形,质点在线上运动等问题要注意运用分类讨论的思想加以考虑,压轴题,如求函数解析式,要设未知数,用所设的未知数来表示相关的量,运用方程的思想(整式方程、分式方程)进行分析.如求质点运动的时间问题,也需要运用方程思想,可采用相似三角形;勾股定理;或简单的一次方程加以解决.运用思想找方法是解决问题的突破口.应该引起考生的高度注意.7、关注细节,寻求契机考生在解题时,往往忽视一些细节,殊不知细节决定成败.审题不清或审题疏漏会导致整解题结果报废。
方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
方法二、内紧外松,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
方法四、六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
专题五:最短距离问题最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
一、“最值”问题大都归于两类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
几何模型:条件:如图,A 、B 是直线l 同旁的两个定点.问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P ,则PA PB A B '+=的值最小(不必证明).模型应用:(1)如图1,正方形ABCD 的边长为2,E 为AB 的中点, P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED 交AC 于P ,则PB PE +的最小值是___________;(2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值;(3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值.(4)如图,要在一条河上架一座桥MN (河的两岸互相平行,桥与河岸垂直),在如下四种方案中,使得E 、F 两地的路程最短的是A B A 'P lAB PRQ 图3A BB 图1A B C图2 P A BC D · · E F· · EF· · E F M N M N M N EM 与河岸垂直 EM ∥FN E 、M 、F 共线 FN 与河岸垂直 · · E F M N · · E F (4)题图(5)、作图设计,村庄A 、B 位于不平行的两条小河的两侧,若要在两条小河上各架设一座与河岸垂直的桥,并要使A 到B 的路程最近,问桥应架在何处?(6). (2012•台州)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( ) A .1B.3C .2D .31+(7).(2012•兰州)如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( ) A .130° B .120° C .110° D .100°【典型例题分析】1.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .23B .26C .3D .62.如图,抛物线2124y x x =--+的顶点为A ,与y 轴交于点B .(1)求点A 、点B 的坐标;(2)若点P 是x 轴上任意一点,求证:PA-PB ≤AB ; (3)当PA-PB 最大时,求点P 的坐标.BOA·xyA D EPBCyOxP DB(40)A ,(02)C ,第4题OxyBD AC P 3.如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).(1)试证明:无论点P 运动到何处,PC 总造桥与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.4.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点, 求PC +PD 的最小值,并求取得最小值时P 点坐标.5.已知:抛物线的对称轴为与x 轴交于A B ,两点,与y 轴交于点C ,其中A(-3,0)、B(1,0) C(0,-2).(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.A CxyB O5题图A CxyB O6.如图,抛物线2y ax bx c =++的顶点P 的坐标为4313⎛⎫- ⎪ ⎪⎝⎭,,交x 轴于A 、B 两点,交y 轴于点(03)C -,. (1)求抛物线的表达式.(2)把△ABC 绕AB 的中点E 旋转180°,得到四边形ADBC . 判断四边形ADBC 的形状,并说明理由.(3)试问在线段AC 上是否存在一点F ,使得△FBD 的周长最小, 若存在,请写出点F 的坐标;若不存在,请说明理由.7.如图(1),抛物线3518532+-=x x y 和y 轴的交点为M A ,为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长。
2015年中考复习诀窍:重视常用数学公式技巧郁南县龙塘初级中学九年级数学科教师编写数学,是一门贯穿整个学生生涯的重要科目,也是学好理科的重要基础。
现在很多学生都出现偏科的严重问题,而导致自身成绩的两级分化。
如果想要拿下好成绩,数学这一科绝不能忽视。
如何学好数学?要学会构建知识网络。
做好一定数量的数学习题练习,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
下面,分享数学复习需重视的七大问题。
一、重视构建知识网络——宏观把握数学框架要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。
因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会应用这些概念去解决一些问题。
夯实数学双基——微观掌握知识技能在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。
三、重视强化题组训练——感悟数学思二、重视想方法除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。
反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。
而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。
逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
四、重视建立“病例档案”——做到万无一失准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。
我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
初中数学的中考高分经验是什么数学中考的考试范围和题型是相对固定的,不管中考数学题目怎么出,最终都脱离不开中考数学的考点。
下面是小编给大家带来的初中数学的中考高分经验,欢迎大家阅读参考,我们一起来看看吧!中考数学取得高分的检查方法方法一:检查基本概念基本概念、法则、公式是同学们检查时最容易忽视的,因此在解题时极易发生小错误而自己却检查数次也发现不了,所以,做完试卷第一步,在检查基本题时,我们要仔细读题,回到概念的定义中去,对症下药。
比如中考题选择题,题目问“8的平方根是多少”,如果学生选择了2√2,检查时很容易会再算一次(2√2)^2=8,就想当然的以为答案是对的了。
此时,我们就应该从概念入手,想想什么是“平方根”,那就会回忆起这样一个等式x^2=8,二次方程又都应该是有两解的,所以答案应该有正负两解。
方法二:对称检验对称的条件势必导致结论的对称,利用这种对称原理可以对答案进行快速检验。
比如如:因式分解,(xy+1)(x+1)(y+1)+xy=(xy-y+1)(xy+x+1)结论显然错误。
左端关于x、y对称,所以右端也应关于x、y对称,正确答案应为:(xy+1)(x+1)(y+1)+xy=(xy+y+1)(xy+x+1)。
方法三:不变量检验某些数学问题在变化、变形过程中,其中有的量保持不变,如图形的平移、旋转、翻折时,图形的形状、大小不变,基本量也不变。
利用这种变化过程中的不变量,可以直接验证某些答案的正确性。
方法四:特殊情形检验问题的特殊情况往往比一般情况更易解决,因此通过特殊值、特例来检验答案是非常快捷的方法。
比如中考经常考的幂的运算,比如2014年的(-a^2)^3,我就可以去a=2,先计算-a^2=-4,再计算-4^3,就很容易检验出原答案的正确与否。
方法五:答案逆推法相信这种方法很多学生都会,在求出题目的答案后,可将答案重新代回题目中,检验题目的条件是否还成立。
但是这种方法一定要注意,要想想有没有可能存在多解的情形。
中考数学答题得分技巧
中考数学提分思想策略
1、数形结合思想是说数的问题,可以通过对图形的分析来解决,形的问题也可通过对数的研究来思考。
2、分情况讨论思想就是当一个问题用统一的方法不能继续做下去的时候,需要对所研究的问题分成若干个情况分别进行研究的思想方法。
3、化归思想是说在解决实际问题时常常需要进行等价转换,把生疏的题目转化成熟悉的题目,通过特殊到一般,归纳出事物的规律,并能进行适当的变式变形。
4、函数与方程思想,就是对于有些数学问题要学会用变量和函数来思考,学会转化未知与已知的关系。
5、数学建模思想,是说在具体的问题分析中,尽量通过观察,抽象出主要的参量、参数与有关的定律、原理间建立起的某种关系。
这样,一个具体的实际问题就转化为简化明了的一个数学模型。
2015中考数学答题技巧同学们,经过三年紧张而艰苦的寒窗苦读,能否将自己的实际水平,如实地在考卷上全面正确的反映出来,实现自己的宏愿,除了扎实的基本知识功底外,你还要掌握应考的一些技巧和进行一些必要的心理调适,今天,我就数学学科如何应考做一简要说明,希望对你们有所帮助一、稳定情绪中考前一个晚上睡足八个小时,早晨吃好清淡早餐,留有时间提前进入“角色”——让大脑开始简单的数学活动,进入单一的数学情境。
如:1.清点一下用具是否带全(笔、橡皮、作图工具、准考证等)。
2.把一些基本数据、常用公式、重要定理“过过电影”。
3.最后看一眼难记易忘的结论。
4.互问互答一些不太复杂的问题。
最易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种:①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。
②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。
③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到发卷时。
二、通览全卷拿到试卷后,不要急于求成,马上作答。
中考时,通常提前五分钟发试卷。
拿到试卷后,大家应充分利用好开始答题前这宝贵的五分钟,通览一遍试题,摸透题情,了解共有几页、试题类型、难易程度,对完成整卷自己所需的时间作一下估计,做到心中有数。
三、仔细审题,先易后难原则上应从前往后答题,因为在考题的设计中一般都是按照先易后难的顺序设计的。
先答简单、易做的题,有助于缓解紧张情绪,同时也避免因会做的题目没有做完而造成的失分。
如果在实际答卷中确有个别知识点遗忘可以“跳”过去,先做后面的题四、做题中的注意事项:(一)、选择题:注意选择题要看完所有选项,解完后不要立即检查。
常见的方法有观察、计算、淘汰、图形、特殊值法。
有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,要注意分类思想的运用,如果选项中存在多种情况的,要思考是否适合题意,找规律题可以多写一些情况,或对原式进行变形,以找出规律,也可用特殊值进行检验。
2015年中考数学压轴题解题技巧练习如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点.1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8 …………………1分将A 4,8、C8,0两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分2①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为4+12t,8-t.∴点G的纵坐标为:-124+12t2+44+12t=-18t2+8. …………………5分∴EG=-18t 2+8-8-t =-18t 2+t. ∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3= 8525+. …………………11分 一、对称翻折平移旋转1.2014年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形 说明你的理由.3在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建2013年宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分 2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分12yxAO B PM图1C 2C 321 yxAO B PN图C 1C 4Q EF 22二、动态:动点、动线3.2014年辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根. 1求这条抛物线的解析式;2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由.4.2013年山东省青岛市已知:如图①,在Rt △ACB 中,∠C B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 为2cm/s ;连接PQ .若设运动的时间为ts0<t <2,解答下列问题: 1当t 为何值时,PQ ∥BC2设△AQP 的面积为y 2cm ,求y 与t 之间的函数关系式;3是否存在某一时刻t,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分 若存在,求出此时t 的值;若不存在,说明理由;4如图②,连接PC,并把△PQC 沿QC 翻折,得到四边形PQP ′C,那么是否存在某一时刻t,使四边形PQP ′C 为菱形 若存在,求出此时菱形的边长;若不存在,说明理由.5.09年吉林省如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为x秒时,△APQ 与△ABC 重叠部分....的面积为y 平方厘米这里规定:点和线段是面积为0的三角形,解答下列问题:1点P 、Q 从出发到相遇所用时间是__________秒;B 图C2点P 、Q 从开始运动到停止的过程中,当△APQ 是等边三角形时x 的值是__________秒; 3求y 与x 之间的函数关系式.6.2012年浙江省嘉兴市如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. 1求x 的取值范围;2若△ABC 为直角三角形,求x 的值; 3探究:△ABC 的最大面积8.2009年中考天水如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +ca >0的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为3,0,OB =OC ,tan ∠ACO =错误!.1求这个二次函数的解析式;2若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;3如图2,若点G 2,y 是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大 求此时点P 的坐标和△AGP 的最大面积.9.14年湖南省张家界市在平面直角坐标系中,已知A -4,0,B 1,0,且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . 1求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; 2求点D 的坐标;3设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切 若存在,求出该圆的半径,若不存在,请说明理由.xOy坐标O 相切于点A 和点C .1求抛物线的解析式;2抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. 3过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.第24题四、比例比值取值范围11.2014年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标; 2在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. 湖南省长沙市2013年如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.成都市2010年在平面直角坐标系xOy ,抛物线2y ax bx c =++与x 轴交于A B 、两点点A 在点B 的左侧,与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.1求直线AC 及抛物线的函数表达式;2AC ABP ∆BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;图9 图1BA P x CQ O y第26题图3设Q 的半径为l,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况 若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切五、探究型14.内江市2010如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.1请求出抛物线顶点M 的坐标用含m 的代数式表示,A B 、两点的坐标; 2经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;3是否存在使BCM △为直角三角形的抛物线 若存在,请求出;如果不存在,请说明 理由.15.重庆市潼南县2010年如图,于A 、B,点A 的坐标为2,0,点C 1求抛物线的解析式;2点E 是线段AC 上一动点,过点D 的坐标; 3在直线BC 上是否存在一点P,说明理由.16.2008年福建龙岩如图,抛物线y 轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.1求抛物线的对称轴;2写出A B C ,,三点的坐标并求抛物线的解析式;3探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.题图2617.09年广西钦州26.本题满分10分如图,已知抛物线y =34x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线y =34tx -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.1填空:点C 的坐标是_▲_,b =_▲_,c =_▲_; 2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似 若存在,求出所有t 的值;若不存在,说明理由.18.09年重庆市已知:如图,在平面直角坐标系xO y 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .1求过点E 、D 、C 的抛物线的解析式;2将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC交于点G .如果DF 与1中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立 若成立,请给予证明;若不成立,请说明理由;3对于2中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P与点C 、G 构成的△PCG 是等腰三角形 若存在,请求出点Q 的坐标;若不存在,请说明理由.ax 2+bx,12P3在2的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似 若存在,请求出点Q 的坐标;若不存在,请说明理由.20.08江苏徐州如图1,一副直角三角板满足AB =BC,AC =DE,∠ABC =∠DEF =90°,∠EDF =30°操作将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P,边EF 与边BC 于点Q 探究一在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系 并给出证明. (2) (3) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系, (4) 并说明理由. (5)(6) 根据你对1、2的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______直接写出结论,不必证明 探究二若,AC =30cm,连续PQ,设△EPQ 的面积为Scm 2,在旋转过程中:(1) S 是否存在最大值或最小值 若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化 不出相应S 值的取值范围. (3)六、最值类综合题;一函数型综合题:是先给定直角坐标系和几何图形,求已知函数的解析式即在求解前已知函数的类型,然后进行图形的研究,求点的坐标或研究图形的某些性质;初中已知函数有:①一次函数包括正比例函数和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线;求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法图形法和代数法解析法;此类题基本在第24题,满分12分,基本分2-3小题来呈现;二几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点或动线段运动,对应产生线段、面积等的变化,求对应的未知函数的解析式即在没有求出之前不知道函数解析式的形式是什么和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线圆与圆的相切时求自变量的值等;求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系即列出含有x、y的方程,变形写成y=fx的形式;一般有直接法直接列出含有x和y的方程和复合法列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y =fx的形式,当然还有参数法,这个已超出初中数学教学要求;找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法;求定义域主要是寻找图形的特殊位置极限位置和根据解析式求解;而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值;几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现;在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高;解中考数学压轴题秘诀二具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活;解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略;现介绍几种常用的解题策略,供初三同学参考;1、以坐标系为桥梁,运用数形结合思想:纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答;2、以直线或抛物线知识为载体,运用函数与方程思想:直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形;因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想;例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得;3、利用条件或结论的多变性,运用分类讨论的思想:分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点;4、综合多个知识点,运用等价转换思想:任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用;中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面;因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略;5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,第2小题中等,第3小题偏难,在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性;6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分;因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏;近几年中考数学中运动几何问题倍受青睐,它不仅综合考查初中数学骨干知识,如三角形全等与相似、图形的平移与旋转、函数一次函数、二次函数与反比例函数与方程等,更重要的是综合考查初中基本数学思想与方法;此类题型也往往起到了考试的选拔作用,使学生之间的数学考试成绩由此而产生距离,所以准确快速解决此类问题是赢得中考数学胜利的关键;如何准确、快速解决此类问题呢关键是把握解决此类题型的规律与方法――以静制动;另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是本题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出答案,更重要的是明确此题的方法和思路;下面以具体实例简单的说一说此类题的解题方法;一、利用动点图形位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题例1:北京市石景山区2010年数学期中练习在△ABC中,∠B=60°,BA=24CM,BC=16CM, 1求△ABC的面积;2现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动;如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC的面积的一半3在第2问题前提下,P,Q两点之间的距离是多少点评:此题关键是明确点P、Q在△ABC边上的位置,有三种情况;1当0﹤t≦6时,P、Q分别在AB、BC边上;2当6﹤t≦8时,P、Q分别在AB延长线上和BC边上;3当t >8时, P、Q分别在AB、BC边上延长线上.然后分别用第一步的方法列方程求解.A例2: 北京市顺义2010年初三模考已知正方形ABCD的边长是1,E为CD边的中点, P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,1写出y与x的关系式2求当y=13时,x的值等于多少点评:这个问题的关键是明确点P在四边形ABCD边上的位置,根据题意点P的位置分三种情况:分别在AB上、BC边上、EC边上.第一是以静化动,把问的某某秒后的那个时间想想成一个点,然后再去解,第二是对称性,如果是二次函数的题,一定要注意对称性;第三是关系法:你可以就按照图来,就算是图画的在不对,只要你把该要的条件列成一些关系,列出一些方程来;中等的动点题也就没问题了;但是在难一点的动点题就要你的能力了,比如让你找等腰三角形的题,最好带着圆规,这样的题你要从三个顶点考虑,每一条边都要想好,然后再求出来看看在不在某个范围内1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答;2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形;因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想;例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得;3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点;4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用;中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面;因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略;5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,第2小题中等,第3小题偏难,在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性;6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分;因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏;二. 重点难点:1. 重点:利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律;2. 难点:探索存在的各种可能性以及发现所形成的客观规律;三. 具体内容:通常情景中的“探索发现”型问题可以分为如下类型:1. 条件探索型——结论明确,而需探索发现使结论成立的条件的题目;2. 结论探索型——给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目;3. 存在探索型——在一定的条件下,需探索发现某种数学关系是否存在的题目;4. 规律探索型——在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1利用特殊值特殊点、特殊数量、特殊线段、特殊位置等进行归纳、概括,从特殊到一般,从而得出规律;2反演推理法反证法,即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致;3分类讨论法;当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果;4类比猜想法;即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证;以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用;5. 如图所示,抛物线()23m x y --=m >0的顶点为A ,直线l :m x y -=33与y 轴交点为B . 1写出抛物线的对称轴及顶点A 的坐标用含m 的代数式表示;2证明点A 在直线l 上,并求∠OAB 的度数;3动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以点P 、Q 、A 为顶点的三角形与⊿OAB 全等 若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,请说明理由.6. 在平面直角坐标系xOy 中,将抛物线22y x =沿y 轴向上平移1个单位,再沿x 轴向右平移两个单位,平移后抛物线的顶点坐标记作A ,直线3x =与平移后的抛物线相交于B ,与直线OA 相交于C .1求△ABC 面积;2点P 在平移后抛物线的对称轴上,如果△ABP 与△ABC 相似,求所有满足条件的P 点坐标.7. 设抛物线22y ax bx =+-与x 轴交于两个不同的点A 一1,0、Bm,0,与y 轴交于点C.且∠ACB=90°.1求m 的值和抛物线的解析式;2已知点D1,n 在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.3在2的条件下,△BDP 的外接圆半径等于________________.。
2015中考数学答题技巧和方法
得高分的人除了基础打得好之外,学习技巧和方法也是不可或缺的,下面为大家整理了数学解题技巧分享,希望同学们看过之后也都能取得高分。
1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的重要方法之一。
6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、等(面或体)积法:平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。
运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。
用归纳法或分析法证明几何题,其困难在添置辅助线。
等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。
所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法:选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。