2017-2018年广州天河区九年级上学期数学期末试卷
- 格式:pdf
- 大小:2.20 MB
- 文档页数:4
2017-2018学年广东省广州市天河区九年级(上)期末数学试卷一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)下列图形是中心对称图形而不是轴对称图形的是()A. B.C.D.2.(3分)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x2﹣x=0必有实数根3.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点4.(3分)某反比例函数的图象经过点(﹣2,3),则该图象一定不经过点()A.(1,6) B.(﹣1,6)C.(2,﹣3)D.(3,﹣2)5.(3分)Rt ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是()A.相切B.相交C.相离D.无法确定6.(3分)下列一元二次方程中,两个实数根之和为1的是()A.x2+x+2=0 B.x2+x﹣2=0 C.x2﹣x+2=0 D.x2﹣x﹣2=07.(3分)一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()A.16(1+2x)=25 B.25(1﹣2x)=16 C.25(1﹣x)2=16 D.16(1+x)2=25 8.(3分)如图,已知CD为圆O的直径,过点D的弦DE平行于半径OA,若角D=50°,则角C的度数是()A.50°B.25°C.30°D.40°9.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.10.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B.C.D.4二、填空题(本题有六个小题,每小题三分,共18分)11.(3分)如图,在△ABC中∠BAC=60°,将△ABC绕着点A顺时针旋转20°后,得到△ADE,则∠BAE=12.(3分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是.13.(3分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有个.14.(3分)如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30°,则圆锥的侧面积为.15.(3分)如图点P(1,2)在反比例函数的图象上,当x<1时,y的取值范围是.16.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0②b2﹣4ac>0③4b+c<0④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确的结论是(填写代表正确结论的序号).三.解答题(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(9分)(1)解方程:x2﹣8x+1=0;(2)若方程x2﹣4x﹣5=0的两根分别为x1,x2,求x12+x22的值.18.(9分)如图,若等腰三角形ABC中,AB=AC,O是底边BC的中点,圆O与腰AB相切于点D,求证:AC与圆O相切.19.(10分)如图,△AOB的三个顶点都在网格的格点上,网格中的每个小正方形的边长均为一个长度单位,以点O建立平面直角坐标系,若△AOB绕点O逆时针旋转90°后,得到△A1OB1(A和A1是对应点)(1)写出点A1,B1的坐标;(2)求旋转过程中边OB扫过的面积(结果保留π).20.(10分)摸球活动:在一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球,然后放回,再随机摸出一个小球,此活动回答以下问题(1)求“两次取的小球标号相同”这个事件的概率;(2)设计一个概率为的事件,并说明理由.21.(12分)北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在北方市场上的销售量为y(吨),销售价x(万元)之间的函数关系为y=﹣x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)填空当每吨销售价为万元时,可得最大利润为万元.22.(12分)如图,已知点D在双曲线y=(x大于零)的图象上,以D为圆心的圆D与y轴相切于点C (0,4),与x轴交于A、B两点(1)求点D的坐标;(2)求点A和点B的坐标.23.(12分)如图,已知二次函数y=ax2+bx+c的图象过点A(2,0 ),B(0,﹣1)和C(4,5),与x轴的另一个交点为D.(1)求该二次函数的解析式;(2)求三角形BDC的面积.24.(14分)如图,过点A(1,0)作x轴的垂线,交反比例函数y=(x大于零)的图象交于点M,已知三角形AOM的面积为3.(1)求k的值;(2)说点B的坐标为(t,0),若以AB为一边的正方形ABCD有顶点在该反比例函数的图象上,求t的值.25.(14分)已知抛物线y=x2+bx+c的顶点为D,且经过A(1,0);B(0,2)两点,将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将该抛物线沿着对称轴上下平移,使之经过点C,此时得到的新抛物线与y轴的交点为B1,顶点为D.(1)求新抛物线的解析式;(2)若点N在新抛物线上,满足三角形NBB1的面积是三角形NDD1面积的2倍,求点N坐标.2017-2018学年广东省广州市天河区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1.(3分)下列图形是中心对称图形而不是轴对称图形的是()A. B.C.D.【解答】解:A、是中心对称图形,不是轴对称图形;故A正确;B、是中心对称图形,也是轴对称图形;故B错误;C、是中心对称图形,也是轴对称图形;故C错误;D、不是中心对称图形,是轴对称图形;故D错误;故选:A.2.(3分)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《今日在线》C.射击运动员射击一次,命中十环D.方程x2﹣x=0必有实数根【解答】解:A、抛掷一枚硬币,四次中有两次正面朝上是随机事件,故本选项错误;B、打开电视频道,正在播放《今日在线》是随机事件,故本选项错误;C、射击运动员射击一次,命中十环是随机事件,故本选项错误;D、方程x2﹣x=0必有实数根是必然事件,故本选项正确;故选:D.3.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.4.(3分)某反比例函数的图象经过点(﹣2,3),则该图象一定不经过点()A.(1,6) B.(﹣1,6)C.(2,﹣3)D.(3,﹣2)【解答】解:∵反比例函数的图象经过点(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数图象上的点(x,y)的横纵坐标的积是定值﹣6,即xy=﹣6,∴该图象一定不经过点(1,6).故选:A.5.(3分)Rt ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是()A.相切B.相交C.相离D.无法确定【解答】解:过C点作CD⊥AB,垂足为D,∵∠ACB=90°,BC=6,AC=8,由勾股定理,得AB==10,根据三角形计算面积的方法可知,BC×AC=AB×CD,∴CD==4.8<5,∴⊙C与直线AB相交.故选:B.6.(3分)下列一元二次方程中,两个实数根之和为1的是()A.x2+x+2=0 B.x2+x﹣2=0 C.x2﹣x+2=0 D.x2﹣x﹣2=0【解答】解:A、方程没有实数解,所以A选项错误;B、两个实数根之和为﹣1,所以B选项错误;C、方程没有实数解,所以C选项错误;D、两个实数根之和为1,所以D选项正确.故选:D.7.(3分)一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式()A.16(1+2x)=25 B.25(1﹣2x)=16 C.25(1﹣x)2=16 D.16(1+x)2=25【解答】解:第一次降价后的价格为:25×(1﹣x);第二次降价后的价格为:25×(1﹣x)2;∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选:C.8.(3分)如图,已知CD为圆O的直径,过点D的弦DE平行于半径OA,若角D=50°,则角C的度数是()A.50°B.25°C.30°D.40°【解答】解:∵OA∥DE,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:B.9.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A. B. C.D.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选:D.10.(3分)把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B.C.D.4【解答】解:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°﹣∠ACO﹣∠CAO=90°.在等腰Rt△ABC中,AB=4,则AC=BC=2.同理可求得:AO=OC=2.在Rt△AOD1中,OA=2,OD1=CD1﹣OC=3,由勾股定理得:AD1=.故选:A.二、填空题(本题有六个小题,每小题三分,共18分)11.(3分)如图,在△ABC中∠BAC=60°,将△ABC绕着点A顺时针旋转20°后,得到△ADE,则∠BAE=80°【解答】解:∵△ABC绕着点A顺时针旋转20°后得到△ADE,∴∠CAE=20°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+20°=80°.故答案为:80°.12.(3分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.13.(3分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有2个.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是白球的概率为,∴=,解得:n=2.故答案为:2.14.(3分)如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30°,则圆锥的侧面积为2π.【解答】解:∵AO⊥BC,∠BAO=30°,∴OB=AB=1,∴圆锥的侧面积=×2π×1×2=2π,故答案为:2π.15.(3分)如图点P(1,2)在反比例函数的图象上,当x<1时,y的取值范围是y>2或y<0.【解答】解:当x<1时,y>2或y<0.故答案为y>2或y<0.16.(3分)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0②b2﹣4ac>0③4b+c<0④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确的结论是(填写代表正确结论的序号)②③⑤.【解答】解:由图象可知,a<0,b<0,c>0,∴abc>0,故①错误.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确.∵抛物线对称轴为x=﹣1,与x轴交于A(﹣3,0),∴抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,﹣=﹣1,∴b=2a,c=﹣3a,∴4b+c=8a﹣3a=5a<0,故③正确.∵B(﹣,y1)、C(﹣,y2)为函数图象上的两点,又点C离对称轴近,∴y1,<y2,故④错误,由图象可知,﹣3≤x≤1时,y≥0,故⑤正确.∴②③⑤正确,故答案为②③⑤.三.解答题(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17.(9分)(1)解方程:x2﹣8x+1=0;(2)若方程x2﹣4x﹣5=0的两根分别为x1,x2,求x12+x22的值.【解答】解:(1)移项可得x2﹣8x=﹣1,两边加16可得x2﹣8x+16=﹣1+16,配方可得(x﹣4)2=15,两边开方可得x﹣4=±,∴x=4+或x=4﹣;(2)由根与系数的关系可得x1+x2=4,x1x2=﹣5,∴x12+x22=(x1+x2)2﹣2x1x2=42﹣2×(﹣5)=26.18.(9分)如图,若等腰三角形ABC中,AB=AC,O是底边BC的中点,圆O与腰AB相切于点D,求证:AC与圆O相切.【解答】证明:连接OD,过点O作OE⊥AC于E点,则∠OEC=90°,∵AB切⊙O于D,∴OD⊥AB,∴∠ODB=90°,∴∠ODB=∠OEC,又∵O是BC的中点,∴OB=OC,∵AB=AC,∴∠B=∠C,∴△OBD≌△OCE,∴OE=OD,即OE是⊙O的半径,∴AC与⊙O相切.19.(10分)如图,△AOB的三个顶点都在网格的格点上,网格中的每个小正方形的边长均为一个长度单位,以点O建立平面直角坐标系,若△AOB绕点O逆时针旋转90°后,得到△A1OB1(A和A1是对应点)(1)写出点A1,B1的坐标;(2)求旋转过程中边OB扫过的面积(结果保留π).【解答】解:(1)如图,△A1OB1为所作;所以点A1的坐标为(﹣4,1),点B1的坐标为(﹣3,3)(2)OB=,所以旋转过程中边OB扫过的面积=.20.(10分)摸球活动:在一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球,然后放回,再随机摸出一个小球,此活动回答以下问题(1)求“两次取的小球标号相同”这个事件的概率;(2)设计一个概率为的事件,并说明理由.【解答】解:(1)树状图如图.由树状图知共有16种等可能结果,其中两次取的小球标号相同的有4种,则两次取的小球标号相同的概率为=;(2)设计事件:求“两次取出的小球编号和为偶数”这个事件的概率.由(1)中树状图知,共有16种等可能结果,其中两次取出的小球的编号和为偶数的情况有8种,所以两次取出的小球的编号和为偶数的概率为.21.(12分)北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在北方市场上的销售量为y(吨),销售价x(万元)之间的函数关系为y=﹣x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)填空当每吨销售价为 1.5万元时,可得最大利润为 1.21万元.【解答】解:(1)设销售利润为w万元.w=(x﹣0.4)y=(x﹣0.4)(﹣x+2.6)=﹣x2+3x﹣1.04,令w=0.96,则﹣x2+3x﹣1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为0.96万元.(2)w=﹣x2+3x﹣1.04=﹣(x﹣1.5)2+1.21当x=1.5时,w最大=1.21∴每吨销售价为 1.5万元时,销售利润最大,最大利润是 1.21万元.故答案为1.5,1.21.22.(12分)如图,已知点D在双曲线y=(x大于零)的图象上,以D为圆心的圆D与y轴相切于点C (0,4),与x轴交于A、B两点(1)求点D的坐标;(2)求点A和点B的坐标.【解答】解:(1)∵以点D为圆心的⊙D与y轴相切于点C(0,4),∴点D的纵坐标为4,∵点D在y=上,∴4=,∴x=5,∴D(5,4),(2)作DE⊥AB与H,连接AD、BD.在Rt△AED中,DA=5,DE=4,∴AE==3,∴OA=5﹣3=2,OB=5+3=8,∴A(2,0),B(8,0).23.(12分)如图,已知二次函数y=ax2+bx+c的图象过点A(2,0 ),B(0,﹣1)和C(4,5),与x轴的另一个交点为D.(1)求该二次函数的解析式;(2)求三角形BDC的面积.【解答】解:(1)设二次函数的解析式为y=ax2+bx+c,把A(2,0),B(0,﹣1)和C(4,5)三点坐标代入解析式得到:,解得,∴抛物线的解析式为y=x2﹣x﹣1.(2)对于抛物线y=x2﹣x﹣1,令y=0,得x2﹣x﹣1=0,解得x=2或﹣1,∴另一个交点为D坐标为(﹣1,0),∵直线BC的解析式为y=x﹣1,令y=0,得x=,设直线BC与x轴交于点H,则H(,0),∴S△BCD=S△DHC+S△DHB=××5+××1=5.24.(14分)如图,过点A(1,0)作x轴的垂线,交反比例函数y=(x大于零)的图象交于点M,已知三角形AOM的面积为3.(1)求k的值;(2)说点B的坐标为(t,0),若以AB为一边的正方形ABCD有顶点在该反比例函数的图象上,求t的值.【解答】解:(1)根据题意得|k|=3,而k>0,∴k=6;(2)四边形ABCD为正方形,当B点在A点左侧时,AB=1﹣t,则D(1,1﹣t),所以1?(1﹣t)=6,解得t=﹣5;当点B在点A的右侧,则AB=t﹣1,∴C(t,t﹣1),D(1,t﹣1),若D(1,t﹣1)在反比例函数图象上时,则t﹣1=6,解得t=7;若C(t,t﹣1)在反比例函数图象上时,则t﹣1=,整理得t2﹣t﹣6=0,解得t1=3,t2=﹣2(舍去);综上所述,t的值为﹣5或3或7.25.(14分)已知抛物线y=x2+bx+c的顶点为D,且经过A(1,0);B(0,2)两点,将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将该抛物线沿着对称轴上下平移,使之经过点C,此时得到的新抛物线与y轴的交点为B1,顶点为D.(1)求新抛物线的解析式;(2)若点N在新抛物线上,满足三角形NBB1的面积是三角形NDD1面积的2倍,求点N坐标.【解答】解:(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴,解得,抛物线的解析式为y=x2﹣3x+2;∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2﹣3x+2得y=2,可知抛物线y=x2﹣3x+2过点(3,2),∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y2=x2﹣3x+1;(2)∵点N在y=x2﹣3x+1上,可设N点坐标为(x0,x02﹣3x0+1),将y=x2﹣3x+1配方得y=(x﹣)2﹣,∴其对称轴为直线x=.①0≤x0≤时,如图①,∵S△NBB1=2S△NDD1,∴×1×x0=2××1×(﹣x0),∵x0=1,此时x02﹣3x0+1=﹣1,∴N点的坐标为(1,﹣1).②当x0>时,如图②,同理可得×1×x0=2××(x0﹣),∴x0=3,此时x02﹣3x0+1=1,∴点N的坐标为(3,1).③当x<0时,由图可知,N点不存在,综上,点N的坐标为(1,﹣1)或(3,1).。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,CD 是⊙O 的直径,已知∠1=30°,则∠2等于( )A .30°B .45°C .60°D .70°【答案】C 【解析】试题分析:如图,连接AD . ∵CD 是⊙O 的直径, ∴∠CAD=90°(直径所对的圆周角是90°); 在Rt △ABC 中,∠CAD=90°,∠1=30°, ∴∠DAB=60°; 又∵∠DAB=∠2(同弧所对的圆周角相等), ∴∠2=60°考点:圆周角定理2.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <且0k ≠B .0k ≠C .1k <D .1k >【答案】A【分析】根据题意可得k 满足两个条件,一是此方程是一元二次方程,所以二次项系数k 不等于0,二是方程有两个不相等的实数根,所以b 2-4ac>0,根据这两点列式求解即可.【详解】解:根据题意得,k ≠0,且(-6)2-36k>0,解得,1k <且0k ≠.故选:A.【点睛】本题考查一元二次方程的定义及利用一元二次方程根的情况确定字母系数的取值范围,根据需满足定义及根的情况列式求解是解答此题的重要思路.3.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是( )A .②③B .①③④C .①②④D .①②③④ 【答案】D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.4.《代数学》中记载,形如21039x x+=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x的方程260x x m++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.353C.352D.3 352【答案】B【分析】根据已知的数学模型,同理可得空白小正方形的边长为32,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.【详解】x2+6x+m=0,x2+6x=-m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=32,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为32x的矩形,得到大正方形的面积为36+(32)2×4=36+9=45453353=.【点睛】此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.5.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .45【答案】D【详解】如图,连接AB ,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .6.估计 (1235287,的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 【答案】B5.【详解】解:()1235287-⋅ 112352877=⋅-⋅ 252=-224=,239=22253∴<<253∴<<22.2 4.84=,22.3 5.29=2.25 2.3∴<<4.425 4.6∴<<2.4252 2.6∴<-<22523∴<-<故()1235287-⋅的值应在2和3之间. 故选:B.【点睛】本题主要考查了无理数的估算,正确估算出5的范围是解答本题的关键.7.如图,已知四边形ABCD 是平行四边形,下列结论不正确的是( )A .当AC BD =时,它是矩形B .当AC BD ⊥时,它是菱形 C .当AD DC =时,它是菱形D .当90ABC ∠=︒时,它是正方形【答案】D 【解析】根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.【详解】A. 正确,对角线相等的平行四边形是矩形;B. 正确,对角线垂直的平行四边形是菱形;C. 正确,有一组邻边相等的平行四边形叫做菱形;D. 不正确,有一个角是直角的平行四边形叫做矩形。
2017-2018学年第一学期天河区期末考试九年级数学一、选择题(本题有十个小题,每小题三分,满分30分,下面每小题给出的四个选项中,只有一个是正确的.)1. 下列图形是中心对称而不是轴对称的图形是( )A. B. C. D.【答案】A【解析】根据轴对称图形与中心对称图形的概念可知选项A是中心对称图形,不是轴对称图形;选项B是中心对称图形,也是轴对称图形;选项C是中心对称图形,也是轴对称图形;选项D是不中心对称图形,是轴对称图形,故选A.2. 下列事件是必然事件的是( )A. 抛掷一枚硬币四次,有两次正面朝上B. 打开电视频道,正在播放《今日在线》C. 射击运动员射击一次,命中十环D. 方程x²-x=0必有实数根【答案】D【解析】解:A.抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B.打开电视频道,正在播放《今日在线》,随机事件,故本选项错误;C.射击运动员射击一次,命中十环,随机事件,故本选项错误;D.因为在方程x²-x=0中△=1﹣0=1>0,必然事件,故本选项正确.故选D.3. 对于二次函数y=(x-1)²+2的图像,下列说法正确的是( )A. 开口向下B. 对称轴是x=-1C. 顶点坐标是(1,2)D. 与x轴有两个交点【答案】C【解析】试题分析:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选C.考点:二次函数的性质.4. 若函数的图像y=经过点(2,3),则该函数的图像一定经过( )A. (1,6)B. (-1,6)C. (2,-3)D. (3,-2)【答案】A【解析】解:k=2×3.A.∵1×6=6,∴此点在反比例函数的图象上,故本选项正确;B.∵-1×6=-6,∴此点不在反比例函数的图象上,故本选项错误;D.∵3×(-2)=-6,∴此点不在反比例函数的图象上,故本选项错误.故选A.5. Rt△ABC中,∠C=90º,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的圆与直线AB的位置关系是( )A. 相切B. 相交C. 相离D. 无法确定【答案】B【解析】解:过C点作CD⊥AB,垂足为D.∵∠C=90°,BC=6,AC=8,由勾股定理得:AB==10,根据三角形计算面积的方法可知:BC×AC=AB×CD,∴CD==4.8<5,∴⊙C与直线AB相交.故选B.点睛:本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.6. 下列一元二次方程中,两个实数根之和为1的是( )A. x²+x+2=0B. x²+x-2=0C. x²-x+2=0D. x²-x-2=0【答案】D【解析】解:A.△=1-4×1×2=-7<0,∴方程无实数根,故错误;B.两根之和=-1,故错误;C.△=1-4×1×2=-7<0,∴方程无实数根,故错误;D.两根之和=1,故正确.故选D.7. 一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式( )A. 16(1+2x)=25B. 25(1-2x)=16C. 25(1-x)²=16D. 16(1+x)²=25【答案】C【解析】解:第一次降价后的价格为:25×(1﹣x),第二次降价后的价格为:25×(1﹣x)2.∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.8. 如图,已知CD为圆O的直径,过点D的弦DE平行于半径OA,若角D=50º,则角C的度数是( )A. 50ºB. 25ºC. 30ºD. 40º【答案】B【解析】解:∵OA∥DE,∴∠D=∠AOD=50°.∵OA=OC,∴∠ACO=∠OAC=∠AOD=25°.故选B.9. 已知a≠0,函数y=与函数y=-ax²+a在同一直角坐标系的大致图像可能是( )A. B. C. D.【答案】D【解析】解:当a>0时,函数的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项;当a<0时,函数的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合.故选D.点睛:本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.10. 把一副三角板如图放置其中∠ACB=∠DEC=90º,∠A=40º,∠D=30º,斜边AB=4,CD=5,把三角板DCE绕点C顺时针旋转15º得到三角形D1CE (如图二),此时AB与CD1交于点O,则线段AD1的长度为( )A. B. C. D. 4【答案】A【解析】解:如图乙所示,∵∠3=15°,∠D1CE1=90°-30°=60°,∴∠BCO=60°-15°=45°.又∵∠ACB=90°,∴∠ACO=45°,∴∠AOC=∠AOD1=90°.∵∠B=∠CAO=45°,∴AO=OB=OC=AB=2(cm).∵∠ACB=90°,∴CO=AB=×4=2(cm).又∵CD1=5(cm),∴OD1=CD1﹣OC=5﹣2=3(cm).在Rt△AD1O中,AD1===(cm).故选A.点睛:本题主要考查了勾股定理和旋转的性质,能熟练应用勾股定理,并且掌握旋转前后的两个图形完全相等.二、填空题(本题有6个小题,每小题三分,共18分)11. 如图,在△ABC中∠BAC=60º,将△ABC绕着点A顺时针旋转20º后,得到△ADE,则∠BAE=_____【答案】80°【解析】已知将△ABC绕着点A顺时针旋转40°后得到△ADE,那么∠BAD=40°,△ABC≌△ADE,已知∠BAC=60°,所以∠BAE=40°+60°=100°.解答:解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠BAD=40°,△ABC≌△ADE,∴∠DAE=∠BAC∵∠BAC=60°∴∠BAE=40°+60°=100°.故填空答案:100.12. 已知方程x²+mx+3=0的一个根是1,则它另一个根是____【答案】3【解析】试题分析:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.考点:根与系数的关系.13. 袋中装有六个黑球和n个白球,经过若干次试验发现,若从中任摸一个球,恰好是白球的概率为,白球个数大约是___【答案】2个【解析】解:∵袋中装有六个黑球和n个白球,∴袋中一共有球(6+n)个.∵从中任摸一个球,恰好是白球的概率为,∴,解得:n=2.故答案为:2.14. 如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30º,则圆锥的侧面积为___【答案】【解析】解:∵AB=2,∠BAO=30°,∴BO=AB=1,∴圆锥的侧面积=.故答案为:2π.15. 如图点P(1,2)在反比例函数的图像上,当x<1时,y的取值范围是___【答案】y>2或y<0【解析】解:根据题意,反比例函数的图象在第一象限,y随x的增大而减小.∵其图象过点(1,2),∴当0<x<1时,y的取值范围时y>2.当x<0时,y<0.故答案为:y>2或y<0.点睛:本题考查的是反比例函数图象上点的坐标特点,体现了数形结合的思想,直接观察图象,根据反比例函数的图象作答即可.16. 如图是二次函数y=ax²+bx+c 图像的一部分,图像过点A(-3,0),对称轴为直线x=-1,给出以下五个结论:①abc<0; ②b²-4ac>0; ③4b+c<0;④若B(,y1),C(y2),y1,y2为函数图像上的两点,则y1>y2;⑤当-3≤x≤1时,y≥0;其中正确的结论是(填写代表正确结论的序号)_____【答案】②③⑤.【解析】由图象可知,a<0,b<0,c>0,∴abc>0,故①错误.∵抛物线与x轴有两个交点,∴b2-4ac>0,故②正确.∵抛物线对称轴为x=-1,与x轴交于A(-3,0),∴抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,-=-1,∴b=2a,c=-3a,∴4b+c=8a-3a=5a<0,故③正确.∵B(-,y1)、C(-,y2)为函数图象上的两点,又点C离对称轴近,∴y1,<y2,故④错误,由图象可知,-3≤x≤1时,y≥0,故⑤正确.∴②③⑤正确,故答案是:②③⑤.【点睛】本题考查二次函数图象与系数的关系,解题的关键是灵活应用图中信息解决问题.三.解答题(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤)17. (1).解方程:x²-8x+1=0 ;(2).若方程x²-4x-5=0的两根分别为x1,x2,求x1²+x2²的值;【答案】(1); ;(2)26.【解析】试题分析:(1)根据公式法求解即可;(2)利用根与系数的关系得出:和的值.由即可得到答案.试题解析:解:(1)∵a=1,b=-8,c=1,△=64-4=60>0,∴x==,∴,;(2)由根与系数的关系得:,,∴=16-2×(-5)=16+10=26.18. 如图,若等腰三角形△ABC中AB=AC,O是底边BC的中点,圆O与腰AB相切于点D,求证:AC与圆O相切.【答案】证明见解析.【解析】试题分析:要证AC与⊙O相切,只要证明圆心O到AC的距离等于圆的半径即可.连接OD,过点O作OE⊥AC于E点,证明OE=OD.试题解析:证明:连接OD,过点O作OE⊥AC于E点,则∠OEC=90°.∵AB切⊙O于D,∴OD⊥AB,∴∠ODB=90°,∴∠ODB=∠OEC.又∵O是BC的中点,∴OB=OC.∵AB=AC,∴∠B=∠C,∴△OBD≌△OCE,∴OE=OD,即OE是⊙O的半径,∴AC与⊙O相切.19. 如图,△AOB的三个顶点都在网格的格点上,网格中的每个小正方形的边长均为一个长度单位,以点O建立平面直角坐标系,若△AOB绕点O逆时针旋转90º后,得到△A1OB1(A和A1是对应点)(1)写出点A1,B1的坐标;(2)求旋转过程中边OB扫过的面积(结果保留π);【答案】(1)作图见解析;(2).【解析】试题分析:(1)利用网格特点和旋转的性质画出点A、B的对应点A1、B1即可得到△A1OB1;(2)由于旋转过程中边OB扫过的部分为以O为圆心,OB为半径,圆心角为90度的扇形,于是利用扇形面积公式可求解.试题解析:解:(1)如图,△A1OB1为所作;(2)OB==,所以旋转过程中边OB扫过的面积==.点睛:本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20. 摸球活动:在一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球,然后放回,再随机摸出一个小球,此活动回答以下问题(1)求“两次取的小球标号相同”这个事件的概率;(2)设计一个概率为的事件,并说明理由.【答案】(1);(2).【解析】试题分析:(1)根据题意画出树状图,两次取的小球的标号相同的情况有4种,再计算概率;(2)答案不唯一,如两次取的小球的标号为“一奇一偶”的概率.试题解析:解:(1)如图:两次取的小球的标号相同的情况有4种,概率为P=.(2)答案不唯一,如两次取的小球的标号为“一奇一偶”的概率.如图:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次取的小球的标号为“一奇一偶”的占8种,所以两次取的小球的标号为“一奇一偶”的概率P=.故答案为:.点睛:本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.21. 北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在北方市场上的销售量为y(吨),销售价x( 万元)之间的函数关系为y=-x+2.6.(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)填空当每吨销售价为万元时,可得最大利润为万元.【答案】(1)1万元或2万元;(2)1.5;1.21【解析】试题分析:(1)由销售量y=﹣x+2.6,而每吨的利润为x﹣0.4,所以w=y(x﹣0.4);(2)解出(1)中的函数是一个二次函数,对于二次函数取最值可使用配方法.试题解析:解:(1)w=(﹣x+2.6)(x﹣0.4)=﹣x2+3x﹣1.04(2)w=﹣x2+3x﹣1.04=﹣(x﹣1.5)2+1.21当x=1.5时,w最大=1.21∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.22. 如图,已知点D在双曲线y=(x大于零) 的图像上,以D为圆心的圆D与y轴相切于点C (0,4),与x轴交于A、B两点.(1)求点D的坐标;(2)求点A和点B的坐标;【答案】(1)D(5,4);(2)A(2,0),B(8,0).【解析】试题分析:(1)由以D为圆心的⊙D与y轴相切于点C(0,4),得到点D的纵坐标是4.又由点D在双曲线(x>0)的图象上,即可得到结论;(2)如图,过点D作DE⊥x轴,垂足为E,连接AD,BD.在Rt△DAE中,由勾股定理可求得AE的长,从而求的OA,OB的长,即可得到结论.试题解析:解:(1)∵以D为圆心的⊙D与y轴相切于点C(0,4),∴点D的纵坐标是4.又∵点D在双曲线(x>0)的图象上,∴4=,解得:x=5.故点D的坐标是(5,4);(2)如图,过点D作DE⊥x轴,垂足为E,连接AD,BD.在Rt△DAE中,DA=5,DE=4,∴AE==3,∴OA=OE-AE=2,OB=OA+2AE=8,∴A(2,0),B(8,0).23. 如图,已知二次函数y=ax²+bx+c的图像过点A(2,0 ),B(0,-1) 和C(4,5),与x轴的另一个交点为D.(1)求该二次函数的解析式;(2)求三角形BDC的面积.【答案】(1)y=x2-x-1;(2)5.【解析】试题分析:(1)设二次函数的解析式为y=ax2+bx+c,把A(2,0),B(0,﹣1)和C(4,5)三点坐标代入解析式得到方程组,求解即可;(2)首先求出点D坐标,求出直线BC的解析式,求出直线BC与x轴的交点H坐标,根据S△BCD=S△DHC+S△DHB 计算即可.试题解析:解:(1)设二次函数的解析式为y=ax2+bx+c,把A(2,0),B(0,﹣1)和C(4,5)三点坐标代入解析式得到:,解得:,∴抛物线的解析式为.学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...点睛:本题考查了二次函数的图象和性质、三角形的面积等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决实际问题,属于中考常考题型.24. 如图,过点A(1,0)作x轴的垂线,交反比例函数y=(x大于零)的图象交于点M,已知三角形AOM的面积为3.(1)求k的值;(2)设点B的坐标为(t,0),若以AB为一边的正方形ABCD有顶点在该反比例函数的图像上,求t的值.【答案】(1)6;(2)7或3.【解析】试题分析:(1)根据反比例函数k的几何意义得到|k|=3,可得到满足条件的k=6,于是得到反比例函数解析式为;(2)分两种情况讨论:①当以AB为一边的正方形ABCD的顶点D在反比例函数的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(1,6),则AB=AM=6,所以t=1+6=7;②当以AB为一边的正方形ABCD的顶点C在反比例函数的图象上,根据正方形的性质得AB=BC=t﹣1,则C点坐标为(t,t﹣1),然后利用反比例函数图象上点的坐标特征得到t(t﹣1)=6,再解方程得到满足条件的t的值.试题解析:解:(1)∵△AOM的面积为3,∴|k|=3,而k>0,∴k=6,∴反比例函数解析式为;(2)分两种情况讨论:①当以AB为一边的正方形ABCD的顶点D在反比例函数的图象上,则D点与M点重合,即AB=AM,把x=1代入得y=6,∴M点坐标为(1,6),∴AB=AM=6,∴t=1+6=7;②当以AB为一边的正方形ABCD的顶点C在反比例函数的图象上,则AB=BC=t﹣1,∴C点坐标为(t,t﹣1),∴t(t﹣1)=6,整理为t2﹣t﹣6=0,解得t1=3,t2=﹣2(舍去),∴t=3.综上所述:以AB为一边的正方形有一个顶点在反比例函数的图象上时,t的值为7或3.点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式(k 为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.也考查了反比例函数k的几何意义、反比例函数图象上点的坐标特征和正方形的性质.25. 已知抛物线y=x²+bx+c的顶点为D,且经过A(1,0);B(0,2) 两点,将△OAB绕点A顺时针旋转90º后,点B落到点C的位置,将该抛物线沿着对称轴上下平移,使之经过点C,此时得到的新抛物线与y轴的交点为B1,顶点为D.(1)求新抛物线的解析式;(2)若点N在新抛物线上,满足三角形NBB1的面积是三角形NDD1面积的2倍,求点N坐标.【答案】(1)y=x2-3x+2;(2)(1,-1)或(3,1).【解析】试题分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得原抛物线解析式;(2)根据旋转的知识可得:A(1,0),B(0,2),由OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2﹣3x+2得y=2,可知抛物线y=x2﹣3x+2过点(3,2),故可知将原抛物线沿对称轴向下平移1个单位后过点C.于是得到平移后的抛物线解析式.根据三角形面积求法和二次函数图象上点的坐标特征来求点N的坐标.试题解析:解:(1)由抛物线y=x2+bx+c经过A(1,0),B(0,2)两点得,∴,解得:,所以原抛物线为:y=x2﹣3x+2=(x﹣)2﹣,则D(,﹣);(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2﹣3x+2得y=2,可知抛物线y=x2﹣3x+2过点(3,2),∴将原抛物线沿对称轴向下平移1个单位后过点C,∴平移后的抛物线解析式为:y=x2﹣3x+1,D1(,﹣).又点N在平移后的抛物线上,且△NBB1的面积是△NDD1面积的2倍,∴点N到y轴的距离是到直线DD1距离的2倍,易求得N(1,﹣1),或(3,1).点睛:本题主要考查待定系数法求二次函数的解析式和二次函数的图象的变换的知识点,熟练掌握图象变换等知识是解答本题的关键,此题很容易结合一次函数出现在综合题中,需要同学们注意.。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.计算:tan45°+sin30°=()A.2B.23+C.32D.13+【答案】C【解析】代入45°角的正切函数值和30°角的正弦函数值计算即可.【详解】解:原式=13 122 +=故选C.【点睛】熟记“45°角的正切函数值和30°角的正弦函数值”是正确解答本题的关键.2.正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选B.【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.3.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm2【答案】B【分析】利用扇形的面积公式计算即可.【详解】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为21203360π⨯=3π,故选:B.【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式.4.已知反比例函数3m y x -=的图象在二、四象限,则m 的取值范围是( ) A .3m ≥B .3m >C .3m ≤D .3m < 【答案】D【分析】由题意根据反比例函数的性质即可确定3m -的符号,进行计算从而求解.【详解】解:因为反比例函数3m y x -=的图象在二、四象限, 所以30m -<,解得3m <.故选:D.【点睛】本题考查反比例函数的性质,注意掌握反比例函数k y x=(0)k ≠,当 k >0时,反比例函数图象在一、三象限;当k <0时,反比例函数图象在第二、四象限内.5.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x=的图象为( )A .B .C .D .【答案】C【解析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线c y x=在二、四象限. 【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象,可得a <0,b >0,c <0,∴y=ax+b 过一、二、四象限,双曲线c y x=在二、四象限, ∴C 是正确的.故选C .【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.6.下列二次函数的开口方向一定向上的是( )A .23y x =-B .2y ax =C .23y x =D .2(1)y a x =- 【答案】C【分析】利用抛物线开口方向向上,则二次项系数大于0判断即可.【详解】二次函数的开口方向一定向上,则二次项系数大于0,故选:C .【点睛】此题主要考查了二次函数的性质,熟练掌握二次函数y =ax 2+bx +c 中,当a >0,开口向上解题是解题关键.7.已知反比例函数y =﹣3x,下列结论不正确的是( ) A .图象必经过点(﹣1,3) B .若x >1,则﹣3<y <0C .图象在第二、四象限内D .y 随x 的增大而增大 【答案】D【解析】A . ∵(−1)×3=−3,∴图象必经过点(−1,3),故正确;B . ∵k =−3<0,∴函数图象的两个分支分布在第二、四象限,故正确;C . ∵x=1时,y =−3且y 随x 的增大而而增大,∴x>1时,−3<y<0,故正确;D. 函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故错误. 故选D.8.如图,从左边的等边三角形到右边的等边三角形,经过下列一次变化不能得到的是( )A .轴对称B .平移C .绕某点旋转D .先平移再轴对称 【答案】A 【分析】根据对称,平移和旋转的定义,结合等边三角形的性质分析即可.【详解】解:从左边的等边三角形到右边的等边三角形,可以利用平移或绕某点旋转或先平移再轴对称,只轴对称得不到,故选:A .【点睛】本题考查了图形的变换:旋转、平移和对称,等边三角形的性质,掌握图形的变换是解题的关键. 9.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )x …… -3 -2 -1 0 1 ……y …… -17 -17 -15 -11 -5 ……A .3x =-B . 2.5x =-C .2x =-D .0x = 【答案】B 【分析】当3x =-和2x =-时,函数值相等,所以对称轴为 2.5x =-【详解】解:根据题意得,当3x =-和2x =-时,函数值相等,所以二次函数图象的对称轴为直线32 2.52x --==- 故选B【点睛】本题考查了二次函数的性质.10.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转42°得到Rt △A'B'C',点A 在边B'C 上,则∠B'的大小为( )A .42°B .48°C .52°D .58°【答案】B 【分析】先根据旋转的性质得出∠A ′=∠BAC =90°,∠ACA ′=42°,然后在直角△A ′CB ′中利用直角三角形两锐角互余求出∠B ′=90°﹣∠ACA ′=48°.【详解】解:∵在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转42°得到Rt △A ′B ′C ′, ∴∠A ′=∠BAC =90°,∠ACA ′=42°,∴∠B ′=90°﹣∠ACA ′=48°.故选:B .【点睛】此题主要考查角度的求解,解题的关键是熟知旋转的性质.11.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变【答案】B 【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280; 调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确; 调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003; 调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300; 最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300; 最中间两个数的平均数是:280,则中位数是280,故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D 正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.12.二次函数21y x mx =++的图象的顶点在坐标轴上,则m 的值( )A .0B .2C .2±D .0或2±【答案】D【解析】试题解析: 当图象的顶点在x 轴上时,∵二次函数21y x mx =++的图象的顶点在x 轴上,∴二次函数的解析式为:2(1)y x =±, ∴m=±2.当图象的顶点在y 轴上时,m=0,故选D.二、填空题(本题包括8个小题)13.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是_____.【答案】8﹣π【解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S 扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=223213+=,由旋转的性质结合已知条件易得:DE=EF=AB=13,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF=22 9031190(13)325236022360ππ⨯⨯+⨯⨯+⨯⨯-=8π-.故答案为:8π-.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S 阴影=S 扇形AOF +S △OEF +S △ADE -S 扇形DEF 来计算是解答本题的关键.14.若两个相似三角形对应角平分线的比是2:3,它们的周长之和为15cm ,则较小的三角形的周长为_________.【答案】6cm【分析】利用相似三角形的周长比等于相似比,根据它们的周长之和为15,即可得到结论.【详解】解:∵两个相似三角形的对应角平分线的比为2:3,∴它们的周长比为2:3,∵它们的周长之和为15cm ,∴较小的三角形周长为15×223+=6(cm ). 故答案为:6cm .【点睛】本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方. 15.如图,在ABC 中,DE BC ∥,且DE 把ABC 分成面积相等的两部分.若4=AD ,则DB 的长为________.【答案】424【分析】由平行于BC 的直线DE 把△ABC 分成面积相等的两部分,可知△ADE 与△ABC 相似,且面积比为12,则相似比为22,AD AB 的值为22,可求出AB 的长,则DB 的长可求出. 【详解】∵DE ∥BC∴△ADE ∽△ABC∵DE 把△ABC 分成面积相等的两部分∴S △ADE =S 四边形DBCE∴12ADE ABC S S = ∴AD AB 2= ∵AD=4,∴∴-4故答案为:-4【点睛】本题考查了相似三角形的判定,相似三角形的性质,面积比等于相似比的平方的逆用等.16.抛物线y =(x ﹣1)(x ﹣3)的对称轴是直线x =_____.【答案】1【分析】将抛物线的解析式化为顶点式,即可得到该抛物线的对称轴;【详解】解:∵抛物线y =(x ﹣1)(x ﹣3)=x 1﹣4x+3=(x ﹣1)1﹣1,∴该抛物线的对称轴是直线x =1,故答案为:1.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.17.已知A (-4,2),B (2,-4)是一次函数y kx b =+的图像和反比例函数m y x =图像的两个交点.则关于x 的方程m kx b x+=的解是__________________. 【答案】x 1=-4,x 1=1【分析】利用数形结合的思想解决问题即可.【详解】∵A(﹣4,1),B(1,﹣4)是一次函数y=kx+b 的图象和反比例函数y m x=图象的两个交点, ∴关于x 的方程kx+b m x=的解是x 1=﹣4,x 1=1. 故答案为:x 1=﹣4,x 1=1.【点睛】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是熟练掌握基本知识,属于中考常考题型. 18.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.【答案】14 【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解. 【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8, 其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.三、解答题(本题包括8个小题)19.如图,在△ABC 中,点E 在边AB 上,点G 是△ABC 的重心,联结AG 并延长交BC 于点D . (1)若,AB a AC b ==,用向量a 、b 表示向量AG ;(2)若∠B=∠ACE ,AB=6,AC=26,BC=9,求EG 的长.【答案】 (1) 11.33AG a b =+(2)EG=3. 【解析】(1)由点G 是△ABC 的重心,推出23AG AD =,再根据三角形法则求出AD 即可解决问题;(2)想办法证明△AEG ∽△ABD ,可得21333EG BD BC ===; 【详解】(1)∵点G 是△ABC 的重心, ∴23AG AD =, ∵1111(),2222AD AB BC a b a a b =+=+-=+ ∴11.33AG a b =+ (2)∵∠B=∠ACE ,∠CAE=∠BAC ,∴△ACE ∽△ABC ,∴AE AC AC AB=,∴AE=4,此时23AE AG AB AD==,∵∠EAG=∠BAD,∴△AEG∽△ABD,∴213.33EG BD BC===【点睛】考查平面向量的线性运算以及相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键. 20.国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t <0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.请根据上述信息解答下列问题:(1)本次调查数据的众数落在组内,中位数落在组内;(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.【答案】(1)B,C;(2)1.【分析】(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(2)首先计算样本中达到国家规定体育活动时间的频率,再进一步估计总体达到国家规定体育活动时间的人数.【详解】(1)众数在B组.根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故本次调查数据的中位数落在C组.故答案为B,C;(2)达国家规定体育活动时间的人数约1800×10060300+=1(人).答:达国家规定体育活动时间的人约有1人.考点:频数(率)分布直方图;用样本估计总体;中位数;众数.21.(l )计算:(2)(2)(3)a a a a +---;(2)解方程2(21)3(21)x x +=+.【答案】(1)34a -;(2)121,12x x =-=【分析】(1)原式利用平方差公式和单项式乘以多项式把括号展开,再合并同类项即可得到答案; (2)方程变形后分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】(1)(2)(2)(3)a a a a +---,=2243a a a --+=34a -;(2)2(21)3(21)x x +=+ 2(21)3(21)0x x +-+=(21)(22)0x x +-=∴210x +=,220x -=解得,121,12x x =-=.【点睛】此题主要考查了一元二次方程的解法,正确掌握解题方法是解题的关键,同时还考查了实数和混合运算. 22.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A 、B 、C .(1)请完成如下操作:①以点O 为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D ,并连接AD 、CD .(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C ;D ( );②⊙D 的半径= (结果保留根号);③若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的底面的面积为 ;(结果保留π)④若E (7,0),试判断直线EC 与⊙D 的位置关系,并说明你的理由.【答案】(1)①答案见解析;②答案见解析;(2)①C(6,2);D(2,0);②25;③54π;④相切,理由见解析.【分析】(1)①按题目的要求作图即可②根据圆心到A、B、C距离相等即可得出D点位置;(2)①C(6,2),弦AB,BC的垂直平分线的交点得出D(2,0);②OA,OD长已知,△OAD中勾股定理求出⊙D的半径=25;③求出∠ADC的度数,得弧ADC的周长,求出圆锥的底面半径,再求圆锥的底面的面积;④△CDE中根据勾股定理的逆定理得∠DCE=90°,直线EC与⊙D相切.【详解】(1)①②如图所示:(2)①故答案为:C(6,2);D(2,0);②⊙D的半径=2216425OA OD+=+=;故答案为:25;③解:AC=222+6=210,CD=25,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长=9025=5ππ⨯圆锥的底面的半径=5,圆锥的底面的面积为π(5)2=54π;故答案为:54π;(4)直线EC与⊙D相切.证明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直线EC 与⊙D 相切.【点睛】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,圆的圆心D 是关键. 23.如图,在ABC ∆中,67 30AB cm BC cm ABC ==∠=,,, 点P 从A 点出发,以1/cm s 的速度向B 点移动,点Q 从B 点出发,以2/cm s 的速度向C 点移动.如果P Q ,两点同时出发,经过几秒后PBQ ∆的面积等于24cm ?【答案】经过2秒后PBQ ∆的面积等于24cm【分析】首先构建直角三角形,求出各边长,然后利用面积构建一元二次方程,求解即可.【详解】过点Q 作QE PB ⊥于E ,则90QEB ∠=︒,如图所示:30ABC ∠=︒,2QE QB ∴=12PQB S PB QE ∆∴= 设经过t 秒后PBQ ∆的面积等于2 4cm ,则62PB t QB t QE t =-==,,. 根据题意,16 4.2t t -=()212 680,24t t t t -+===,.当4t =时,28,87t =>,不合题意舍去,取2t =.答:经过2秒后PBQ ∆的面积等于24cm .【点睛】此题主要考查三角形中的动点问题,解题关键是利用面积构建一元二次方程.24.计算:4sin30°﹣2cos45°+tan 260°.【答案】4.【分析】原式利用特殊角的三角函数值计算即可求出值.【详解】原式()212423213422=⨯-⨯+=-+=.【点睛】 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.【答案】(1)10300y x =-+(830x ≤<);(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x 的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x 的二次函数,利用二次函数的性质即可求得; (3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 y kx b =+,将点(10,200)、(15,150)分别代入,则1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩, ∴10300y x =-+,∵蜜柚销售不会亏本,∴x 8≥,又0y >,∴103000x -+≥ ,∴30x ≤,∴ 830x ≤≤ ;(2) 设利润为w 元,则 ()()810300w x x =--+=2103802400x x -+-=2210(19)1210x x --+,∴ 当19x = 时, w 最大为1210,∴ 定价为19元时,利润最大,最大利润是1210元;(3) 当19x = 时,110y =,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.26.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC ;(2)如图2,直线l 与⊙O 相切于点P ,且l ∥BC .【答案】(1)作图见试题解析;(2)作图见试题解析.【解析】试题分析:(1)过点C 作直径CD ,由于AC=BC ,弧AC=弧BC ,根据垂径定理的推理得CD 垂直平分AB ,所以CD 将△ABC 分成面积相等的两部分;(2)连结PO 并延长交BC 于E ,过点A 、E 作弦AD ,由于直线l 与⊙O 相切于点P ,根据切线的性质得OP ⊥l ,而l ∥BC ,则PE ⊥BC ,根据垂径定理得BE=CE ,所以弦AE 将△ABC 分成面积相等的两部分. 试题解析:(1)如图1,直径CD 为所求;(2)如图2,弦AD 为所求.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.27.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,BD=25,求⊙O的半径.【答案】(1)见解析;(2)52.【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的长即可.【详解】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD 是⊙O 的直径,∴∠DFA =90°,∴∠DEC =90°∵AD ∥BC ,∴∠ADE =∠DEC =90°,∴OD ⊥DE ,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(2)解:如图2,∵AD 是⊙O 的直径,∴∠DFA =90°,∴∠DFB =90°,在Rt △ADF 和Rt △BDF 中,∵DF 2=AD 2﹣AF 2,DF 2=BD 2﹣BF 2,∴AD 2﹣AF 2=DB 2﹣BF 2,∴AD 2﹣(AD ﹣BF )2=DB 2﹣BF 2,∴()2222()2252AD AD ---=,∴AD =1.∴⊙O 的半径为52. 【点睛】此题考查圆的综合,圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解题关键是根据勾股定理列方程解决问题.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若()2111mm x ++=是一元二次方程,则m 的值是( ) A .-1B .0C .1D .±1 【答案】C【分析】根据一元二次方程的概念即可列出等式,求出m 的值.【详解】解:若()2111m m x ++=是一元二次方程,则212m +=,解得1m =± ,又∵10m +≠,∴1m ≠-,故1m=,故答案为C .【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.2.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.3.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上B .从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C .从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃【答案】C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A 、抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误; B 、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:36=12=0.5,故本选项错误; C 、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是39=13≈0.33,故本选项正确; D 、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是1352=0.25,故本选项错误; 故选:C .【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.4.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm【答案】A 【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r .【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠==,=,30A B ︒∴∠∠==,1452OE OA cm ∴==, ∴弧CD 的长1204530180ππ⨯==, 设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.设1a =,则代数式2212a a +-的值为( )A .-6B .-5C .6D .5 【答案】A【分析】把a 2+2a-12变形为a 2+2a+1-13,根据完全平方公式得出(a+1)2-13,代入求出即可.【详解】∵1a =, ∴2212a a +-= a 2+2a+1-13=(a+1)2-13=-1+1)2-13=7-13=-6.故选A.【点睛】本题考查了二次根式的化简,完全平方公式的运用,主要考查学生的计算能力.题目比较好,难度不大. 2.下列事件中是必然事件的是( )A .﹣a 是负数B .两个相似图形是位似图形C .随机抛掷一枚质地均匀的硬币,落地后正面朝上D .平移后的图形与原来的图形对应线段相等 【答案】D【解析】分析: 根据必然事件指在一定条件下,一定发生的事件,可得答案.详解: A. −a 是非正数,是随机事件,故A 错误;B. 两个相似图形是位似图形是随机事件,故B 错误;C. 随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件,故C 错误;D. 平移后的图形与原来对应线段相等是必然事件,故D 正确;故选D.点睛:考查随机事件,解决本题的关键是正确理解随机事件,不可能事件,必然事件的概念. 3.如下图:⊙O 的直径为10,弦AB 的长为8,点P 是弦AB 上的一个动点,使线段OP 的长度为整数的点P 有( )A .3 个B .4个C .5个D .6个【答案】A 【分析】当P 为AB 的中点时OP 最短,利用垂径定理得到OP 垂直于AB ,在直角三角形AOP 中,由OA 与AP 的长,利用勾股定理求出OP 的长;当P 与A 或B 重合时,OP 最长,求出OP 的范围,由OP 为整数,即可得到OP 所有可能的长.【详解】当P 为AB 的中点时,由垂径定理得OP ⊥AB ,此时OP 最短,∵AB=8,∴AP=BP=4,在直角三角形AOP 中,OA=5,AP=4,根据勾股定理得OP=3,即OP 的最小值为3;当P 与A 或B 重合时,OP 最长,此时OP=5,∴35OP ≤≤,则使线段OP 的长度为整数的点P 有3,4,5,共3个.故选A考点:1.垂径定理;2.勾股定理4.如图,在平面直角坐标系中,点A 的坐标为()4,3,那么sin α的值是()A .34B .43 C .45 D .35【答案】D【分析】过A 作AB ⊥x 轴于点B ,在Rt △AOB 中,利用勾股定理求出OA ,再根据正弦的定义即可求解.【详解】如图,过A 作AB ⊥x 轴于点B ,∵A 的坐标为(4,3)∴OB=4,AB=3,在Rt △AOB 中,2222OA=OB AB =43=5++∴AB 3sin ==OA 5α 故选:D .【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.5.若方程()23220190m x x ---=是关于x 的一元二次方程,则m 应满足的条件是( ) A . 3 m >B .3m <C .3m ≠D .3m =【答案】C 【分析】根据一元二次方程的定义得出30m -≠,求出即可.【详解】解:()23220190m x x ---=是关于x 的一元二次方程,30m ∴-≠, ∴3m ≠.故选:C .【点睛】本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是20ax bx c ++=(a 、b 、c 都是常数,且0)a ≠.6.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A 为60°角与直尺交点,点B 为光盘与直尺唯一交点,若 =3AB ,则光盘的直径是( ).A .63B .33C .6D .3【答案】A 【分析】设三角板与圆的切点为C ,连接OA OB 、,由切线长定理得出3AB AC ==、60OAB ∠︒=,根据OB tan OAB AB∠=可得答案. 【详解】解:设三角板与圆的切点为C ,连接OA 、OB ,如下图所示:由切线长定理知3AB AC OA BAC ∠==,平分 ,∴60OAB ∠︒= ,在Rt ABO 中,OB tan OAB AB∠= ∴ 3333OB ABtan OAB ∠===∴光盘的直径为3 ,故选A .【点睛】本题主要考查切线的性质,掌握切线长定理和解直角三角形的应用是解题关键.7.一个不透明的口袋中放着若干个红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一个球,取出红球的概率是14.如果袋中共有32个小球,那么袋中的红球有( )A .4个B .6个C .8个D .10个 【答案】C【解析】根据概率公式列方程求解即可.【详解】解:设袋中的红球有x 个,根据题意得:1324x =, 解得:x =8,故选C .【点睛】此题考查了概率公式的计算方法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 8.若函数y =(m 2-3m +2)x |m|-3是反比例函数,则m 的值是( )A.1 B.-2 C.±2 D.2 【答案】B【解析】根据反比例函数的定义,列出方程求解即可.【详解】解:由题意得,|m|-3=-1,解得m=±1,当m=1时,m1-3m+1=11-3×1+1=2,当m=-1时,m1-3m+1=(-1)1-3×(-1)+1=4+6+1=11,∴m的值是-1.故选:B.【点睛】本题考查了反比例函数的定义,熟记一般式y=kx(k≠2)是解题的关键,要注意比例系数不等于2.9.如图,在⊙O中,分别将AB、CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD的面积是()A.8 B.163C.32 D.323【答案】B【分析】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=12OA,进而推出△AOD是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90°,同理,∠ABC=∠ADC=90°,得到四边形ABCD是矩形,于是得到结论.【详解】过O作OH⊥AB交⊙O于E,延长EO交CD于G,交⊙O于F,连接OA,OB,OD.∵AB∥CD,∴EF⊥CD.∵分别将AB、CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=12OA,∴∠HAO=30°,∴∠AOH=60°,同理∠DOG=60°,∴∠AOD=60°,∴△AOD是等边三角形.∵OA=OB,∴∠ABO=∠BAO=30°,∴∠AOB=120°,∴∠AOD+∠AOB=180°,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90°,同理,∠ABC=∠ADC=90°,∴四边形ABCD是矩形,∴AD=AO=4,AB=3AD=43,∴四边形ABCD的面积是163.故选B.【点睛】本题考查了垂径定理,圆周角定理,矩形的判定和性质,正确的作出辅助线是解答本题的关键.10.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为()A.23cm B.3cm C.23cm D.1cm【答案】B【分析】连接AC,过E作EF⊥AC于F,根据正六边形的特点求出∠AEC的度数,再由等腰三角形的性质求出∠EAF的度数,由特殊角的三角函数值求出AF的长,进而可求出AC的长.【详解】如图,连接AC,过E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多边形为正六边形,∴∠AEC=18046=120°,∴∠AEF=1202=60°, ∴∠EAF=30°,∴AF=AE ×cos30°=1×3=3, ∴AC=3,故选:B .【点睛】本题考查了正多边形的应用,等腰三角形的性质和锐角三角函数,掌握知识点是解题关键.11.如图,一张矩形纸片ABCD 的长AB =xcm ,宽BC =ycm ,把这张纸片沿一组对边AB 和D 的中点连线EF 对折,对折后所得矩形AEFD 与原矩形ADCB 相似,则x :y 的值为( )A .2B 2C .255+D .2-12【答案】B 【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】解:∵四边形ABCD 是矩形,宽BC =ycm ,∴AD=BC=ycm ,由折叠的性质得:AE=12AB=12x , ∵矩形AEFD 与原矩形ADCB 相似,∴AE AD AD AB =,即12x y y x=, ∴x 2=2y 2,∴2y ,∴2x y=. 故选:B .【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.12.如图,已知四边形ABCD 是平行四边形,下列结论不正确的是( )A .当AC BD =时,它是矩形B .当AC BD ⊥时,它是菱形 C .当AD DC =时,它是菱形D .当90ABC ∠=︒时,它是正方形【答案】D 【解析】根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.【详解】A. 正确,对角线相等的平行四边形是矩形;B. 正确,对角线垂直的平行四边形是菱形;C. 正确,有一组邻边相等的平行四边形叫做菱形;D. 不正确,有一个角是直角的平行四边形叫做矩形。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,五边形ABCDE 内接于O ,若35CAD ∠=︒,则B E ∠+∠的度数是( )A .210︒B .215︒C .235︒D .250【答案】B 【分析】利用圆内接四边形对角互补得到∠B+∠ADC=180°,∠E+∠ACD=180°,然后利用三角形内角和求出∠ADC +∠ACD=180°-∠CAD ,从而使问题得解.【详解】解:由题意:∠B+∠ADC=180°,∠E+∠ACD=180°∴∠B+∠ADC+∠E+∠ACD=360°又∵35CAD ∠=︒∴∠ADC +∠ACD=180°-∠CAD=180°-35°=145°∴∠B+∠E+145°=360°∴∠B+∠E=215︒故选:B【点睛】本题考查圆内接四边形对角互补和三角形内角和定理,掌握性质正确推理计算是本题的解题关键. 2.二次函数y =x 2﹣6x+m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )A .(﹣1,0)B .(4,0)C .(5,0)D .(﹣6,0)【答案】C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数26y x x m =-+得到对称轴是直线3x =,则抛物线与x 轴的两个交点坐标关于直线3x =对称,∵其中一个交点的坐标为()1,0,则另一个交点的坐标为()5,0,故选C .【点睛】考查抛物线与x 轴的交点坐标,解题关键是掌握抛物线的对称性质.3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A.2 B.2.5 C.3 D.4【答案】B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.34;B.43;C.45;D.54;【答案】A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得∠BCD=∠Atan∠BCD=tan∠A=34 BCAC=,故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.5.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A.B.C.D.【答案】D【分析】根据把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.6.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()A34B.5 C.8 D.4【答案】A【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】把ADE 顺时针旋转ABF 的位置,∴四边形AECF 的面积等于正方形ABCD 的面积等于25,AD DC 5∴==,DE 3=,Rt ADE ∴中,2222AE AD DE 5334=+=+=.故选A .【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键. 7.如图,点A 、B 、C 是⊙O 上的点,∠AOB=70°,则∠ACB 的度数是( )A .30°B .35°C .45°D .70°【答案】B 【解析】∵∠AOB=70°,∴∠ACB=12∠AOB=35°, 故选B . 8.下列判断错误的是( )A .有两组邻边相等的四边形是菱形B .有一角为直角的平行四边形是矩形C .对角线互相垂直且相等的平行四边形是正方形D .矩形的对角线互相平分且相等【答案】A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.【详解】A. 有两组邻边相等的四边形不一定是菱形,故该选项错误;B. 有一角为直角的平行四边形是矩形,故该选项正确;C. 对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D. 矩形的对角线互相平分且相等,故该选项正确;故选:A .【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键. 9.用配方法解一元二次方程241x x -=,变形正确的是( )A .2(2)0x -=B .2(2)5x -=C .2(1)1x -=D .2(1)5x -=【答案】B【分析】根据完全平方公式和等式的性质进行配方即可.【详解】解:24414x x -+=+2(2)5x -=故选:B .【点睛】本题考查了配方法,其一般步骤为:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.10.如图,在正方形ABCD 中,ADE ∆绕点A 顺时针旋转90︒后与ABF ∆重合,6CF =,4CE =,则AC 的长度为( )A .4B .42C .5D .52【答案】D 【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可. 【详解】ADE ∆绕点A 顺时针旋转90︒后与ABF ∆重合∴ADE ABF ≅∴DE BF =四边形ABCD 为正方形∴CD BC AD ==46CD DE CD DE -=⎧∴⎨+=⎩51CD DE =⎧∴⎨=⎩在Rt ADC 中,22225552AC AD CD =++=故选D.【点睛】本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.11.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是( )A .B .C .D .【答案】B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形;B 、不是轴对称图形,是中心对称图形;C 、是轴对称图形,也是中心对称图形;D 、不是轴对称图形,也不是中心对称图形.故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图重合.12.抛物线y=(x+1)2+2的顶点( )A .(﹣1,2)B .(2,1)C .(1,2)D .(﹣1,﹣2)【答案】A【解析】由抛物线顶点坐标公式[]y=a (x ﹣h )2+k 中顶点坐标为(h ,k )]进行求解.【详解】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选:A .【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x ﹣h )2+k 中,顶点坐标为(h ,k ),对称轴为直线x=h .二、填空题(本题包括8个小题)13.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h-<-的解集是______.【答案】23x -<<【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.14.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .【答案】:k <1.【详解】∵一元二次方程220x x k -+=有两个不相等的实数根,∴△=24b ac -=4﹣4k >0,解得:k <1,则k 的取值范围是:k <1.故答案为k <1.15.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.【答案】61 1【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=1,∴2020在第61行左起第1个数,故答案为:61,1.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.【答案】1【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=12 AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=12×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.17.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为x米,则所列出的方程是_______(只列方程,不求解)【答案】()()50391800x x --=(答案不唯一)【分析】可设道路的宽为xm ,将4块剩余矩形平移为一个长方形,长为(50-x )m ,宽为(39-x )m .根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm ,依题意有(50-x )(39-x )=1.故答案为:()()50391800x x --= .【点睛】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.18.将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_____个圆点.【答案】1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n 个图有多少个圆点.【详解】解:由图形可知,第1个图形有12+1+1=3个圆点;第2个图形有22+2+1=7个圆点;第3个图形有32+3+1=13个圆点;第4个图形有42+4+1=21个圆点;…则第n 个图有(n 2+n+1)个圆点;所以第20个图形有202+20+1=1个圆点.故答案为:1.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.三、解答题(本题包括8个小题)19.已知反比例函数的图像经过点(2,-3).(1)求这个函数的表达式.(2)点(-1,6),(3,2)是否在这个函数的图像上?(3)这个函数的图像位于哪些象限?函数值y随自变量x的增大如何变化?【答案】(1)y=-6x;(2)(-1,6)在函数图像上,(3,2)不在函数图像上;(3)二、四象限,在每个象限内,y随x的增大而增大.【分析】(1)根据待定系数法求得即可;(2)根据图象上点的坐标特征,把点(﹣1,6),(3,2)代入解析式即可判断;(3)根据反比例函数的性质即可得到结论.【详解】(1)设反比例函数的解析式为ykx=(k≠0).∵反比例函数的图象经过点(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函数的表达式y6x =-;(2)把x=﹣1代入y6x=-得:y=6,把x=3代入y6x=-得:y=﹣2≠2,∴点(﹣1,6)在函数图象上,点(3,2)不在函数图象上.(3)∵k=﹣6<0,∴双曲线在二、四象限,在每个象限内y随x的增大而增大.【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握待定系数法以及反比例函数的性质是解答本题的关键.20.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示):(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:2 1.41,3 1.73,6 2.45≈≈≈)【答案】(1)902海里;(2)1.4小时.【分析】(1)过点M作MD⊥AB于点D,根据AM=180海里以及△AMD的三角函数求出MD的长度;(2)根据三角函数求出MB的长度,然后计算.【详解】解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴2(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是2海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵2海里,∴6海里,∴6÷20≈1.4(小时),答:渔船从B到达小岛M的航行时间约为1.4小时.考点:三角函数的实际应用21.在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).【答案】(1)∠ECO=∠OAC;(2)①OM=ON,理由见解析,②EM的值为m+3m或12m﹣36m【分析】(1)结论:∠ECO=∠OAC.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明△COM≌△AON(ASA),即可解决问题.②分两种情形:如图3﹣1中,当点N在CA的延长线上时,如图3﹣2中,当点N在线段AC上时,作OH⊥AC 于H.分别求解即可解决问题.【详解】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=12BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=12 AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=33m,∵BE=ED,∴CE =12BD =3m , ∴EM =CM+CE =m+3m . 如图3﹣2中,当点N 在线段AC 上时,作OH ⊥AC 于H .∵∠AON =15°,∠CAB =30°, ∴∠ONH =15°+30°=45°,∴OH =HN =12m , ∵AH =32m , ∴CM =AN =32m ﹣12m , ∵EC 3, ∴EM =EC ﹣CM 3﹣3﹣12m)=12m ﹣36m , 综上所述,满足条件的EM 的值为3或12m 3. 【点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.22.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为()4,1-,点B 的坐标为()1,1-.(1)先将Rt ABC 向右平移5个单位,再向下平移1个单位后得到111Rt A B C △.试在图中画出图形111Rt A B C △,并写出1A 的坐标;(2)将111Rt A B C △绕点1A 顺时针旋转90︒后得到222Rt A B C △,试在图中画出图形222Rt A B C △.并计算在该旋转过程中111Rt A B C △扫过部分的面积.【答案】(1)见解析,1A 的坐标为()1,0; (2)见解析,1334π+ 【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A 1的坐标即可;(2)根据网格结构找出点A 1、B 1、C 1绕点A 1顺时针旋转90°后的对应点A 2、B 2、C 2的位置,然后顺次连接即可,再根据勾股定理求出A 1C 1的长度,然后根据弧长公式列式计算即可得解.【详解】解:(1)如图所示,111A B C △即为所求作的三角形,∴点1A 的坐标为()1,0;(2)如图所示,222A B C △即为所求作的三角形,根据勾股定理,22112313AC =+=, ∴111Rt A B C △扫过的面积:290(13)11323324ππ⨯⨯+⨯⨯=+;【点睛】本题考查了利用旋转变换作图,利用平移变换作图,弧长的计算公式,熟练掌握网格结构并准确找出对应点的位置是解题的关键.23.如图,在平面直角坐标系中,抛物线2y x bx c =-++经过点(4,0),(1,0)A B -,交y 轴于点C . (1)求抛物线的解析式.(2)点D 是线段AC 上一动点,过点D 作DE 垂直于x 轴于点E ,交抛物线于点F ,求线段DF 的长度最大值.【答案】(1)234y x x =-++;(2)4.【分析】(1)根据A 、B 坐标可得抛物线两点式解析式,化为一般形式即可;(2)根据抛物线解析式可得C 点坐标,利用待定系数法可得直线AC 的解析式为y=-x+4,设D 点坐标为(,4)m m -+,则()2,34F m m m -++,用m 表示出DF 的长,配方为二次函数顶点式的形式,根据二次函数的性质求出DF 的最大值即可.【详解】(1)∵拋物线24y x bx =-++经过点(4,0),(1,0)A B -,∴(4)(1)y x x =--+∴拋物线的解析式为234y x x =-++.(2)∵拋物线的解析式为234y x x =-++,∴(0,4)C ,设直线AC 的解析式为y=kx+b ,∴404k b b +=⎧⎨=⎩, ∴1k =-,b=4,∴直线AC 的解析式为4y x =-+设D 点坐标为(,4)m m -+,则()2,34F m m m -++∴()2234(4)4DF m m m m m =-++--+=-+=-(m-2)2+4,∴当m=2时,DF 的最大值为4.【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练掌握二次函数解析式的三种形式及二次函数的性质是解题关键.24.在平面直角坐标系xOy 中,抛物线2y ax bx c =++与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1) ①直接写出抛物线的对称轴是________;②用含a 的代数式表示b ;(2)横、纵坐标都是整数的点叫整点.点A 恰好为整点,若抛物线在点A ,B 之间的部分与线段AB 所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.【答案】(1)①直线x =1;②b =-1a ;(1)-1≤a <-1或1<a≤1.【分析】(1) ①根据抛物线的对称性可以直接得出其对称轴;②利用对称轴公式2b x a =-进一步求解即可; (1)分两种情况:①0a >,②0a <,据此依次讨论即可.【详解】解:(1)①∵当x=0时,y=c ,∴点A 坐标为(0,c ),∵点A 向右平移1个单位长度,得到点B ,∴点B (1,c ),∵点B 在抛物线上,∴抛物线的对称轴是:直线x=1;故答案为:直线x=1;②∵抛物线的对称轴是直线:x=1,∴12b a-=,即2b a =-; (1)①如图,若0a >,因为点A (0,c ),B (1,c )都是整点,且指定区域内恰有一个整点,因此这个整点D 的坐标必为(1,c -1),但是从运算层面如何保证“恰有一个”呢,与抛物线的顶点C (1,c -a )做位置与数量关系上的比较,必须考虑到紧邻点D 的另一个整点E (1,c -1)不在指定区域内,所以可列出不等式组:12c c a c c a ->-⎧⎨-≤-⎩,解得:12a <≤; ②如图,若0a <,同理可得:12c c ac c a+<-⎧⎨+≥-⎩,解得:21a-≤<-;综上所述,符合题意的a的取值范围是-1≤a<-1或1<a≤1.【点睛】本题主要考查了抛物线的性质和一元一次不等式组的综合运用,熟练二次函数的性质、灵活应用数形结合的数学思想是解题关键.25.如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.【答案】(1)见解析;(2)见解析【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.【详解】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.26.不透明的袋子中装有1个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、1.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率;(2)随机摸出两个小球,直接写出“两次取出的球标号和为奇数”的概率.【答案】(1)14;(2)23.【解析】(1)画树状图展示所有16种等可能的结果数,找出两次取的球标号相同的结果数,然后根据概率公式求解(2)画树状图展示所有12种等可能的结果数,再找出两次取出的球标号和为奇数的结果数,然后根据概率公式求解.【详解】(1)画树状图为:共有16种等可能的结果数,其中两次取的球标号相同的结果数为1,所以“两次取的球标号相同”的概率=416=14;(2)画树状图为:共有12种等可能的结果数,其中两次取出的球标号和为奇数的结果数为8,所以“两次取出的球标号和为奇数”的概率=812=23.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.27.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】 (1)y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩;(2)这一天销售西瓜获得利润的最大值为1250元.【解析】(1)当6≤x≤10时,由题意设y =kx +b(k =0),利用待定系数法求得k 、b 的值即可;当10<x≤12时,由图象可知y =200,由此即可得答案;(2))设利润为w 元,当6≦x≤10时,w =-2002172x -()+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w =200x -1200,由一次函数的性质结合x 的取值范围可求得w 的最大值为1200,两者比较即可得答案.【详解】(1)当6≤x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200), ∴1000620010k b k b=+⎧⎨=+⎩ , 解得2002200k b =-⎧⎨=⎩, ∴当6≤x≤10时, y =-200x+2200,当10<x≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩; (2)设利润为w 元,当6≤x≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ∵-200<0,6≦x≤10,当x=172时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示的几何体的主视图为( )A .B .C .D .【答案】B 【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.2.关于x 的一元二次方程230x x m -+=中有一根是1,另一根为n ,则m 与n 的值分别是( ) A .m=2,n=3B .m=2,n=-3C .m=2,n=2D .m=2,n=-2 【答案】C【分析】将根是1代入一元二次方程,即可求出m 的值,再解一元二次方程,可求出两个根,即可求出n 的值.【详解】解:∵将1代入方程,得到:1-3+m=0,m=2∴2320x x -+=∴解得x 1=1,x 2=2∴n=2故选C .【点睛】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键. 3.反比例函数2y x =的图象分布的象限是( ) A .第一、三象限B .第二、四象限C .第一象限D .第二象限 【答案】A【解析】先根据反比例函数的解析式判断出k 的符号,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数y=2x中,k=2>0,∴反比例函数y=2x的图象分布在一、三象限. 故选:A .【点睛】 本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时,反比例函数图象的两个分支分别位于一三象限是解答此题的关键. 4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4【答案】B 【解析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.5.如图,点(),Q m n (1m )是反比例函数1y x=上的动点,过Q 分别作x 轴,y 轴的垂线,垂足分别为A ,B .随着m 的增大,四边形OAQB 的面积( )A .增大B .减小C .不确定D .不变【答案】D 【分析】由长方形的面积公式可得出四边形OAQB 的面积为mn ,再根据点Q 在反比例函数图象上,可知1mn = ,从而可判断面积的变化情况.【详解】∵点(),Q m n,OA m AQ n ∴==∴四边形OAQB 的面积为·OA AQ mn =, ∵点(),Q m n (1m )是反比例函数1y x=上的动点 1mn ∴=∴四边形OAQB 的面积为定值,不会发生改变故选:D .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数比例系数的几何意义是解题的关键. 6.下列图案中,是中心对称图形的是( )A .B .C .D .【答案】C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.7.若32x y =,则下列等式一定成立的是( ) A .32x y = B .6xy = C .23xy = D .23yx =【答案】D【分析】根据比例的性质a cb d =,则ad=bc ,逐个判断可得答案.【详解】解:由32x y =可得:2x=3yA. 32x y =,此选项不符合题意B. 6xy =,此选项不符合题意C. 23xy =,则3x=2y ,此选项不符合题意D. 23yx =,则2x=3y ,正确故选:D【点睛】本题考查比例的性质,解题关键在于掌握acb d =,则ad=bc.8.在同一坐标系中,反比例函数y =kx 与二次函数y =kx 2+k(k ≠0)的图象可能为() A . B .C .D .【答案】D【解析】根据k >0,k <0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k <0时,反比例函数y=k x ,在二、四象限,而二次函数y=kx 2+k 开口向上下与y 轴交点在原点下方,D 符合;②当k >0时,反比例函数y=k x,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符. 分析可得:它们在同一直角坐标系中的图象大致是D .故选D .【点睛】本题主要考查二次函数、反比例函数的图象特点.9.如图,l 1∥l 2∥l 3,若32AB BC =,DF=6,则DE 等于( )A .3B .3.2C .3.6D .4【答案】C 【解析】试题解析:根据平行线分线段成比例定理,可得:3,2AB DE BC EF == 设3,2,DE x EF x ==5 6.DF x ∴==解得: 1.2.x =3 3.6.DE x ∴==故选C.10.如图,点O 为正五边形ABCDE 外接圆的圆心,五边形ABCDE 的对角线分别相交于点P ,Q ,R ,M ,N .若顶角等于36°的等腰三角形叫做黄金三角形,那么图中共有( )个黄金三角形.A .5B .10C .15D .20【答案】D【分析】根据正五边形的性质和黄金三角形的定义进行分析.【详解】根据题意,得图中的黄金三角形有△EMR、△ARQ、△BQP、△CNP、△DMN、△DER、△EAQ、△ABP、△BCN、△CDM、△DAB、△EBC、△ECA、△ACD、△BDE,△ABR,△BQC,△CDP,△DEN,△EAQ,共20个.故选D.【点睛】此题考查了正五边形的性质和黄金三角形的定义.注意:此图中所有顶角是锐角的等腰三角形都是黄金三角形.11.如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=1,则弦AB的长为( )A.3B3C.2 D.4【答案】A【分析】在Rt△AOH中,由∠AOC=60°,解直角三角形求得AH3.【详解】解:∵OC⊥AB于H,∴AH=BH,在Rt△AOH中,∠AOC=60°,OH=1,∴AH3OH3∴AB=2AH=3故选:A.【点睛】本题考查了垂径定理以及解直角三角形,难度不大,掌握相关性质定理是解题关键.12.正八边形的中心角为()A.45°B.60°C.80°D.90°【答案】A【分析】根据中心角是正多边形的外接圆相邻的两个半径的夹角,即可求解.【详解】∵360°÷8=45°,∴正八边形的中心角为45°,故选:A.【点睛】本题主要考查正八边形的中心角的定义,理解正八边形的外接圆相邻的两个半径的夹角是中心角,是解题。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,且AD=2,AB=3,AE=4,则AC等于()A.5 B.6 C.7 D.8【答案】B【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵DE∥BC,∴AD AE AB AC=,∴243AC =,∴AC=6,故选:B.【点睛】本题考查的是平行线分线段成比例定理,难度系数不高,解题关键是找准对应线段.2.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能【答案】A【解析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.【详解】解:点P(-2,3)到x轴的距离是3,3>2,所以圆P与x轴的位置关系是相离,故选A.【点睛】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.3.反比例函数1yx=-,下列说法不正确的是()A.图象经过点(1,﹣1)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大【答案】D【分析】反比例函数y=kx(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【点睛】此题考查反比例函数的性质,熟记性质并运用解题是关键.4.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上【答案】D【解析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.【详解】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.【点睛】本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.5.已知函数y=ax2+bx+c(a≠0)的图象如图,则函数y=ax+b与y=cx的图象大致为()A.B.C .D .【答案】C【分析】直接利用二次函数、一次函数、反比例函数的性质分析得出答案.【详解】∵二次函数开口向下,∴a <0,∵二次函数对称轴在y 轴右侧,∴a ,b 异号,∴b >0,∵抛物线与y 轴交在负半轴,∴c <0,∴y =ax+b 图象经过第一、二、四象限,y =c x的图象分布在第二、四象限, 故选:C .【点睛】本题考查了函数的性质以及图象问题,掌握二次函数、一次函数、反比例函数的性质是解题的关键. 6.如图,以点A 为中心,把△ABC 逆时针旋转m°,得到△AB′C′(点B 、C 的对应点分别为点B′、C′),连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A .1902m -B .3902m -C .30m -D .1302m + 【答案】B【分析】根据旋转的性质可得BAB CAC m ''∠=∠=︒、AB AB '=,利用等腰三角形的性质可求得1902AB B m '∠=︒-︒,再根据平行线的性质得出1902C AB m ''∠=︒-︒,最后由角的和差得出结论. 【详解】解:∵以点A 为中心,把ABC 逆时针旋转m ︒,得到AB C ''△∴BAB CAC m ''∠=∠=︒,AB AB '=∴()()11118018090222AB B BAB m m ''∠=︒-∠=︒-︒=︒-︒ ∵//AC BB ''∴1902C AB AB B m'''∠=∠=︒-︒∴13909022CAB CAC C AB m m m⎛⎫''''∠=∠-∠=︒-︒-︒=︒-︒⎪⎝⎭故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等;也考查了等腰三角形的性质,三角形的内角和定理,平行线的性质及角的和差.7.点P(﹣1,2)关于原点对称的点Q的坐标为()A.(1,2)B.(﹣1,﹣2)C.(1.﹣2)D.(﹣1,﹣2)【答案】C【分析】根据关于原点对称两个点坐标关系:横、纵坐标均互为相反数可得答案.【详解】解:点P(﹣1,2)关于原点对称的点Q的坐标为(1,﹣2),故选:C.【点睛】此题考查的是求一个点关于原点对称的对称点,掌握关于原点对称两个点坐标关系:横、纵坐标均互为相反数是解决此题的关键.8.如果小强将飞镖随意投中如图所示的正方形木板,那么P(飞镖落在阴影部分的概率)为( )A.16B.18C.19D.112【答案】C【解析】先求大正方形和阴影部分的面积分别为36和4,再用面积比求概率. 【详解】设小正方形的边长为1,则正方形的面积为6×6=36,阴影部分面积为114122422⨯⨯+⨯⨯=,所以,P落在三角形内的概率是41369=.故选C.【点睛】本题考核知识点:几何概率.解答本题的关键是理解几何概率的概念,即:概率=相应的面积与总面积之比.分别求出相关图形面积,再求比.9.如图,四边形ABCD的顶点A,B,C在圆上,且边CD与该圆交于点E,AC,BE交于点F.下列角中,弧AE所对的圆周角是( )A.∠ADE B.∠AFE C.∠ABE D.∠ABC【答案】C【分析】直接运用圆周角的定义进行判断即可.【详解】解:弧AE所对的圆周角是:∠ABE或∠ACE故选:C【点睛】本题考查了圆周角的定义,掌握圆周角的定义是解题的关键.10.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x,根据题意可列方程为()A.363(1+2x)=300 B.300(1+x2)=363C.300(1+x)2=363 D.300+x2=363【答案】C【分析】这两年小明收到的微信红包的年平均增长率为x,则2017年收到300(1+x),2018年收到300(1+x)2,根据题意列方程解答即可.【详解】由题意可得,300(1+x)2=363.故选C.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n =b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.11.如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.【答案】D【分析】首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.【详解】在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA.∵∠B+∠BAD=90°,∠BAD+DAC=90°,∴∠B=∠DAC.∴△ABD∽△CAD.∴DB:AD=AD:DC.∵BD:CD=3:2,∴设BD=3x,CD=2x.∴.,∴.故选D.【点睛】本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应边成比例求边长.12.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sinB的值为()A.45B.35C.34D.43【答案】A【分析】根据三角函数的定义解决问题即可.【详解】解:如图,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB2222435AB BC+=+=,∴sinB=ACAB=45故选:A.【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本题包括8个小题)13.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上kyx=,则k值为_____.【答案】1【解析】作DH⊥x轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAO+∠DAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠DAH,在△ABO和△DAH中AOB DHAABO DAHAB DA∠∠⎧⎪∠∠⎨⎪⎩===∴△ABO≌△DAH,∴AH=OB=3,DH=OA=1,∴D点坐标为(1,1),∵顶点D恰好落在双曲线y=kx上,∴a=1×1=1.故答案是:1.14.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.【答案】62【分析】作辅助线AD ⊥BC 构造直角三角形ABD ,利用锐角∠B 的正弦函数的定义求出三角形ABC 底边BC 上的高AD 的长度,然后根据三角形的面积公式来求△ABC 的面积即可.【详解】过A 作AD 垂直BC 于D ,在Rt △ABD 中,∵sinB =AD AB, ∴AD =AB•sinB =4•sin45°=2=2 ∴S △ABC =12BC•AD =12×6×222 故答案为:62【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC 底边BC 上的高线AD 构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD 的长度的.15.)已知反比例函数y =-2x,下列结论:①图象必经过点(-1,2);②y 随x 的增大而增大;③图象在第二、四象限内;④若x >1,则y >-2.其中正确的有__________.(填序号)【答案】①③④【解析】①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y 随x 的增大而增大;③k =﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y 随x 的增大而增大,若x >1,则y >﹣2,故答案为①③④.16.将抛物线22(1)3y x =+-向左平移2个单位,得到新的解析式为________. 【答案】22(3)3y x =+-【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】抛物线22(1)3y x =+-的顶点坐标为(﹣1,﹣3), 向左平移2个单位后的抛物线的顶点坐标为(﹣3,﹣3),所以,平移后的抛物线的解析式为22(3)3y x =+-.故答案为:22(3)3y x =+-.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.17.若两个相似三角形的面积之比为1:4,则它们对应角的角平分线之比为___.【答案】1:1【分析】根据相似三角形的性质进行分析即可得到答案.【详解】解:∵两个相似三角形的面积比为1:4,∴它们对应角的角平分线之比为1:4=1:1,故答案为:1:1.【点睛】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(1)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18.如图,Rt ABC 中,∠C =90°,AC =10,BC =1.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当BN ∥PE 时,t 的值为_____.【答案】4021【分析】作NH ⊥BC 于H .首先证明∠PEC =∠NEB =∠NBE ,推出EH =BH ,根据cos ∠PEC =cos ∠NEB ,推出EC PE =EH EN,由此构建方程解决问题即可. 【详解】解:作NH ⊥BC 于H .∵EF ⊥BC ,∠PEF =∠NEF ,∴∠FEC =∠FEB =90°,∵∠PEC+∠PEF =90°,∠NEB+∠FEN =90°,∴∠PEC =∠NEB ,∵PE ∥BN ,∴∠PEC =∠NBE ,∴∠NEB =∠NBE ,∴NE =NB ,∵HN ⊥BE ,∴EH =BH ,∴cos ∠PEC =cos ∠NEB , ∴EC PE =EH EN, ∵EF ∥AC , ∴EF AC =BE BC, ∴10EF =16316t -, ∴EF =EN =58(1﹣3t), ∴229(103)t t +-1(163)25(163)8t t --, 整理得:63t 2﹣960t+100=0,解得t =4021或403(舍弃), 故答案为:4021. 【点睛】本题考查旋转的性质,平行线的性质,解直角三角形、相似三角形的判定与性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(本题包括8个小题)19.如图,直线y=x﹣2(k≠0)与y轴交于点A,与双曲线y=kx在第一象限内交于点B(3,b),在第三象限内交于点C.(1)求双曲线的解析式;(2)直接写出不等式x﹣2>kx的解集;(3)若OD∥AB,在第一象限交双曲线于点D,连接AD,求S△AOD.【答案】(1)y=3x;(2)﹣1<x<0或x>3;(33【分析】(1)把点B(3,b)代入y=x﹣2,得到B的坐标,然后根据待定系数法即可求得双曲线的解析式;(2)解析式联立求得C的坐标,然后根据图象即可求得;(3)求得直线OD的解析式,然后解析式联立求得D的坐标,根据三角形面积公式求得即可.【详解】(1)∵点B(3,b)在直线y=x﹣2(k≠0)上,∴b=3﹣2=1,∴B(3,1),∵双曲线y=kx经过点B,∴k=3×1=3,∴双曲线的解析式为y=3x;(2)解23y xyx=-⎧⎪⎨=⎪⎩得31xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,∴C(﹣1,﹣3),由图象可知,不等式x﹣2>kx的解集是﹣1<x<0或x>3;(3)∵OD∥AB,∴直线OD的解析式为y=x,解3 y x yx=⎧⎪⎨=⎪⎩,解得33xy⎧=⎪⎨=⎪⎩或33xy⎧=-⎪⎨=-⎪⎩,∴D(3,3),由直线y=x﹣2可知A(0,﹣2),∴OA=2,∴S△AOD=1232⨯⨯=3.【点睛】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足反比例函数与一次函数解析式.解决问题的关键是求得交点坐标.20.如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.【答案】1【解析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理得到132AM AB==,根据AB∥CD,得到点M、O、N在同一条直线上,在Rt△AOM中,根据勾股定理求出224OM OA AM=-=,进而求出ON,在Rt△CON中,根据勾股定理求出224CN OC ON=-=,根据垂径定理即可求出弦CD的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则132AM AB==,∵AB∥CD,∴点M、O、N在同一条直线上,在Rt△AOM中,224OM OA AM=-=,∴ON=MN﹣OM=3,在Rt△CON中,224CN OC ON=-=,∵ON⊥CD,∴CD=2CN=1.【点睛】考查勾股定理以及垂径定理,作出辅助线,构造直角三角形是解题的关键.21.按要求解答下列各小题.(1)解方程:2243(2)x x -=+; (22sin 45tan 45cos 60+-°°°°. 【答案】(1)173x =;21x =-;(2)52. 【分析】(1)去括号整理后利用因式分解法解方程即可;(2)直接利用特殊角的三角函数值代入求出答案.【详解】(1)去括号得:224344x x x -=++移项合并得:23470x x --=因式分解得:()()3710x x -+=即:370x -=或10x += ∴12713x x ==-,; (22sin 45tan 45cos 60+-°°°°223112⎛ ⎝⎭=+- 312=+ 52=. 【点睛】本题考查了解一元二次方程-因式分解法,特殊角的三角函数值,正确分解因式、熟记特殊角的三角函数值是解题关键.22.如图,BC 是O 的弦,OD BC 于E ,交O 于D ,若8,2BC ED ==,求O 的半径.【答案】5.【分析】连接OB ,由垂径定理得BE=CE=4,在Rt OEB 中,根据勾股定理列方程求解.【详解】解:连接OB,8OD BC BC ⊥=142BE CE BC ∴=== 设O 的半径为R ,则2OE OD DE R =-=-在Rt OEB 中,由勾股定理得222OE BE OB =+,即()22242R R +=- 解得5R =O ∴的半径为5【点睛】本题考查了圆的垂径定理,利用勾股定理列方程求解是解答此题的关键.23.已知9a 2-4b 2=0,求代数式 a b -b a -22a b ab +的值. 【答案】±3【分析】原式通分并利用同分母分式的减法法则计算,约分得到最简结果,已知等式利用平方差公式化简,整理得到2b=3a 或2b=-3a ,代入计算即可求出值.【详解】原式= 2a ab - 2b ab - 22a b ab+ =2222a b a b ab---=22b ab- =2b a-=-2·b a , ∵9a 2-4b 2=0, ∴22b a= 94, ∴b a =±32, ∴原式=-2×32=-3或原式=3232⎛⎫-⨯-= ⎪⎝⎭. 点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(1)2a =.【解析】(1)根据题意列函数关系式即可;(1)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-10-a )(-10x+500)=-10x 1+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a≤6,则30<35+12a≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=1,a 1=58,于是得到a=1.【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+;(1)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =.【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.25.如图,△ABC 是等边三角形,AO ⊥BC ,垂足为点O ,⊙O 与AC 相切于点D ,BE ⊥AB 交AC 的延长线于点E ,与⊙O 相交于G ,F 两点.(1)求证:AB 与⊙O 相切;(2)若AB =4,求线段GF 的长.【答案】(1)见解析;(2)22.【解析】试题分析:(1)过点O 作OM ⊥AB ,垂足是M.证明OM 等于圆的半径OD 即可;(2)过点O 作ON ⊥BE ,垂足是N ,连接OF ,由垂径定理得出NG =NF =12GF.证出四边形OMBN 是矩形,在Rt OBM △利用三角函数求得OM 和BM 的长,则BN 和ON 即可求得,在Rt ONF 中利用勾股定理求得NF ,即可得出GF 的长.试题解析:()1如图,∵⊙O 与AC 相切于点D ,∴OD ⊥AC ,∴∠ADO =∠AMO =90°.∵△ABC 是等边三角形,AO ⊥BC ,∴∠DAO =∠MAO ,∴OM =OD.∴AB 与⊙O 相切;()2如图,过点O 作ON ⊥BE ,垂足是N ,连接OF ,则NG =NF =12GF.∵O 是BC 的中点, ∴OB =2.在Rt △OBM 中,∠MBO =60°,∴∠BOM =30°,∴BM =12BO =1,∴OM =23OB BM -=.∵BE ⊥AB ,∴四边形OMBN 是矩形,∴ON =BM =1.∵OF =OM =3,由勾股定理得NF =()2231-=2,∴GF =2NF =22.26.如图,某测量工作人员与标杆顶端F 、电视塔顶端在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC =1米,CD =6米,求电视塔的高ED .【答案】电视塔的高度为12米.【分析】作AH ⊥ED 交FC 于点G ,交ED 于H ;把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例列出方程,解方程即可.【详解】解:过A 点作AH ⊥ED ,交FC 于G ,交ED 于H .由题意可得:△AFG ∽△AEH ,AG=BC=1米,GH=CD=6米,HD=CG=AB=1.1米,∴AH=AG+GH=7米,FG=FC -CG=1.1米∴AG AH =FG EH即17=1.5EH , 解得:EH =10.1.∴ED =EH+ HD =10.1+1.1=12(米).∴电视塔的高度为12米.【点睛】此题考查的是相似三角形的应用,掌握构造相似三角形的方法和相似三角形的判定及性质是解决此题的关键.27.如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C(0,﹣3),点P 是直线BC 下方抛物线上的任意一点。
2016~2017广州天河区初三数学九年级期末试题及答案一、选择题(共8小题,每小题3分,满分24分)1.下列各式中属于最简二次根式的是()A.B.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.要得到二次函数y=﹣x2+2x的图象,需将二次函数y=﹣x2的图象()A.向左平移1个单位,再向上平移1个单位B.向右平移1个单位,再向下平移1个单位C.向左平移1个单位,再向下平移1个单位D.向右平移1个单位,再向上平移1个单位4.若一元二次方程x2+2x+m=0没有实数根,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<15.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°6.在△ABC中,∠C=90°,若∠A=30°,则sinA+cosB的值等于()A.1 B.C.D.7.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c ﹣m=0没有实数根,有下列结论:①b2﹣4ac>0②abc<0③2a+b<0④m>2其中,正确的是结论的个数是()A.1 B.2 C.3 D.4二、填空题(共7小题,每小题3分,满分21分)9.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻,据此,估计该镇中看中央电视台早间新闻的约有万人.10.已知扇形的弧长是2πcm,半径为12cm,则这个扇形的圆心角是.11.若=﹣x,则x的取值范围是.12.抛物线y=﹣2x2﹣4x+1的顶点关于x轴对称的点的坐标为.13.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于.14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,sinB的值是.15.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是.三、解答题(共8小题,满分75分)16.(1)计算(1﹣)2﹣+()0(2)解方程:(x+1)(x+2)=2x+4.17.我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解“、“从未听说”五个等级,统计后的数据整理如下表:等级非常了解比较了解基本了解不太了解从未听说频数4060483616频率0.2m0.240.180.08(1)表中m的值为;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.18.有一直经为cm圆形纸片,从中剪出一个圆心角是90°的最大扇形ABC(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?19.甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.20.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.21.如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)22.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD= °,理由是;(2)⊙O的半径为3,AC=4,求OD的长.23.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2016-2017学年河南省周口市太康县九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.下列各式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选:D.3.要得到二次函数y=﹣x2+2x的图象,需将二次函数y=﹣x2的图象()A.向左平移1个单位,再向上平移1个单位B.向右平移1个单位,再向下平移1个单位C.向左平移1个单位,再向下平移1个单位D.向右平移1个单位,再向上平移1个单位【考点】二次函数图象与几何变换.【分析】利用配方法,将y=﹣x2+2x化成顶点式解析式,根据右移减,上移加,可得答案.【解答】解:∵y=﹣x2+2x=﹣(x﹣1)2+1,∴y=﹣x2向右平移1个单位,再向上平移1个单位得到y=﹣x2+2x的图象.故选:D.4.若一元二次方程x2+2x+m=0没有实数根,则m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1【考点】根的判别式.【分析】根据方程的系数结合根的判别式即可得出△=4﹣4m<0,解之即可得出结论.【解答】解:∵方程x2+2x+m=0没有实数根,∴△=22﹣4m=4﹣4m<0,解得:m>1.故选C.5.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【考点】圆周角定理.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.6.在△ABC中,∠C=90°,若∠A=30°,则sinA+cosB的值等于()A.1 B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:在△ABC中,∠C=90°,若∠A=30°,得∠B=90°﹣30°=60°.sinA+cosB=sin30°+cos60°=+=1,故选:A.7.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有9种等可能的结果,两次所取球的编号相同的有3种,∴两次所取球的编号相同的概率为=.故选C.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c ﹣m=0没有实数根,有下列结论:①b2﹣4ac>0②abc<0③2a+b<0④m>2其中,正确的是结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】根据判别式的意义可对①进行判断;由抛物线开口方向得到a<0,由抛物线的对称轴方程得到b=﹣2a>0,由抛物线与y轴的交点位置得到c>0,则可对③进行判断;利用抛物线的对称轴方程可对③进行判断;利用二次函数的最大值为2可对④进行判断.【解答】解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②正确;∵b=﹣2a,∴2a+b=0,所以③错误;∵方程ax2+bx+c﹣m=0没有实数根,即ax2+bx+c=m没有实数根,而二次函数y=ax2+bx+c的最大值为2,∴m>2,所以④正确.故选C.二、填空题(共7小题,每小题3分,满分21分)9.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻,据此,估计该镇中看中央电视台早间新闻的约有 1.5 万人.【考点】用样本估计总体.【分析】求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.【解答】解:该镇看中央电视台早间新闻的约有15×=1.5万,故答案为:1.510.已知扇形的弧长是2πcm,半径为12cm,则这个扇形的圆心角是30°.【考点】弧长的计算.【分析】设这个扇形的圆心角的度数为n°,根据弧长公式得到2π=,然后解方程即可.【解答】解:设这个扇形的圆心角的度数为n°,根据题意得2π=,解得n=30,即这个扇形的圆心角为30°.故答案为30°.11.若=﹣x,则x的取值范围是﹣3≤x≤0 .【考点】二次根式有意义的条件.【分析】一个数的算术平方根为非负数,再结合二次根式的性质可求x的取值范围.【解答】解:∵=﹣x,∴,解得﹣3≤x≤0.故x的取值范围是﹣3≤x≤0.12.抛物线y=﹣2x2﹣4x+1的顶点关于x轴对称的点的坐标为(﹣1,﹣3).【考点】二次函数的性质;关于x轴、y轴对称的点的坐标.【分析】利用抛物线顶点坐标公式先求出顶点坐标,然后即可求出关于x轴对称的点的坐标.【解答】解:∵y=﹣2x2﹣4x+1,∴=﹣1=3即顶点坐标为(﹣1,3)则关于x轴对称的点的坐标为(﹣1,﹣3).13.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于5:8 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,由DE∥BC得到AE:EC=AD:DB=3:5,则利用比例性质得到CE:CA=5:8,然后利用EF∥AB可得到CF:CB=5:8.【解答】解:∵DE∥BC,∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∵EF∥AB,∴CF:CB=CE:CA=5:8.故答案为5:8.14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,sinB的值是.【考点】圆周角定理;锐角三角函数的定义.【分析】首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可得∠ACD=90°,又由⊙O的半径为,AC=2,即可求得sin∠D,又由∠D=∠B,即可求得答案.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵⊙O的半径为,∴AD=3,∴在Rt△ACD中,sin∠D==,∵∠B=∠D,∴sinB=sin∠D=.故答案为:.15.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是2或﹣.【考点】二次函数的最值.【分析】求出二次函数对称轴为直线x=m,再分m<﹣2,﹣2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【解答】解:二次函数对称轴为直线x=m,①m<﹣2时,x=﹣2取得最大值,﹣(﹣2﹣m)2+m2+1=4,解得,m=﹣,∵﹣>﹣2,∴不符合题意,②﹣2≤m≤1时,x=m取得最大值,m2+1=4,解得m=±,所以,m=﹣,③m>1时,x=1取得最大值,﹣(1﹣m)2+m2+1=4,解得,m=2,综上所述,m=2或﹣时,二次函数有最大值.故答案为:2或﹣.三、解答题(共8小题,满分75分)16.(1)计算(1﹣)2﹣+()0(2)解方程:(x+1)(x+2)=2x+4.【考点】解一元二次方程﹣因式分解法;零指数幂;二次根式的混合运算.【分析】(1)先计算乘方、化简分式、计算零指数幂,再去括号合并可得;(2)因式分解法求解可得.【解答】解:(1)原式=1﹣2+3﹣(﹣1)+1=4﹣2﹣+1+1=6﹣3;(2)∵(x+1)(x+2)﹣2(x+2)=0,∴(x+2)(x﹣1)=0,则x+2=0或x﹣1=0,解得:x=﹣2或x=1.17.我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解“、“从未听说”五个等级,统计后的数据整理如下表:等级非常了解比较了解基本了解不太了解从未听说频数4060483616频率0.2m0.240.180.08(1)表中m的值为0.3 ;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.【考点】扇形统计图;全面调查与抽样调查;频数(率)分布表.【分析】(1)首先根据频数和频率求得样本总数,然后用频数除以样本总数即可求得m的值;(2)用非常了解的频率乘以周角的度数即可求得其圆心角的度数;(3)根据题意提出合理性的建议即可.【解答】解:(1)40÷0.2=200,m==0.3,故答案为:0.3;(2)圆心角的度数是:360°×0.2=72°;(3)对市民“创建精神文明城市“应该加大宣传力度.18.有一直经为cm圆形纸片,从中剪出一个圆心角是90°的最大扇形ABC(如图所示).(1)求阴影部分的面积(2)用所剪的扇形纸片围城一个圆锥,该圆锥的底面圆的半径是多少?【考点】圆锥的计算;扇形面积的计算.【分析】(1)BC是圆O的直径,求出求得AC的值,进而利用扇形的面积公式可得阴影部分的面积;(2)求出弧BC的长度,即圆锥底面圆的周长,继而可得出底面圆的半径.【解答】解:(1)连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为,则AC=1m,故S扇形==.(2)的长l==πcm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是cm.19.甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.(2)求甲、乙两人获胜的概率.【考点】列表法与树状图法.【分析】(1)列表得出所有等可能的情况数即可;(2)找出积为奇数与积为偶数的情况数,分别求出甲乙两人获胜的概率即可.【解答】解:(1)所有可能出现的结果如图:45671(1,4)(1,5)(1,6)(1,7)2(2,4)(2,5)(2,6)(2,7)3(3,4)(3,5)(3,6)(3,7)(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相同,其中积是奇数的结果有4种,即5、7、15、21,积是偶数的结果有8种,即4、6、8、10、12、14、12、18,∴甲、乙两人获胜的概率分别为:P(甲获胜)==,P(乙获胜)==.20.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值.【解答】解:(1)∵AB=x,则BC=(28﹣x),∴x(28﹣x)=192,解得:x1=12,x2=16,答:x的值为12或16;(2)∵AB=xm,∴BC=28﹣x,∴S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15m和6m,∵28﹣15=13,∴6≤x≤13,∴当x=13时,S取到最大值为:S=﹣(13﹣14)2+196=195,答:花园面积S的最大值为195平方米.21.如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)【考点】解直角三角形的应用﹣坡度坡角问题;平行投影.【分析】作CM⊥DB于点M,已知BC的坡度即可得到BM和CM的比值,则在直角△MBC 中,利用勾股定理即可求得BM和MC的长度,然后在直角△DCM中利用三角函数求得DM的长,则BD=BM+DM,据此即可求解.【解答】解:作CM⊥DB于点M,∵斜坡AF的坡度是1::2.4,∠A=∠BCM,∴==,∴在直角△MBC中,设BM=5x,则CM=12x.由勾股定理可得:BM2+CM2=BC2,∴(5x)2+(12x)2=6.52,解得:x=,∴BM=5x=,CM=12x=6,在直角△MDC中,∠DCM=∠EDG=30°,∴DM=CM•tan∠DCM=6tan30°=6×=2,∴BD=DM+BM=+2≈2.5+2×1.732≈6.0(米).答:大树的高约为6.0米.22.如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD∥AC.(1)图中∠OCD= 90 °,理由是圆的切线垂直于经过切点的半径;(2)⊙O的半径为3,AC=4,求OD的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)根据切线的性质定理,即可解答;(2)首先证明△ABC∽△CDB,利用相似三角形的对应边的比相等即可求的CD长度,由勾股定理可求得OD长度.【解答】解:(1)∵CD与⊙O相切,∴OC⊥CD,(圆的切线垂直于经过切点的半径)∴∠OCD=90°;故答案是:90,圆的切线垂直于经过切点的半径;(2)连接BC.∵BD∥AC,∴∠ACB=∠OCD=90°,∴在直角△ABC中,BC===2,∠A+∠ABC=90°,∵OC=OB,∴∠BCO=∠ABC,∴∠A+∠BCO=90°,又∵∠OCD=90°,即∠BCO+∠BCD=90°,∴∠BCD=∠A,又∵∠CBD=∠ACB,∴△ABC∽△CDB,∴=,∴=,解得:CD=3.由勾股定理可知,OD===323.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】方法一:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B 坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.方法二:(3)用参数表示点M坐标,分类讨论三种情况,利用两点间距离公式便可求解.(4)列出点M的参数坐标,利用MO=MB求解.此问也可通过求出OB的垂直平分线与y轴的交点得出M点.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2).方法二:(3)设P(2,t),O(0,0),B(﹣2,﹣2),∵△POB为等腰三角形,∴PO=PB,PO=OB,PB=OB,(2﹣0)2+(t﹣0)2=(2+2)2+(t+2)2,∴t=﹣2,(2﹣0)2+(t﹣0)2=(0+2)2+(0+2)2,∴t=2或﹣2,当t=2时,P(2,2),O(0,0)B(﹣2,﹣2)三点共线故舍去,(2+2)2+(t+2)2=(0+2)2+(0+2)2,∴t=﹣2,∴符合条件的点P只有一个,∴P(2,﹣2).方法二追加第(4)问:在(3)的条件下,⊙M为△OBP的外界圆,求出圆心M的坐标.(4)∵点B,点P关于y轴对称,∴点M在y轴上,设M(0,m),∵⊙M为△OBF的外接圆,∴MO=MB,∴(0﹣0)2+(m﹣0)2=(0+2)2+(m+2)2,∴m=﹣,M(0,﹣).2017年3月19日。
2018-2019学年广东省广州市天河区九年级(上)期末数学试卷一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中只有一个是正确的1.如图图案中,是中心对称图形的是()A.B.C.D.2.若反比例函数y=的图象经过点(﹣5,﹣3),则该反比例函数的图象在()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限3.将二次函数y=2x2的图象向左平移1个单位,则平移后的函数解析式为()A.y=2x2﹣1B.y=2x2+1C.y=2(x﹣1)2D.y=2(x+1)24.下列说法正确的是()A.13名同学中,至少有两人的出生月份相同是必然事件B.“抛一枚硬币正面朝上概率是0.5”表示每抛硬币2次有1次出现正面朝上C.如果一件事发生的机会只有十万分之一,那么它就不可能发生D.从1、2、3、4、5、6中任取一个数是奇数的可能性要大于偶数的可能性5.在平面直角坐标系中,⊙P的圆心坐标为(3,4),半径为5,那么y轴与⊙P的位置关系是()A.相离B.相切C.相交D.以上都不是6.一元二次方程x2+mx+n=0的两根为﹣1和3,则m的值是()A.﹣3B.3C.﹣2D.27.要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=308.已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.369.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>210.如图为二次函数y=ax2+bx+c的图象,在下列说法中正确的是()①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3③a+b+c<0;④当x>1时,y随x的增大而增大A.①③B.②④C.①②④D.②③④二、填空题(本题有6个小题,每小题3分,共18分)11.在一个不透明的口袋中,装有4个红球3个白球和1个绿球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为.12.已知点P(x+2y,﹣3)和点Q(4,y)关于原点对称,则x+y=.13.一个圆锥的母线长为5,高为4,则这个圆锥的侧面积是.14.直线PA、PB是⊙O的两条切线,A、B分别为切点且∠APB=60°,若⊙O的半径为2,则切线长PA=.15.如图,点M(2,m)是函数y=x与y=的图象在第一象限内的交点,则k的值为.16.已知4是关于x的方程x2﹣3mx+4m=0的一个根,并且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为.三、解答题(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤17.(9分)解下列方程:(1)x2﹣6x=0(2)x(x﹣2)=2﹣x18.(9分)如图,⊙O中,OA⊥BC,∠AOB=50°,求∠ADC的度数.19.(10分)如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A,B,C及点O均在格点上请按要求完成以下操作或运算:(1)将△ABC绕点O旋转90°,得到△A1B1C1;(2)求点B旋转到点B1的路径长(结果保留π).20.(10分)某体育老师随机抽取了九年级甲、乙两班部分学生进行一分钟跳绳的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<120)30.15第二组(120≤x<160)8a第三组(160≤x<200)70.35第四组(200≤x<240)b0.1(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校九年级共有学生360人,估计跳绳能够一分钟完成160或160次以上的学生有多少人?(3)已知第一组中有两个甲班学生,第四组中只有一个甲班学生,老师随机从这两个组中各选一名学生谈测试体会,则所选两人正好都是甲班学生的概率是多少?21.(12分)如图的反比例函数图象经过点A(2,5)(1)求该反比例函数的解析式;(2)过点A作AB⊥x轴,垂足为B,在直线AB右侧的反比例函数图象上取一点C,若△ABC 的面积为20,求点C的坐标.22.(12分)已知二次函数y=ax2+bx﹣3的图象经过点(﹣1,0),(3,0).(1)求此二次函数的解析式;(2)在直角坐标系中描点,并画出该函数图象;x……y……(3)根据图象回答:当函数值y<0时,求x的取值范围.23.(12分)小红准备实验操作:把一根长为20cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于13cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)要使这两个正方形的面积之和最小,小红该怎么剪?24.(14分)如图,在平面直角坐标系中,已知点M的坐标为(0,2),以M为圆心,以4为半径的圆与x轴相交于点B、C,与y轴正半轴相交于点A过A作AE∥BC,点D为弦BC上一点,AE=BD,连接AD,EC.(1)求B、C两点的坐标;(2)求证:AD=CE;(3)若点P是弧BAC上一动点(P点与A、B点不重合),过点P的⊙M的切线PG交x轴于点G,若△BPG为直角三角形,试求出所有符合条件的点P的坐标.25.(14分)如图,直线y=x﹣3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=﹣x2+mx+n与x轴的另一个交点为A,顶点为P.(1)求3m+n的值;(2)在该抛物线的对称轴上是否存在点Q,使以C,P,Q为顶点的三角形为等腰三角形?若存在,求出有符合条件的点Q的坐标;若不存在,请说明理由.(3)将该抛物线在x轴上方的部分沿x轴向下翻折,图象的其余部分保持不变,翻折后的图象与原图象x轴下方的部分组成一个“M“形状的新图象,若直线y=x+b与该“M”形状的图象部分恰好有三个公共点,求b的值.2018-2019学年广东省广州市天河区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中只有一个是正确的1.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】将点(﹣5,﹣3)代入解析式可求k的值,由反比例函数的性质可求解.【解答】解:∵反比例函数y=的图象经过点(﹣5,﹣3),∴k=﹣5×(﹣3)=15>0∴该反比例函数的图象在第一、三象限,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,熟练掌握反比例函数图象上点的坐标满足图象解析式是本题的关键.3.【分析】先得到抛物线y=2x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),把(0,0)先向左平移1个单位所得对应点的坐标为(﹣1,0),所以平移后的抛物线解析式为y=2(x+1)2.故选:D.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.也考查了二次函数的性质.4.【分析】直接利用随机事件的意义以及概率的意义分别分析得出答案.【解答】解:A.13名同学中,至少有两人的出生月份相同是必然事件,正确;B.“抛一枚硬币正面朝上概率是0.5”表示每抛硬币2次可能有1次出现正面朝上,此选项错误;C.如果一件事发生的机会只有十万分之一,那么它发生的可能性小,此选项错误;D.从1、2、3、4、5、6中任取一个数是奇数的可能性等于偶数的可能性,此选项错误;故选:A.【点评】此题主要考查了概率的意义,正确理解概率的意义是解题关键.5.【分析】由题意可求⊙P到y轴的距离d为3,根据直线与圆的位置关系的判定方法可求解.【解答】解:∵⊙P的圆心坐标为(3,4),∴⊙P到y轴的距离d为3∵d=3<r=5∴y轴与⊙P相交故选:C.【点评】本题考查了直线与圆的位置关系,坐标与图形性质,熟练运用直线与与圆的位置关系的判定方法是解决问题的关键.6.【分析】根据根与系数的关系得到﹣1+3=﹣m,然后解关于m的方程即可,【解答】解:根据题意得﹣1+3=﹣m,所以m=﹣2.故选:C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.7.【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.8.【分析】解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.【解答】解:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选:C.【点评】本题考查了正多边形和圆,正六边形被它的半径分成六个全等的等边三角形,这是需要熟记的内容.9.【分析】根据题意可得B的横坐标为2,再由图象可得当y1<y2时,x的取值范围.【解答】解:∵正比例函数y=k1x的图象与反比例函数y=的图象相交于A、B两点,∴A,B两点坐标关于原点对称,∵点A的横坐标为2,∴B点的横坐标为﹣2,∵y1<y2∴在第一和第三象限,正比例函数y=k1x的图象在反比例函数y=的图象的下方,∴x<﹣2或0<x<2,故选:B.【点评】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.10.【分析】根据抛物线的图象与性质即可求出答案.【解答】解:①由图可知:a>0,c<0,∴ac<0,故①错误;②由抛物线与x轴的交点的横坐标为﹣1与3,∴方程ax2+bx+c=0的根是x1=﹣1,x2=3,故②正确;③由图可知:x=1时,y<0,∴a+b+c<0,故③正确;④由图象可知:对称轴为:x==1,∴x>1时,y随着x的增大而增大,故④正确;故选:D.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(本题有6个小题,每小题3分,共18分)11.【分析】用白球的个数除以球的总个数即可求得摸到白球的概率.【解答】解:在一个不透明的口袋中,装有4个红球3个白球和1个绿球,它们除颜色外都相同,∴从中任意摸出一个球,摸到白球的概率为=;故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.12.【分析】直接利用关于原点对称点的性质得出关于x,y的方程组进而得出答案.【解答】解:∵点P(x+2y,﹣3)和点Q(4,y)关于原点对称,∴,解得:,故x+y=﹣7.故答案为:﹣7.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.13.【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的底面半径是:=3,圆锥的底面周长是:2×3π=6π,则×6π×5=15π.故答案为:15π.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【分析】连接OA、OP,如图,利用切线的性质和切线长定理得到OA⊥PA,OP平分∠APB,即∠APO=30°,然后根据含30度的直角三角形三边的关系计算PA的长.【解答】解:连接OA、OP,如图,∵直线PA、PB是⊙O的两条切线,∴OA⊥PA,OP平分∠APB,∴∠APO=∠APB=×60°=30°,在Rt△AOP中,AP=OP=2.故答案为2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了切线长定理.15.【分析】将点M坐标代入解析式可求k的值.【解答】解:∵点M(2,m)是函数y=x与y=的图象在第一象限内的交点,∴解得k=4故答案为:4【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握两个图象的交点坐标满足两个图象的解析式是本题的关键.16.【分析】先根据一元二次方程的解的定义把x=4代入方程求出m得到原方程为x2﹣6x+8=0,再解此方程得到得x1=2,x2=4,然后根据三角形三边的关系得到△ABC的腰为4,底边为2,再计算三角形的周长.【解答】解:把x=4代入方程得x2﹣3mx+4m=0,解得m=2,则原方程为x2﹣6x+8=0,解得x1=2,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为2,则△ABC的周长为4+4+2=10;②当△ABC的腰为2,底边为4时,不能构成三角形.综上所述,该三角形的周长的10.故答案为:10.【点评】本题考查了一元二次方程的解,等腰三角形的性质及三角形的三边关系定理.难度中等.根据等腰三角形的性质,将腰长进行分类是解题的关键.三、解答题(本题有9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤17.【分析】(1)利用提公因式法求解,比较简便;(2)移项后提取公因式,利用因式分解法比较简便.【解答】解:(1)x2﹣6x=0,x(x﹣6)=0,∴x=0或x﹣6=0∴x1=0,x2=6;(2)x(x﹣2)+(x﹣2)=0(x+1)(x﹣2)=0,∴x+1=0或x﹣2=0,∴x1=﹣1,x2=2.【点评】本题考查了一元二次方程的解法﹣因式分解法,掌握因式分解法求解一元二次方程的步骤是解决本题的关键.18.【分析】由⊙O中,OA⊥BC,利用垂径定理,即可证得=,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得圆周角∠ADC的度数.【解答】解:∵⊙O中,OA⊥BC,∴=,∴∠ADC=∠AOB=×50°=25°.【点评】此题考查了垂径定理与圆周角定理.此题难度不大,注意掌握数形结合思想的应用.19.【分析】(1)依据旋转中心、旋转方向和旋转角度,即可得到△A1B1C1;(2)利用扇形弧长计算公式进行计算,即可得到点B旋转到点B1的路径长.【解答】解:(1)若△ABC绕点O顺时针旋转90°,可得△A1B1C1,如图所示:若△ABC绕点O逆时针旋转90°,可得△A1B1C1,如图所示:(2)若△ABC绕点O顺时针旋转90°,点B旋转到点B1的路径长为=;若△ABC绕点O逆时针旋转90°,同理可得点B旋转到点B1的路径长为.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以找到对应点,顺次连接得出旋转后的图形.20.【分析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【解答】解:(1)a=1﹣0.15﹣0.35﹣0.1=0.4;∵总人数为:3÷0.15=20(人),∴b=20×0.1=2(人);故答案为:0.4,2;补全统计图得:(2)根据题意得:360×(0.35+0.1)=162(人),答:跳绳能够一分钟完成160或160次以上的学生有162人;(3)根据题意画树状图如下:∵共有6种等可能的结果,所选两人正好都是甲班学生的有2种情况,∴所选两人正好都是甲班学生的概率是:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)由待定系数法可求反比例函数的解析式;(2)点C(m,),由面积公式可求m的值,即可得点C的坐标.【解答】解:(1)设反比例函数的解析式为y=,且过A(2,5)∴k=2×5=10∴反比例函数的解析式为y=(2)设点C(m,)∵△ABC的面积为20,∴20=∴m=10∴点C(10,1)【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,熟练运用待定系数法求解析式是本题的关键.22.【分析】(1)根据二次函数y=ax2+bx﹣3的图象经过点(﹣1,0),(3,0),可以求得该函数的解析式;(2)根据(1)中的函数解析式,可以解答本题;(3)根据(2)中所画的函数图象,可以直接写出当函数值y<0时,x的取值范围.【解答】解:(1)∵二次函数y=ax2+bx﹣3的图象经过点(﹣1,0),(3,0),,解得,,∴此二次函数的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3,∴当x=﹣1时,y=0,当x=0时,y=﹣3,当x=1时,y=﹣4,当x=2时,y=﹣3,当x=3时,y=0,故答案为:(﹣1,0),(0,﹣3),(1,﹣4),(2,﹣3),(3,0),函数图象如右图所示;(3)由图象可得,当函数值y<0时,x的取值范围是﹣1<x<3.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.【分析】(1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以得到面积和所截铁丝的长度之间的函数关系,然后二次函数的性质即可解答本题.【解答】解:(1)设其中一段长为xcm,则另一段长为(20﹣x)cm,=13,解得,x1=8,x2=12,∴当x=8时,20﹣x=12,当x=12时,20﹣x=8,答:这段铁丝剪成两段后的长度分别是8cm、12cm;(2)设其中一段长为acm,则另一段长为(20﹣a)cm,两个正方形的面积之和为Scm2,S==,∴当a=10时,S取得最小值,此时S=12.5,答:要使这两个正方形的面积之和最小,小红剪成两段铁丝的长度都是10cm.【点评】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.24.【分析】(1)根据勾股定理可以求得OB和OC的长度,从而可以得到B、C两点的坐标;(2)根据平行四边形的性质、全等三角形的判定和性质可以证明结论成立;(3)根据题意,画出相应的图形,然后利用分类讨论的方法可以得到点P的坐标.【解答】解:(1)连接MB、MC,如右图一所示,∵点M的坐标为(0,2),以M为圆心,以4为半径的圆与x轴相交于点B、C,∴MB=MC=4,OM=2,∵∠MOB=∠MOC=90°,∴OB=,∴OC=2,∴点B的坐标为(﹣2,0),点C的坐标为(2,0);(2)证明:作AF∥EC交x轴于点F,如右图一所示,∵AE∥BC,∴四边形AFCE是平行四边形,∴AE=FC,AF=EC,∵AE=BD,∴BD=CF,又∵OB=OC,∴OD=OF,在△AOD和△AOF中,,∴△AOD≌△AOF(SAS),∴AD=AF,∴AD=EC,即AD=CE;(3)当△BP1G是直角三角形时,如右图二所示,∵MA=MP1=4,点M的坐标为(0,2),∴点P1的坐标为(﹣4,2);当△BP2G是直角三角形时,如右图二所示,∵MA=MP2=4,点M的坐标为(0,2),∴点P2的坐标为(4,2);当△BP3G是直角三角形时,如右图三所示,∵OB=2,OM=2,∴tan∠MBO=,∴∠MBO=30°,∴∠MBP3=60°,∵BM=MP3,∴△BMP3是等边三角形,∴BP3=4,∴点P3的坐标为(﹣2,4);当△BP4G是直角三角形时,如右图三所示,∵BP4=8,∠P4BG=30°时,∴点P4的纵坐标是:8×sin30°=8×=4,横坐标是:﹣2+8×cos30°=﹣2+8×=﹣2+4=2,∴点P4的坐标为(2,4);由上可得,若△BPG为直角三角形,所有符合条件的点P的坐标是(﹣4,2),(4,2),(﹣2,4),(2,4).【点评】本题是一道圆的综合题,解答本题的关键是明确题意,画出合适的辅助线,找出所求问题需要的条件,利用分类讨论和数形结合的思想解答.25.【分析】(1)求出B、C的坐标,将点B、C的坐标分别代入抛物线表达式,即可求解;(2)分CP=PQ、CP=CQ、CQ=PQ,分别求解即可;(3)分两种情况,分别求解即可.【解答】解:(1)直线y=x﹣3,令y=0,则x=3,令x=0,则y=﹣3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标分别代入抛物线表达式得:,解得:,则抛物线的表达式为:y=﹣x2+4x﹣3,则点A坐标为(1,0),顶点P的坐标为(2,1),3m+n=12﹣3=9;(2)①当CP=CQ时,C点纵坐标为PQ中点的纵坐标相同为﹣3,故此时Q点坐标为(2,﹣7);②当CP=PQ时,同理可得:点Q的坐标为(2,1﹣2)或(2,1+2);同理可得:过该中点与CP垂直的直线方程为:y=﹣x﹣,当x=2时,y=﹣,即点Q的坐标为(2,﹣);③当CQ=PQ时,同理可得:点Q的坐标为(2,﹣),故:点Q的坐标为(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)图象翻折后的点P对应点P′的坐标为(2,﹣1),①在如图所示的位置时,直线y=x+b与该“M”形状的图象部分恰好有三个公共点,此时C、P′、B三点共线,b=﹣3;②当直线y=x+b与翻折后的图象只有一个交点时,此时,直线y=x+b与该“M”形状的图象部分恰好有三个公共点;即:x2﹣4x+3=x+b,△=52﹣4(3﹣b)=0,解得:b=﹣.即:b=﹣3或﹣.【点评】本题考查的是二次函数综合运用,难点在于(3),关键是通过数形变换,确定变换后图形与直线的位置关系,难度不大.。