2020高考数学专项训练《34含有绝对值函数的取值范围问题》(有答案)
- 格式:docx
- 大小:107.77 KB
- 文档页数:6
绝对值专项练习60题(有答案)1.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是()A.﹣5 B.1C.﹣1 D.﹣5或13.计算:|﹣4|=()A.0B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2C.8或﹣2 D.﹣8或25.如果|a|=﹣a,那么a的取值范围是()A.a>0 B.a<0 C.a≤0 D.a≥06.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|7.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A.1个B.2个C.3个D.4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A.1个B.2个C.3个D.4个9.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A.1B.0C.﹣1 D.﹣210.任何一个有理数的绝对值在数轴上的位置是()A.原点两旁B.整个数轴C.原点右边D.原点及其右边11.a,b在数轴位置如图所示,则|a|与|b|关系是()A.|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|x|=3,则在数轴上表示x的点与原点的距离是()A.3B.±3 C.﹣3 D.0﹣313.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A.正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A.3B.﹣1 C.±1或±3 D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A. 1﹣b>﹣b>1+a>a B. 1+a>a>1﹣b>﹣b C. 1+a>1﹣b>a>﹣b D. 1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A.正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A.a>0 B.a≥0 C.a<0 D.自然数24.若|m﹣1|=5,则m的值为()A.6B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A.2B.2或3 C.4D.2或427.a<0时,化简结果为()A.B.0C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A.B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A.7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A.1B.﹣1 C.±1 D.033.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A.3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A.7B.6C.5D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A.0B.2C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A.0B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A.a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。
高考数学函数专题训练 含绝对值的函数一、选择题 1.函数xxx x x x y tan tan cos cos sin sin ++=的值域为( ) A .{}3,1 B.{}3,1- C.{}3,1-- D.{}3,1- 【答案】B【解析】当sin 0,cos 0x x >>时3y =,sin 0,cos 0x x ><时1y =-,sin 0,cos 0x x <>时1y =-,sin 0,cos 0x x <<时3y =,∴值域为{}3,1-2.函数()ln 11x f x x-=-的图象大致为 ( )A .B .C .D .【答案】D【解析】由于()ln 3022f =>,排除C 选项,()ln 1220f =->,排除B 选项,11221ln20f ⎛⎫=< ⎪⎝⎭,不选A,故选D.3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,设)1()1()(-+-=x g x f x h ,则下列结论中正确的是( )A .)(x h 关于)0,1(对称B .)(x h 关于)0,1-(对称C .)(x h 关于1=x 对称D .)(x h 关于1-=x 对称 【答案】C【解析】因为函数()f x 是奇函数,所以()f x 是偶函数,即()f x 与()g x 均为偶函数,其图象均关于y 对称,所以(1)f x -与(1)g x -的图象都关于直线1x =对称,即()(1)(1)h x f x g x =-+-的图象关于直线1x =对称,故选C .4.已知()()211f x ax x a x =+--≤≤且1a ≤,则()f x 的最大值为( )A .54B .34C .3D .1【答案】A【解析】由题意得:()()222111f x a x x a x x x x =-+≤-+≤-+11x -≤≤ 22221511124x x x x x x x ⎛⎫∴-+=-+=-++=--+ ⎪⎝⎭∴当12x =,即12x =±时,()2max514x x -+=即:()54f x ≤,即()f x 的最大值为54,故选A .5.若函数()111101x x f x x x ⎧+-≠⎪=-⎨⎪=⎩,,,关于x 的方程2() ()0f x b f x c ++=有3个不同的实数根,则( ) A .b <﹣2且c >0 B .b >﹣2且c <0 C .b =﹣2且c =0 D .b >﹣2且c =0【答案】C【解析】令t =f (x ),则t 2+bt +c =0,设关于t 的方程有两根为t =t 1,t =t 2,关于x 的方程2() ()0f x b f x c ++=有3个不同的实数根等价于函数t =f (x )的图象与直线t =t 1,t =t 2的交点个数为3个,作出()f x 的简图如下:由函数t =f (x )的图象与直线t =t 1,t =t 2的位置关系可得: t 1=2,t 2=0,由韦达定理可得:1212022020b t t c t t -=+=+=⎧⎨=⋅=⨯=⎩,即b =﹣2,c =0,故选C . 6.已知函数()ln(1)f x x =-,满足()(4)f a f a >-,则实数a 的取值范围是( ) A .(1,2) B .(2,3)C .(1,3)D .(2,4)【答案】A【解析】函数()ln(1)f x x =-的定义域为()1,+∞,由()(4)f a f a >-可得:ln(1)ln(41)ln(3)a a a ->--=-,两边平方:[][][][]22ln(1)ln(3)ln(1)ln(3)ln(1)ln(3)0a a a a a a ->-⇔----+->则ln(1)ln(3)0ln(1)ln(3)01030a a a a a a --->⎧⎪-+->⎪⎨->⎪⎪->⎩(1)或ln(1)ln(3)0ln(1)ln(3)01030a a a a a a ---<⎧⎪-+-<⎪⎨->⎪⎪->⎩(2)解(1)得:a 无解 ,解(2)得:12a <<,所以实数a 的取值范围是(1,2),故选A.7.已知函数)0(|4|||)(>---=a a x a x x f ,若对R ∈∀x ,都有)(1)2(x f x f ≤-,则实数a 的最大值为( ) A .81 B .41 C .21D .1【答案】B【解析】(2)1()f x f x -≤,即为(2)()1f x f x -≤,即22441x a x a x a x a -----+-≤,设()2244g x x a x a x a x a=-----+-,则0,242,2 ()22,282,240,4axax a x ag x x a a x aa x a x ax a⎧≤⎪⎪⎪-<≤⎪⎪=-<≤⎨⎪⎪-<≤⎪⎪>⎪⎩,由题意,当2ax a<≤时,1()42212g x x a a a=-≤≤⇒≤,当2a x a<≤时,1()22212g x x a a a=-≤≤⇒≤,当24a x a<≤时,1()22414g x x a a a=-<≤⇒≤,所以14a≤,即a的最大值为14,选B.8.若函数()221f x x x ax=-+--没有零点,则实数a的取值范围是A.332a-≤<B.31a-≤<C.332a a≥<-或D.13a a≥<-或【答案】A【解析】因为函数()221f x x x ax=-+--没有零点,所以方程221x x ax-+-=无实根,即函数()221g x x x=-+-与()h x ax=的图像无交点,如图所示,则()h x的斜率a应满足332a-≤<,故选A.9.定义一种运算⎩⎨⎧>≤=⊗babbaaba,,,令()()t xxxxf-⊗-+=224(t为常数),且[]3,3-∈x,则使函数()x f最大值为4的t值是()A.2-或6B.4或6C.2-或4D.4-或4【答案】C.【解析】y=4+2x﹣x2在x∈[﹣3,3]上的最大值为4,所以由4+2x﹣x2=4,解得x=2或x=0.所以要使函数f(x)最大值为4,则根据定义可知,当t<1时,即x=2时,|2﹣t|=4,此时解得t=﹣2.当t>1时,即x=0时,|0﹣t|=4,此时解得t=4.故t=﹣2或4.10.已知函数()||––10||f x mx x m =>(), f (x )=|mx |–|x –1|(m >0),若关于x 的不等式()0f x <的解集中的整数恰有3个,则实数m 的取值范围为( ).A.0<m ≤1 B .34m ≤<23C.1<m <23D.23≤m <2【答案】B【解析】不等式()0f x <的解集中的整数恰有3个,即|||–|1mx x <的解集中的整数恰有3个. |||–|1mx x <可化为22()10,()mx x --<即([m (1)1]10][1,)m x x +-⋅-+<由于不等式解集中整数恰有三个,所以10,1,m m ->>不等式的解为11111x m m -<<<-+,从而解集中的三个整数为2,1,0--,132,1m --≤<--即1231m <≤-,2233m n m -<≤-,所以34m ≤<23.11.已知函数21,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则3122341()x x x x x ++的取值范围是( ) A .(1,)-+∞ B .(]1,1- C .(,1)-∞ D .[)1,1- 【答案】B【解析】先画出函数21,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象,方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,由0x ≤时,()1f x x =+,则横坐标为1x 与2x 两点的中点横坐标为1x =-,即:122x x +=-,当0x >时,由于2log y x =在(0,1)上是减函数,在(1,)+∞上是增函数,又因为34x x <,4232log log x x =,则4310x x <<<,有1log log 434232=⇒=-x x x x ,又因为方程ax f =)(有四个不同的解,所以1log 32≤-x ,则213≥x ,则3122341()x x x x x ++=3312x x +-,)121(3<≤x ,设t t t g 12)(+-=,(121<≤t ),由于012)(2<--='tt g ,则)(t g 在)1,21[上是减函数,则1)(1≤<-t g .12.已知函数()121f x x =--,[0,1]x ∈.定义:1()()f x f x =,21()(())f x f f x =,……,1()(())n n f x f f x -=,2,3,4,n =满足()n f x x =的点[0,1]x ∈称为()f x 的n 阶不动点.则()f x 的n 阶不动点的个数是( )A.2n 个B.22n 个 C.2(21)n-个 D.2n 个【答案】D.【解析】函数12, 02()121122,12x x f x x x x ⎧≤≤⎪⎪=--=⎨⎪-<≤⎪⎩,当1[0,]2x ∈时,1()20f x x x x ==⇒=,当1(,1]2x ∈时,12()223f x x x x =-=⇒=,∴1()f x 的1阶不动点的个数为2,当1[0,]4x ∈,1()2f x x =,2()40f x x x x ==⇒=,当11(,]42x ∈,1()2f x x =,22()245f x x x x =-=⇒=,当13(,]24x ∈,1()22f x x =-,22()423f x x x x =-=⇒=,当3(,1]4x ∈,1()22f x x =-,24()445f x x x x =-=⇒=,∴2()f x 的2阶不动点的个数为22,以此类推,()f x 的n 阶不动点的个数是2n个.二、填空题 13.方程18|cos()||log |2x x π+=的解的个数为__________.(用数值作答)【答案】12【解析】由题意得求方程18sin log x x = 的解的个数,因为sin y x = 周期为π,而5π186π<<,又(0,1)x ∈时sin y x =与18log y x =-有一个交点,(1,π)x ∈时sin y x =与18log y x =有一个交点, (π,π+π),(1,2,3,4,5)x k k k ∈=时sin y x =与18log y x =有两个交点,因此共有2612⨯=个.14. 已知,函数在区间上的最大值是2,则__________.【答案】3或 【解析】当时,= 函数,对称轴为,观察函数的图像可知函数的最大值是.令,经检验,a=3满足题意.令,经检验a=5或a=1都不满足题意. 令,经检验不满足题意.当时,, 函数,对称轴为,观察函数的图像得函数的最大值是.当时,, 函数,对称轴为,观察函数的图像可知函数的最大值是.令, 令,所以.综上所述,故填3或.15.a 为实数,函数2()||f x x ax =-在区间[01],上的最大值记为()g a . 当a = 时,()g a 的值最小. 【答案】322-【解析】()()2f x x ax x x a =-=-.①当0a <时,函数()f x 的图像如图所示.函数()f x 在区间[]0,1上单调递增,()()()max 11f x g a f a ===-.aO yx②当0a =时,2()f x x =,()f x 在区间[]0,1上的最大值为()()11f g a a ==-.③当0a >时,函数()f x 的图像如图所示.xyO a(i )若12aa <<,即12a <<,()()2max 4a f a g a ==;(ii )若12a,即2a,()max 1f a a =-;(iii )若01a <<,()()()22max,22114max ,141,0221a a a f a a a a ⎧-<⎧⎫⎪=-=⎨⎬⎨⎩⎭⎪-<<-⎩. 综上所述,()()()212212212412a a ag a a a a ⎧-<-⎪⎪=-<⎨⎪⎪-⎩,,,,因此()()min 221322g a g ⎡⎤=-=-⎣⎦.16. 已知函数有六个不同零点,且所有零点之和为3,则的取值范围为__________. 【答案】【解析】根据题意,有,于是函数关于对称,结合所有的零点的平均数为,可得,此时问题转化为函数,在上与直线有个公共点,此时,当时,函数的导函数,于是函数单调递增,且取值范围是,当时,函数的导函数,考虑到是上的单调递增函数,且,于是在上有唯一零点,记为,进而函数在上单调递减,在上单调递增,在处取得极小值,如图:接下来问题的关键是判断与的大小关系,注意到,,函数,在上与直线有个公共点,的取值范围是,故答案为.。
微专题341.答案:偶.解析:设f (x )=|x -1|+|x +1|,则f (-x )=|-x -1|+|-x +1|=|x -1|+|x +1|=f (x ),所以,原函数是偶函数.2.答案:12. 解析:因为|ln a |=|ln4a |,所以,ln a =ln4a 或ln a =-ln4a ,解得a =12. 3.答案:(4,+∞).解析:由于函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b > 2ab (由于a <b ),所以ab 的取值范围是(4,+∞).4.答案:7.解析:由题意作出y =f (x )在区间[-2,4]上的图象,与直线y =1的交点共有7个,故函数y =f (x )-1在区间[-2,4]上的零点个数为7.5.答案:(-∞,2-1].解析:设f (x )=t ,则f (t )≤3,由函数f (x )=x |x +2|图象可得t ≤1,即f (x )≤1,所以,x ≤2-1,不等式f [f (x )]≤3的解集为(-∞,2-1].6.答案:(2,3].解析:由题意,当y =f (x )-g (x )=2[f (x )-1]=0时,即方程f (x )=1有4个解.又由函数y =a -|x +1|与函数y =(x -a )2的大致形状可知,直线y =1与函数f (x )= ⎩⎨⎧a -|x +1|,x ≤1,(x -a )2,x >1的左右两支曲线都有两个交点,如图所示.那么,有⎩⎨⎧(1-a )2>1,f (-1)>1,f (1)≤1,即⎩⎨⎧a >2或a <0,a >1,a -2≤1,所以,实数a 的取值范围是(2,3]. 7.答案:(1)函数f (x )在(-∞,1)上递减,在(1,2)上递增,在(2,3)上递减,在(-3,+∞)上递增;(2)M ={m |0<m <1};(3)[-23,23];(4)( -∞,0].解析:(1)当a =4时,f (x )=|x 2-4x +3|,函数f (x )在(-∞,1)上递减,在(1,2)上递增,在(2,3)上递减,在(-3,+∞)上递增.(2)当a =4时,f (x )=|x 2-4x +3|,画出函数f (x )=|x 2-4x +3|的图象,可得集合M ={m |0<m <1}.(3)若函数f (x )只有两个单调区间,则Δ≤0,所以,a 的取值范围是[-23,23].(4)若函数g (x )=x 2-a |x |+3只有两个单调区间,则a 2≤0,所以,a 的取值范围是 (-∞,0].8.答案:⎝⎛⎭⎫1,98. 解析:f (x )=x |x -a |+2x =⎩⎨⎧x 2-(a -2)x ,x ≥a ,-x 2+(a +2)x ,x <a , f (x )=⎩⎨⎧⎝⎛⎭⎫x -a -222-(a -2)24,x ≥a ,-⎝⎛⎭⎫x -a +222+(a +2)24,x <a , 因为0≤a ≤4,所以,a -22<a , (1)当a +22≥a 即0≤a ≤2时, f (x )在R 上递增,不合题意; (2)当a +22<a 即2<a ≤4时, f (x )在⎝⎛⎭⎫-∞,a +22上递增,在⎝⎛⎭⎫a +22,a 上递减,在(a ,+∞)上递增,若关于x 的方程f (x )=tf (a )有三个不相等的实根,则f (a )<tf (a )<f ⎝⎛⎭⎫a +22,2a <2at <⎝⎛⎭⎫a +222,所以,1<t <18⎝⎛⎭⎫a +4a +4,所以,实数t 的取值范围是⎝⎛⎭⎫1,98.。
绝对值练习题及答案一、选择题1. 绝对值的定义是:对于任意实数x,其绝对值表示为|x|,满足以下哪个条件?A. x ≥ 0B. x ≤ 0C. x > 0D. x < 0答案:A2. 计算绝对值 |-5| 的结果是多少?A. 5B. -5C. 0D. 1答案:A3. 如果 |x - 3| = 4,那么 x 的可能值是:A. -1B. 7C. 1D. 3答案:B, C二、填空题4. 绝对值 |-8| 等于 _______。
答案:85. 如果 |x + 2| = 3,那么 x 的值可以是 _______ 或 _______。
答案:1,-56. 绝对值不等式 |x - 4| < 2 的解集是 _______。
答案:2 < x < 6三、解答题7. 解绝对值方程 |x - 5| = 6。
解:由绝对值的定义,我们有 x - 5 = 6 或 x - 5 = -6。
解得 x = 11 或 x = -1。
8. 已知 |3x + 1| = 8,求 x 的值。
解:由绝对值的定义,我们有 3x + 1 = 8 或 3x + 1 = -8。
解得 x = 7/3 或 x = -3。
9. 证明:对于任意实数 a 和 b,有|a + b| ≤ |a| + |b|。
证明:考虑 a 和 b 的正负情况,我们可以将问题分为四种情况:- 当a ≥ 0 且 b ≥ 0 时,|a + b| = a + b = |a| + |b|。
- 当a ≥ 0 且 b < 0 时,|a + b| = a - |b| ≤ |a| + |b|。
- 当 a < 0 且b ≥ 0 时,|a + b| = |b| - a ≤ |a| + |b|。
- 当 a < 0 且 b < 0 时,|a + b| = -(a + b) = |a| + |b|。
综上,对于任意实数 a 和 b,都有|a + b| ≤ |a| + |b| 成立。
绝对值求值专项练习1. 理论知识概述绝对值是指一个数与零点的距离。
对于任何实数 x,其绝对值表示为 |x|。
绝对值求值是一种常见的数学运算,常用于解决数值问题。
绝对值的性质包括:1. 若x ≥ 0,则 |x| = x;2. 若 x < 0,则 |x| = -x。
2. 基本操作2.1. 绝对值求值已知一个数 x,根据绝对值的性质,可以使用以下步骤求出其绝对值:1. 如果x ≥ 0,则绝对值为 x;2. 如果 x < 0,则绝对值为 -x。
2.2. 绝对值运算规则绝对值运算满足以下几个规则:1. |a| ≥ 0,无论 a 的值为何;2. 当且仅当 a = 0 时, |a| = 0;3. |a| = |-a|,即绝对值与其相反数的绝对值相等。
3. 练题目请解答以下练题目,求出相应的绝对值:3.1. 求绝对值1. |5| = ?2. |-3| = ?3. |0| = ?4. |-7| = ?5. |10 - 15| = ?3.2. 求相反数的绝对值1. |-5| = ?2. |-(-8)| = ?3. |-(12 - 16)| = ?4. 练题解答4.1. 求绝对值1. |5| = 52. |-3| = 33. |0| = 04. |-7| = 75. |10 - 15| = 54.2. 求相反数的绝对值1. |-5| = 52. |-(-8)| = 83. |-(12 - 16)| = 45. 总结绝对值求值是一种简单而常用的数学运算。
通过理解绝对值的性质和基本操作,我们可以轻松地求出数的绝对值。
希望这个绝对值求值专项练习能够帮助你掌握绝对值的概念和运算规则。
专题一 压轴选择填空题第8关 以绝对值为背景的选择填空题【名师综述】绝对值是高中数学的重要概念,含绝对值问题是高中数学中分类讨论思想的典型体现.近年来,高考对绝对值的命题,既考查对绝对值定义、含绝对值函数图象变换的理解,又考查与函数、方程、不等式等综合的运用,着重考查分类讨论思想在解题中运用.【典例解剖】类型一 以绝对值零点考查分类讨论典例1.(2020江苏徐州上学期期中考试)函数2()3f x x x k =--有两个零点,则k 的取值范围是_______.【举一反三】1.(2020·上海建平中学高三期中)已知二次函数2()2019f x ax bx c =++(0a >),若存在0x ∈Z ,满足01|()|2019f x ≤,则称0x 为函数()f x 的一个“近似整零点”,若()f x 有四个不同的“近似整零点”,则a 的取值范围是 .类型二 以绝对值形式考查分段函数图象性质典例2.(2020·上海长宁嘉定一模)已知1a 、2a 、3a 与1b 、2b 、3b 是6个不同的实数,若关于x 的方程123123x a x a x a x b x b x b -+-+-=-+-+-的解集A 是有限集,则集合A 中最多有 个元素.【举一反三】1.(2020·上海建平中学月考)若函数()12f x x x a =+++的最小值3,则实数a 的值为( ) A .5或8B .1-或5C .1-或4-D .4-或8类型三 以绝对值形式考查函数图象变换典例3.(2020·上海七宝中学期中考试)已知不等式|3|1x a x ->-对任意(0,2)x ∈恒成立,则实数a 的取值范围是 .【举一反三】1.(2020·上海曹杨二中高一期末)设函数2()1f x x =-,若0a b <<,且()()f a f b =,则ab 的取值范围是 .2.已知函数()()11f x ax a x =---.(Ⅰ)当2a =时,满足不等式()0f x >的x 的取值范围为__________;(Ⅰ)若函数()f x 的图象与x 轴没有交点,则实数a 的取值范围为__________.【精选名校模拟】1.(2020·上海交大附中月考)已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( )A .33()()f x f a a -≤+B .24()()f x f a a -≤+C .()()5f x f a a -≤+D .2|()()2|(1)f x f a a -≤+ 2.(2020·上海闵行区期末考试)若实数,x y 满足方程228x y +=,则|2||6||6|x y x y x y +-++++--的最大值为( )A .12B .14C .18D .243.(2020·上海松江区一模)若存在,b c R ∈,使2++≤x bx c M 对任意的[]0,4x ∈恒成立,则( ) A .M 的最小值为1B .M 的最小值为2C .M 的最小值为4D .M 的最小值为84.(2020·上海高三模拟三)已知集合{(,)|||||1}P x y x y =+„,{}22(,)|1Q x y x y =+„,则有( ) A .P Q =B .P ⇐QC .P Q P =UD .P Q Q ⋂=5.(2020·上海进才中学高三月考)已知集合(){}|1M x y x y =+≤,,若实数对()λμ,满足:对任意的()x y M ∈,,都有()x y M λμ∈,,则称()λμ,是集合M 的“嵌入实数对”,则以下集合中,不存在集合M 的“嵌入实数对”的是( )A .(){}|2λμλμ-=, B .(){}22|232λμλμ+=, C .(){}22|2λμλμ-=, D .(){}22|2λμλμ+=,6.(2020·上海南模中学高三开学考试)若对于任意x R ∈,不等式1234x ax -≤+--≤恒成立,则实数a 的值为 .7.(2020·上海建平中学高三月考)若不等式26ax +<的解集为(1,2)-,则实数a 的值为 .8.(2020·上海复旦附中期中考试)已知不等式34x x a --+<解集非空,则实数a 的取值范围为 .9.(2020·上海建平中学期中考试)关于x 的不等式2315x x a a +--≤-的解集不是∅,则实数a 的取值范围为 .10.(2020·上海曹杨二中高三期中)已知实数,a b 满足:2224b a -=,则2a b -的最小值为 .11.(2020·上海闵行中学期中考试)若关于x 的不等式|2||1|x x a -≥++的解集不是∅,则实数a 的最大值是 .12.(2020·上海曹杨二中月考)若关于x 的不等式11x x a -++≥的解集为R ,则实数a 的取值范围为 .13.(2020·上海行知中学高三月考)若关于x 的不等式|2|1x a x -+>在[0,2]上恒成立,则正实数a 的取值范围为 .14.(2020·上海桃浦中学高二期末)关于x 的不等式21x x a +--≤的解集为R ,则实数a 的取值范围是 .15.(2020·上海莘庄中学期中考试)定义满足不等式(,0)x A B A R B -<∈>的实数x 的集合叫做A 的B 邻域.若2a b +-的+a b 邻域为区间()2,2-,则ab 的最大值为 .16.(2020·上海七宝中学期中)在平面直角坐标系中,O 是坐标原点,两定点,A B 满足·2OA OB OAOB u u u v u u u v u u u v u u u v ===,由点集{|,1,,}P OP OA OB R λμλμλμ=++≤∈u u u v u u u v u u u v 所表示的区域的面积是 .17.(2020·上海吴淞中学高三开学考试)在平面直角坐标系xOy 内,曲线|1||3|||7x x y ++-+=所围成的区域的面积为 .18.(2020·上海高境一中期中)在平面直角坐标系中,已知向量(2,1)a =r,O 是坐标原点,M 是曲线||2||2x y +=上的动点,则a OM--→⋅r 的取值范围为 .19.(2020·上海大同中学高三月考)平面直角坐标系中,e v 为单位向量,a v 向量满足a e ⋅=v v ,其中λ为正常数,若2||a a te λ≤+v v v 对任意实数t 成立,则||a v的取值范围是 . 20.(2020·上海进才中学高三月考)当01x ≤≤时,如果关于x 的不等式||2x x a -<恒成立,那么a 的取值范围是 .。
含有绝对值函数的取值范围问题在数学高考中,函数问题一直占有较大的分量,而绝对值函数是函数中较为困难的一例题:已知函数f(x)=x|x-4|,x∈[0,m],其中m>0.(1)当m=2时,求函数f(x)的值域;(2)若函数f(x)的值域为[0,4],求实数m的取值范围.变式1已知函数f(x)=x|x-a|在[0,2]上的值域为[0,4],求实数a的取值范围.变式2设函数f(x)=x|x-a|,若对于任意的x1,x2∈[2 ,+∞),x1≠x2,不等式f(x1)-f(x2)>0恒成立,求实数a的取值范围.x1-x2串讲1若函数f(x)=x 2|x -a|在区间[0,2]上是增函数,求实数a 的取值范围.串讲2若不等式|x -2a|≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________________.(2018·南京二模)已知函数f (x )=⎩⎨⎧ax -1, x ≤0,x 3-ax +|x -2|,x >0的图象恰好经过三个象限,则实数a 的取值范围是________________.已知函数f (x )=e x |x 2-a |(a ≥0). (1)当a =1时,求f (x )的单调减区间;(2)若方程f (x )=m 恰好有一正根和一负根,求实数m 的最大值.答案:(1)f (x )的单调减区间为[-1+2,1],[-1-2,-1];(2)4e2.解析:(1)当a =1时,f (x )=⎩⎨⎧e x (x 2-1),|x |>1,e x (1-x 2),|x |≤1.当|x |>1时,f ′(x )=e x (x 2+2x -1),由f ′(x )≤0,解得-1-2≤x ≤-1+ 2.所以f (x )的单调减区间为[-1-2,-1),3分 当|x |≤1,f ′(x )=-e x (x 2+2x -1),由f ′(x )≤0,解得x ≤-1-2或x ≥-1+2, 所以f (x )的单调减区间为[-1+2,1],4分综上:f (x )的单调减区间为[-1+2,1],[-1-2,-1].6分 (2)当a =0时,f (x )=e x ·x 2,则f ′(x )=e x ·x 2+2x ·e x =e x x (x +2), 令f ′(x )=0,得x =0或x =-2,所以f (x )有极大值f (-2)=4e 2,极小值f (0)=0,当a >0时,f (x )=⎩⎨⎧e x (x 2-a ),|x |>a ,e x (a -x 2),|x |≤a .同(1)讨论得f (x )在(-∞,-a +1-1)上单调递增,在(-a +1-1,-a )上单调递减, 在(-a ,a +1-1)上单调递增,在(a +1-1,a )上单调递减,在(a ,+∞)上单调递增.且函数y =f (x )有两个极大值点,9分f (-a +1-1)=2e -a +1-1(a +1+1)=2e -a +1(a +1+1)e.f (a +1-1)=2ea +1-1(a +1-1)=2e a +1(a +1-1)e.11分且当x =a +1时,f (a +1)=e a +1(a 2+a +1)>ea +1(a +1-1)>2ea +1(a +1-1)e.所以若方程f (x )=m 恰好有正根,则m >f (a +1-1)(否则至少有两个正根). 又方程f (x )=m 恰好有一负根,则m =f (-a +1-1).13分令g (x )=e -x (x +1),x ≥1,则g ′(x )=-x e -x <0,所以g (x )=e -x (x +1)在[1,+∞)上单调递减,即g (x )≤g (1)=2e.等号当且仅当x =1时取到.14分所以f (-a +1-1)≤⎝⎛⎭⎫2e 2,等号当且仅当a =0时取到.且此时f (a +1-1)= 2ea +1-1(a +1-1)=0,即f (-a +1-1)>f (a +1-1),所以要使方程f (x )=m 恰好有一个正根和一个负根,m 的最大值为4e2.16分例题1答案:(1)[0,4];(2)[2,2+22].解析:(1)当m =2时,f(x)=-x 2+4x =-(x -2)2+4,当x∈[0,2]时,f(x)单调递增,所以f(x)的值域为[0,4].(2)由函数f(x)=x|x -4|图象可知,当x>4时,令x|x -4|=4,即x 2-4x -4=0,解得x =2+22,若函数f(x)的值域为[0,4],所以实数m 的取值范围是[2,2+22].变式联想变式1答案:a =0或a =4.解析:(1)当a<0时,f(x)=x(x -a),f(2)=2(2-a)>4,显然不满足条件;(2)当a =0时,f(x)=x 2,在[0,2]上的值域为[0,4],满足条件;(3)当a>0时,①当0<a≤2时,f ⎝ ⎛⎭⎪⎫a 2=⎪⎪⎪⎪⎪⎪a 24-a 22=a 24≤1,f(x)=|x 2-ax|,f(0)=0,f(2)=|4-2a|=4-2a <4,不满足条件;②当2<a<4时,f(x)=-x 2+ax =-⎝ ⎛⎭⎪⎫x -a 22+a 24≤a24<4,不满足条件;③当a =4时,f(x)=-x 2+4x =-(x -2)2+4≤4,满足条件;④当a>4时,f(x)=-x 2+ax ,f(2)=-4+2a>4,不满足条件. 综上所述,a =0或a =4. 变式2答案:(-∞,2]. 解析:作出函数f(x)=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,的图象,当a 变化时,易得a 的取值范围为(-∞,2]. 说明:变式1和2都是抓住形如y =x|x -a|函数的图象特征,抓住图象关键,从而解决问题.串讲激活串讲1答案:(-∞,0]∪[3,+∞).解析:(1)当a≤0时,f(x)=x 3-ax 2,显然在区间[0,2]上是增函数;(2)当a >0时,记g(x)=x 3-ax 2,令g′(x)=3x 2-2ax =0,解得x =0,x =2a 3,g(x)在(-∞,0)上单调递增,在⎝⎛⎭⎪⎫0,2a 3上单调递减,在⎝ ⎛⎭⎪⎫2a 3,+∞上单调递增,又g(0)=g(a)=0,所以f(x)=|g(x)|在(-∞,0)上单调递减,在⎝⎛⎭⎪⎫0,2a 3上单调递增,在⎝ ⎛⎭⎪⎫2a 3,a 上单调递减,在(a ,+∞)上单调递增.要使f(x)在区间[0,2]上是增函数,只要2a3≥2,即a≥3.综上所述,实数a 的取值范围为(-∞,0]∪[3,+∞).串讲2答案:⎝⎛⎦⎥⎤-∞,12. 解析:作出y =|x -2a|和y =12x +a -1的简图,依题意知应有2a≤2-2a ,故a 的取值范围是⎝⎛⎦⎥⎤-∞,12.新题在线答案:(-∞,0)∪(2,+∞).解析:因为f(0)=-1,x →+∞时,f(x)→+∞,所以,函数f(x)过第一、三象限,①若a <0,显然成立;②若a≥0,只需x >0时,f(x)min <0即可,即存在x >0,使得f(x)<0分离参数,得⎝⎛⎭⎪⎫x 2+|x -2|x min <a ,易求得⎝⎛⎭⎪⎫x 2+|x -2|x min =2,所以,此时a >2,综上所述,实数a 的取值范围是(-∞,0)∪(2,+∞).。
高考数学函数专题训练《含绝对值的函数》含答案解析1.函数y=sinxcosxtanx的值域为()+()A.{1,3} B.{-1,3} C.{-1,-3} D.{1,-3}答案】B解析】当sinx>0,cosx>0时y=3,sinx>0,cosx0时y=-1,sinx<0,cosx<0时y=3,所以值域为{-1,3}。
2.函数f(x)=lnx-1/(1-x)的图像大致为()A. B. C. D.答案】D解析】由于f(3)>ln2/2,排除C选项,f(-1)>0,排除B选项,f(1/2)<0,不选A选项,所以选D。
3.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,设h(x)=f(x-1)+g(x-1),则下列结论中正确的是() A.h(x)关于(1,)对称 B.h(x)关于(-1,)对称 C.h(x)关于x=1对称 D.h(x)关于x=-1对称答案】C解析】因为函数f(x)是奇函数,所以f(x-1)是偶函数,即f(x-1)与g(x-1)均为偶函数,其图像均关于y轴对称,所以f(x-1)与g(x-1)的图像都关于直线x=1对称,即h(x)=f(x-1)+g(x-1)的图像关于直线x=1对称,故选C。
4.已知f(x)=ax+x-a(-1≤x≤1)且a≤1,则f(x)的最大值为()A.5/4 B.3/4 C.3 D.1答案】A解析】由题意得:f(x)=ax-1+x≤ax-1+x≤x-1+x/2,-1≤x≤1.所以当x=±1时,x-1+x=±2,f(x)max=5/4,即f(x)≤5/4,所以选A。
5.若函数f(x)=1(x≠1),f(x+)=2x-1,则关于x的方程f(x)+bf(x)+c=0有3个不同的实数根,则()A.b0 B.b-2且c>0 D.b>-2且c<0答案】C解析】因为f(x+)=2x-1,所以当x>1时,f(x)=2x-1;当x1时,f(x)max=2x-1;当x1时,f(x)≤2x-1;当x1时,f(x)≤2x-1,即b≥2;当x-2且c>0,所以选C。
专题34含有绝对值函数的取值范围问题
例题:已知函数f(x)=x|x-4|,x∈[0,m],其中m>0.
(1)当m=2时,求函数f(x)的值域;
(2)若函数f(x)的值域为[0,4],求实数m的取值范围.
变式1已知函数f(x)=x|x-a|在[0,2]上的值域为[0,4],求实数a的取值范围.
变式2设函数f(x)=x|x-a|,若对于任意的x1,x2∈[2 ,+∞),x1≠x2,不等式f(x1)-f(x2)
>0恒成立,求实数a的取值范围.
x1-x2
串讲1若函数f(x)=x 2
|x -a|在区间[0,2]上是增函数,求实数a 的取值范围.
串讲2若不等式|x -2a|≥1
2x +a -1对x ∈R 恒成立,则a 的取值范围是________________.
(2018·南京二模)已知函数f (x )=⎩⎨⎧ax -1, x ≤0,
x 3-ax +|x -2|,x >0
的图象恰好经过三个象限,
则实数a 的取值范围是________________.
已知函数f (x )=e x |x 2
-a |(a ≥0). (1)当a =1时,求f (x )的单调减区间;
(2)若方程f (x )=m 恰好有一正根和一负根,求实数m 的最大值. 答案:(1)f (x )的单调减区间为[-1+2,1],[-1-2,-1];(2)4
e
2.
解析:(1)当a =1时,f (x )=⎩⎨⎧e x (x 2
-1),|x |>1,
e x (1-x 2
),|x |≤1.
当|x |>1时,f ′(x )=e x (x 2+2x -1),由
f ′(x )≤0,解得-1-2≤x ≤-1+ 2.所以f (x )的单调减区间为[-1-2,-1),3分 当|x |≤1,f ′(x )=-e x (x 2+2x -1),由f ′(x )≤0,解得x ≤-1-2或x ≥-1+2, 所以f (x )的单调减区间为[-1+2,1],4分
综上:f (x )的单调减区间为[-1+2,1],[-1-2,-1].6分 (2)当a =0时,f (x )=e x ·x 2,则f ′(x )=e x ·x 2+2x ·e x =e x x (x +2), 令f ′(x )=0,得x =0或x =-2,
8分
所以f (x )有极大值f (-2)=4
e 2,极小值
f (0)=0,当a >0时,f (x )=⎩
⎨⎧e x (x 2
-a ),|x |>a ,e x (a -x 2),|x |≤a . 同(1)讨论得f (x )在(-∞,-a +1-1)上单调递增,在(-a +1-1,-a )上单调递减, 在(-a ,a +1-1)上单调递增,在(a +1-1,a )上单调递减,在(a ,+∞)上单调递增.
且函数y =f (x )有两个极大值点,9分
f (-a +1-1)=2e -
a +1-1
(a +1+1)=2e -a +1(a +1+1)
e
.f (a +1-1)
=2e
a +1-1
(a +1-1)=2e a +1(a +1-1)
e
.11分
且当x =a +1时,f (a +1)=e a +1
(a 2+a +1)>e
a +1
(a +1-1)>
2e
a +1
(a +1-1)
e
.
所以若方程f (x )=m 恰好有正根,则m >f (a +1-1)(否则至少有两个正根). 又方程f (x )=m 恰好有一负根,则m =f (-a +1-1).13分
令g (x )=e -
x (x +1),x ≥1,则g ′(x )=-x e -
x <0,所以g (x )=e -
x (x +1)在[1,+∞)
上单调递减,即g (x )≤g (1)=2
e
.等号当且仅当x =1时取到.14分
所以f (-a +1-1)≤⎝⎛⎭⎫
2e 2
,等号当且仅当a =0时取到.且此时f (a +1-1)= 2e
a +1-1
(a +1-1)=0,即f (-a +1-1)>f (a +1-1),所以要使方程
f (x )=m 恰好有一个正根和一个负根,m 的最大值为4
e 2.16分
专题34
例题
答案:(1)[0,4];(2)[2,2+22].
解析:(1)当m =2时,f(x)=-x 2+4x =-(x -2)2+4,当x ∈[0,2]时,f(x)单调递增,所以f(x)的值域为[0,4].
(2)由函数f(x)=x|x -4|图象可知,当x>4时,令x|x -4|=4,即x 2-4x -4=0,解得x =2+22,若函数f(x)的值域为[0,4],所以实数m 的取值范围是[2,2+22].
变式联想
变式1
答案:a =0或a =4.
解析:(1)当a<0时,f(x)=x(x -a),f(2)=2(2-a)>4,显然不满足条件; (2)当a =0时,f(x)=x 2,在[0,2]上的值域为[0,4],满足条件;
(3)当a>0时,①当0<a ≤2时,f ⎝⎛⎭⎫a 2=⎪⎪⎪⎪a 24-a 22=a
2
4≤1,f(x)=|x 2-ax|,f(0)=0,f(2)=|4-2a|=4-2a <4,不满足条件;
②当2<a<4时,f(x)=-x 2
+ax =-⎝⎛⎭⎫x -a 22
+a 24≤a
2
4
<4,不满足条件; ③当a =4时,f(x)=-x 2+4x =-(x -2)2+4≤4,满足条件;
④当a>4时,f(x)=-x 2+ax ,f(2)=-4+2a>4,不满足条件. 综上所述,a =0或a =4. 变式2
答案:(-∞,2]. 解析:作出函数f(x)=
⎩
⎨⎧x 2
-ax ,x ≥a ,
-x 2
+ax ,x <a ,的图象,当a 变化时,易得a 的取值范围为(-∞,2]. 说明:变式1和2都是抓住形如y =x|x -a|函数的图象特征,抓住图象关键,从而解决问题.
串讲激活
串讲1
答案:(-∞,0]∪[3,+∞).
解析:(1)当a ≤0时,f(x)=x 3-ax 2,显然在区间[0,2]上是增函数;
(2)当a >0时,记g(x)=x 3-ax 2,令g′(x)=3x 2-2ax =0,解得x =0,x =2a
3,g(x)在(-
∞,0)上单调递增,在⎝⎛⎭⎫0,2a 3上单调递减,在⎝⎛⎭⎫2a
3,+∞上单调递增,又g(0)=g(a)=0,所以f(x)=|g(x)|在(-∞,0)上单调递减,在⎝⎛⎭⎫0,2a 3上单调递增,在⎝⎛⎭
⎫2a 3,a 上单调递减,在(a ,
+∞)上单调递增.要使f(x)在区间[0,2]上是增函数,只要2a
3≥2,即a ≥3.综上所述,实数
a 的取值范围为(-∞,0]∪[3,+∞).
串讲2
答案:⎝
⎛⎦⎤-∞,12. 解析:作出y =|x -2a|和y =1
2x +a -1的简图,依题意知应有2a ≤2-2a ,故a 的取值
范围是⎝
⎛⎦⎤-∞,12.
新题在线
答案:(-∞,0)∪(2,+∞).
解析:因为f(0)=-1,x →+∞时,f(x)→+∞,所以,函数f(x)过第一、三象限,①若a <0,显然成立;②若a ≥0,只需x >0时,f(x)min <0即可,即存在x >0,使得f(x)<0分离参数,得⎝⎛⎭⎫x 2+|x -2|x min <a ,易求得⎝⎛⎭⎫
x 2+|x -2|x min =2,所以,此时a >2,综上所述,实
数a 的取值范围是(-∞,0)∪(2,+∞).。