中考数学压轴题专题全等三角形的存在性
- 格式:doc
- 大小:487.50 KB
- 文档页数:6
第7讲相似三角形的存在性在很多与相似三角形相关的压轴题中,其中常见的一种题型就是相似三角形的存在性讨论。
对于相似三角形的存在性问题,一般来说,会有一组等角,然后从边或从角的角度进行分类讨论:通常,我们还可以借助基本图形分析法,找到边与角的数量关系,从而完成上述问题的讨论。
例1.(2022金山一模25题).已知:如图 11,AD⊥直线MN,垂足为D,AD=8,点B 是射线DM 上的一个动点,∠BAC=90°,边AC 交射线DN 于点C,∠ABC 的平分线分别与AD、AC 相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y 关于x 的函数关系式;(3)联结DF,如果以点D、E、F 为顶点的三角形与△BCF 相似,求AE 的长.2022金山一模25题的图形背景是母子型+角平分线,解题路径围绕着相似三角形的性质定理、判定定理以及射影定理展开。
题型主要围绕证明三角相似,函数关系的建立以及相似三角形的存在性讨论。
本题的关键是根据三角形的相似或角平分线的性质标出图形中的等角,然后再根据角的等量关系确定线段间的数量关系。
解法分析:本题的第一问是相似三角形的判定。
利用角平分线和平行线得到等角,继而再射影定理模型中的等角关系,利用A.A判定相似即可。
解法分析:本题的第二问是函数关系的确立。
利用第一问中相似三角形对应线段成比例以及等角的三角比相等可以顺利地建立函数关系。
解法分析:本题的第三问是相似三角形的存在性讨论。
由第一问中角的数量关系可得∠BFC=∠DEF ,因此由角进行分类讨论。
在分类讨论的过程中,善于运用斜X 型和射影定理模型即可快速得到结论,对于不存在的情况要能够排除。
解:(1)∵AD ⊥直线MN ,∠BAC =90°,∴∠BAD +∠ABD = 90°, ∠BCF +∠ABD = 90°,∴∠BAD =∠BCF ……………………………………………………………………………(1分)∵BF 平分∠ABC ,∴∠ABE =∠CBF ………………………………………………………(1分) ∴△ABE ∽△CBF . …………………………………………………………………………(1分)(2)作FH ⊥BC 垂足为点H .∵△ABE ∽△CBF ,∴∠AEB =∠CFB ,∵∠AEB+∠AEF =180°,∠CFB+∠CFE =180°∴∠AEF =∠CFE ,∴AE =AF=x ;…………………………………………………………(1分) ∵BF 平分∠ABC ,FH ⊥BC ,∠BAC =90°,∴AF=FH=x .∵FH ⊥BC ,AD ⊥直线MN ,∴FH∥AD ,∴FH FC AD AC=,即8x y y x =+,…………(2分) 解得:28x y x=-(48x <<)……………………………………………………………(2分)(3)设AE=x ,由△ABE ∽△CBF ,如果以点D 、E 、F 为顶点的三角形与△BCF 相似,即以点D 、E 、F 为顶点的三角形与△ABE 相似.∵∠AEB =∠DEF ,如果∠BAE =∠FDE ,得DF∥AB ,∴∠ABE =∠DFE ,∵∠ABE =∠DBE , ∴∠DBE =∠DFE ,∴BD=DF , ………………………………………(1分) 由DF∥AB ,得∠DFC=∠BAC =90°,∴∠DFC=∠ABD =90°,又∠BAD =∠BCF ,∴△ABD ≌△CDF ,…………………………………………………(1分)CF=AD=8,即2=88x x-,解得:4x =-±(舍去负值),∴4AE x ==-+…………………………(1分)如果∠BAE =∠DFE ,得AE BE EF DE=,∵∠ABF =∠BED ,∴△AEF ∽△BED ,∴∠AFE =∠BDE , 因为∠AFE 是锐角,∠BDE 是直角,所以这种情况不成立。
二次函数压轴题之全等三角形的存在性(讲义) 课前预习1.如图,在平面直角坐标系中,点A坐标为(2,1),点B坐标为(3,0),点D为平面直角坐标系中任一点(与点O,A,B不重合).(1)△AOB和△DOB的公共边为_________.(2)若△DOB与△OAB全等,则点D的坐标为_________.(3)在下图中画出可能的△DOB,并考虑与△AOB之间的联系.知识点睛全等三角形存在性的处理思路1.分析特征:分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定等)考虑分类.注:全等三角形存在性问题主要结合对应关系及不变特征考虑分类.2.画图求解:往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑边、角的对应相等和不变特征后列方程求解.3.结果验证:回归点的运动范围,画图或推理,验证结果. 精讲精练1.如图,抛物线C1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.(1)求抛物线C1的解析式.(2)设抛物线C1的对称轴与x轴交于点F,另一条抛物线C2经过点E(抛物线C2与抛物线C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)2.如图,抛物线213442y x x =-++与x 轴的一个交点为A (-2,0),与y 轴交于点C ,对称轴与x 轴交于点B .若点D 在x 轴上,点P 在抛物线上,使得△PBD ≌△PBC ,则点P 的坐标为_____________________________________.3.如图,抛物线21382y x x =--与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过原点O ,与抛物线的一个交点为D (6,-8),与抛物线的对称轴交于点E ,连接CE .若点F 在抛物线上,使△FOE ≌△FCE ,则点F 的坐标为____________.4.如图,抛物线21(2)62y x =--+与y 轴交于点C ,对称轴与x 轴交于点D ,顶点为M .设点Q 是y 轴右侧该抛物线上的一动点,若经过点Q 的直线QE 与y 轴交于点E ,使得以O ,Q ,E 为顶点的三角形与△OQD 全等,则直线QE 的解析式为_______________.5.如图,在平面直角坐标系中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与l2相交于点P.点E为直线l2上一点,反比例函数ky(k>0)的图象x过点E且与直线l1相交于点F.(1)若点E与点P重合,求k的值.(2)连接EF.是否存在点E及y轴上的点M,使得以M,E,F为顶点的三角形与△PEF全等?若存在,求出点E的坐标;若不存在,请说明理由.【参考答案】课前预习1.(1)OB(2)(2,-1),(1,1),(1,-1)(3)略精讲精练1.(1)y =-x 2+2x +3;(2)a =7,b =2或a =7,b =-2或a =-1,b =2或a =-1,b =-2或a =1,b =-4或a =5,b =-4或a =5,b =4.2.(1418241)-+-+,,(1418241)----,,126(426)2-+-,,126(426)2--+,3.(3174)+-,或(3174)--, 4.122y x =+或71724y x -+=-或y =65.(1)2;(2)3(2)8,或8(2)3,.。
专题09全等三角形的性质与判定压轴题八种模型全攻略考点一全等三角形的概念考点二利用全等图形求正方形网格中角度之和考点三全等三角形的性质考点四用SSS证明三角形全等考点五用SAS证明三角形全等考点六用ASA证明三角形全等考点七用AAS证明三角形全等考点八用HL证明三角形全等考点一全等三角形的概念例题:(2021·福建·福州三牧中学八年级期中)有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有() A.1个B.2个C.3个D.4个【变式训练】1.(2022·上海·七年级专题练习)如图,在△ABC和△A′B′C′中,已知AB=A′B′,∠A=∠A′,AC=A′C′,那么△ABC≌△A′B′C′.说理过程如下:把△ABC放到△A′B′C′上,使点A与点A′重合,由于=,所以可以使点B与点B′重合.又因为=,所以射线能落在射线上,这时因为=,所以点与重合.这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.考点二利用全等图形求正方形网格中角度之和例题:(2021·全国·八年级专题练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=()A.30°B.45°C.60°D.135°【变式训练】典型例题1.(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在44 的正方形网格中,求 ______度.2.(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.考点三全等三角形的性质例题:(2021·重庆大足·八年级期末)如图,ABC 和DEF 全等,且A D ,AC 对应DE .若6AC ,5BC ,4AB ,则DF 的长为()A .4B .5C .6D .无法确定【变式训练】1.(2022·云南昆明·三模)如图,ABC DEF △≌△,若80,30A F ,则B Ð的度数是()A .80°B .70°C .65°D .60°2.(2022·上海·七年级专题练习)如图所示,D ,A ,E 在同一条直线上,BD ⊥DE 于D ,CE ⊥DE 于E ,且△ABD ≌△CAE ,AD =2cm ,BD =4cm ,求(1)DE 的长;(2)∠BAC 的度数.考点四用SSS 证明三角形全等例题:(2022·河北·平泉市教育局教研室二模)如图,BD BC ,点E 在BC 上,且BE AC ,DE AB .(1)求证:ABC EDB ≌;(2)判断AC 和BD 的位置关系,并说明理由.【变式训练】1.(2021·河南省实验中学七年级期中)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,且满足AB CD ,AE DF ,CE BF ,连接AF ;(1)B Ð与C 相等吗?请说明理由.(2)若40B ,20 DFC °,AF 平分BAE 时,求BAF 的度数.2.(2022·山东济宁·八年级期末)如图,在四边形ABCD 中,CB AB 于点B ,CD AD 于点D ,点E ,F 分别在AB ,AD 上,AE AF ,CE CF .(1)若8AE ,6CD ,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.考点五用SAS 证明三角形全等例题:(2022·福建省福州第十九中学模拟预测)如图,点O 是线段AB 的中点,∥OD BC 且OD BC .求证:AOD OBC ≌.【变式训练】1.(2022·云南普洱·二模)如图,ABC 和EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC DE ,//AB EF ,.AB EF 求证:BC FD .2.(2022·四川省南充市白塔中学八年级阶段练习)如图,点B 、C 、E 、F 共线,AB =DC ,∠B =∠C ,BF =CE .求证:△ABE ≌△DCF .考点六用ASA 证明三角形全等例题:(2022·上海·七年级专题练习)已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE .【变式训练】1.(2022·广西百色·二模)如图,在△ABC 和△DCB 中,∠A =∠D ,AC 和DB 相交于点O ,OA =OD .(1)AB =DC ;(2)△ABC ≌△DCB .2.(2022·贵州遵义·八年级期末)如图,已知AB DE ∥,ACB D ,AC DE .(1)求证:ABC EAD .(2)若60BCE ,求BAD 的度数.考点七用AAS 证明三角形全等例题:(2022·上海·七年级专题练习)如图,已知BE 与CD 相交于点O ,且BO =CO ,∠ADC =∠AEB ,那么△BDO 与△CEO 全等吗?为什么?【变式训练】1.(2022·福建省福州第一中学模拟预测)如图,已知A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE .求证:AB =CD .2.(2022·全国·九年级专题练习)如图,D 是△ABC 的边AB 上一点,CF //AB ,DF 交AC 于E 点,DE =EF .(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.考点八用HL证明三角形全等例题:(2022·四川省南充市白塔中学八年级阶段练习)如图,AB=CD,AE⊥BC于E,DF⊥BC于F,且BF=CE.(1)求证AE=DF;(2)判定AB和CD的位置关系,并说明理由.【变式训练】1.(2022·安徽安庆·八年级期末)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠CAB=54°,求∠CAO的度数.2.(2022·江西·永丰县恩江中学八年级阶段练习)如图,在△ABC 中,BC =AB ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF.(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAB =30°,求∠ACF 的度数.一、选择题1.(2022·吉林省实验中学八年级阶段练习)下列结论中正确的有()①全等三角形对应边相等;②全等三角形对应角相等;③全等三角形对应中线、对应高线、对应角平分线相等;④全等三角形周长相等;⑤全等三角形面积相等.A .5个B .4个C .3个D .2个2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC ≌△DEF ,若∠A =132°,∠FED =15°,则∠C 等于()A .13°B .23°C .33°D .43°3.(2021·湖北·公安县教学研究中心八年级阶段练习)如图,点B ,F ,C ,E 共线,∠A =∠D ,AB =DE ,添加一个条件,不能判断△ABC ≌△DEF 的是()课后训练A.BF=EC B.∠B=∠E C.AC=DF D.AC FD4.(2021·湖北·公安县教学研究中心八年级阶段练习)根据下列已知条件,能画出唯一的△ABC的是()A.AB=5,BC=4,AC=10B.∠A=45°,∠C=60°,BC=8C.∠A=80°,AB=6,BC=7D.∠C=90°,AB=95.(2022·陕西·西安市东元中学七年级阶段练习)如图,在锐角△ABC中,∠BAC=60°,BE,CD为△ABC 的角平分线.BE,CD交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=BG;③△BDF≌△CEF;④BC=BD+CE.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题6.(2022·全国·八年级课时练习)如图,△ABC≌△DCB,若∠A=75°,∠ACB=45°,则∠BCD等于____.7.(2022·山东泰安·七年级期末)如图,AC,BD相交于点O,∠A=∠D,请补充一个条件,使△ACB≌△DBC,你补充的条件是______(填出一个即可).8.(2022·江苏·泰州市姜堰区南苑学校八年级)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A、C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是__________.9.(2022·广西·都安瑶族自治县民族实验初级中学九年级阶段练习)如图所示,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE.则∠DAE=___度.10.(2021·四川·东坡区实验中学八年级期中)如图,在∆ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P 从A点出发,沿A→C路径向终点C运动;点Q从点B出发,沿B→C→A路径向终点A运动.点P和Q 分别以每秒1cm和3cm的运动速度同时开始运动.其中一点到达终点时另一点也停止运动,在某时刻,分别过点P和Q作PE⊥l于点E,QF⊥l于点F,则点P运动时间为_____时,∆PEC与∆QFC全等.三、解答题11.(2022·江苏·泰州市姜堰区第四中学八年级)已知:如图,B、D分别是AC、AE的中点,且AB=AD.求证:△ADC≌△ABE.12.(2022·广东·高州市第一中学附属实验中学七年级阶段练习)已知:如图,A、F、C、D四点在一直线上,AF=CD,AB DE∥,且AB=DE.求证:(1)△ABC≌△DEF;∥.(2)BC EF13.(2021·四川·东坡区实验中学八年级期中)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长14.(2022·吉林省实验中学八年级阶段练习)如图,在△ABC中,∠ACB=90°,AC=BC,点D在AC上,点E在BC的延长线上,CE=CD,BD的延长线交AE于点F.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)若BD=8,DF=2,直接写出△ABE的面积.15.(2021·广东·沙田第一中学七年级期末)如图,△ABC和△ECD都是等边三角形,B,C,D三点共线,AD与BE相交于点O,AD与CE交与点F,AC与BE交于点G.(1)找出图中一对全等三角形,并说明理由.(2)求∠BOD度数.(3)连接GF,判断△CGF形状,并说明理由.16.(2022·黑龙江大庆·八年级期末)如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)①求证CD=CE;②求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2)其他条件不变,“△ADE是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.。
专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。
2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF ,②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。
【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使MB MC-的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ PA⊥交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC∆相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【举一反三】(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,∥PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ∥PM,垂足为点Q,如图2,是否存在点P,使得∥CNQ与∥PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点. (1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【举一反三】(2019·湖南模拟)如图,已知直线y =-x +3与x 轴、y 轴分别交于A ,B 两点,抛物线y =-x 2+bx +c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,∥APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似. ①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【举一反三】(2018武汉中考)抛物线L :y =﹣x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B .(1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y =kx ﹣k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H 5FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 4.(2019·贵州初三)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点()0,2P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式 (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A . (1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠PAB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.8.(2019·江苏初三期末)如图,抛物线y =ax 2+5ax +c (a <0)与x 轴负半轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是抛物线的顶点,过D 作DH ⊥x 轴于点H ,延长DH 交AC 于点E ,且S △ABD :S △ACB =9:16,(1)求A 、B 两点的坐标;(2)若△DBH 与△BEH 相似,试求抛物线的解析式.9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A 、B 两点. (1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连接AC 、AD ,求△ACD 的面积;(3)点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F .问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求点E 的坐标;若不存在,请说明理由.10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO V 相似.若存在,求出点E 的坐标;若不存在,请说明理由.11.(2019·广东中考模拟)如图,在平面直角坐标系xoy 中,直线122y x =+与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c 的对称轴是32x =-且经过A 、C 两点,与x 轴的另一交点为点B .(1)①直接写出点B 的坐标;②求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.12.(2019·江苏泗洪姜堰实验学校中考模拟)如图,抛物线2481293y x x =--与x 轴交于A 、C 两点,与y 轴交于B 点. (1)求△AOB 的外接圆的面积;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向运动;同时,点Q 从点B 出发,以每秒1个单位沿射线BA 方向运动,当点P 到达点C 处时,两点同时停止运动.问当t 为何值时,以A 、P 、Q 为顶点的三角形与△OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N . ①是否存在这样的点M ,使得四边形OMNB 恰为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.②当点M 运动到何处时,四边形CBNA 的面积最大?求出此时点M 的坐标及四边形CBAN 面积的最大值.13.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L :()2y ax c a x c =+-+经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L '. (1)求抛物线L 的表达式;(2)点P 在抛物线L '上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D .若△POD 与△AOB 相似,求符合条件的点P 的坐标.14.(2019·湖南中考真题)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.15.(2018·四川中考真题)如图,抛物线y =12x 2+bx +c 与直线y =12x +3交于A ,B 两点,交x 轴于C 、D 两点,连接AC 、BC ,已知A (0,3),C (﹣3,0). (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MD |的值最大,并求出这个最大值; (3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.16.(2019·湖南中考真题)如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积;(3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.专题三相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
中考数学压轴题专题一《直角三角形的存在性问题》【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。
这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。
【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①121k k⋅=-,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①121k k⋅=-,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型一【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c 与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.类型三【确定动点运动的时间】典例指引3.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F5AC方向运动.当点E停止运动时,点F 随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y 轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【新题训练】1.如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.2.如图,抛物线y =mx 2+nx ﹣3(m≠0)与x 轴交于A(﹣3,0),B(1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.3.(2019·四川)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON .(1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.4.(2018·贵州中考)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.5.(2018·四川中考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.6.(2019·云南中考模拟)已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使P A+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.7.(2019·黑龙江中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式:;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.8.(2019·广西中考模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)设点P 为抛物线的对称轴x=﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.9.(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan ∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.10.(2019·山东中考模拟)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.11.(2019·陕西中考模拟)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.12.(2019·山东中考模拟)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2 .(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?13.(2019·河北中考模拟)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.14.(2019·河南中考模拟)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c 经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.15.(2019·临沭县青云镇青云初级中学中考模拟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求∆PAC 为直角三角形时点P 的坐标.16.(2019·江西中考模拟)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ=CP ,连接PQ ,设CP=m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.【典例指引】类型一 【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1. ①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣3, y=﹣x﹣3;(2)y=2x2﹣4x+1;(3)存在,P为(1172+,﹣2)117-,﹣2)或(9,﹣2)或(﹣8,﹣2).【解析】分析:(1)衍生抛物线顶点为原抛物线与y轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点则解析式易得,MN解析式易得.(2)已知衍生抛物线和衍生直线求原抛物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式.(3)由N(0,﹣3),衍生直线MN绕点N旋转到与x轴平行得到y=﹣3,再向上平移1个单位即得直线y=﹣2,所以P点可设(x,﹣2).在坐标系中使得△POM为直角三角形一般考虑勾股定理,对于坐标系中的两点,分别过点作平行于x轴、y轴的直线,则可构成以两点间距离为斜边的直角三角形,且直角边长都为两点横纵坐标差的绝对值.进而我们可以先算出三点所成三条线的平方,然后组合构成满足勾股定理的三种情况,易得P 点坐标.本题解析:(1)∵抛物线y=x2﹣2x﹣3过(0,﹣3),∴设其衍生抛物线为y=ax2﹣3,∵y=x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴衍生抛物线为y=ax2﹣3过抛物线y=x2﹣2x﹣3的顶点(1,﹣4),∴﹣4=a•1﹣3,解得a=﹣1,∴衍生抛物线为y=﹣x2﹣3.设衍生直线为y=kx+b,∵y=kx+b过(0,﹣3),(1,﹣4),∴304bk b -=+⎧⎨-=+⎩,∴13 kb=-⎧⎨=-⎩,∴衍生直线为y=﹣x﹣3.(2)∵衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,∴将y=﹣2x2+1和y=﹣2x+1联立,得22121y xy x⎧=-+⎨=-+⎩,解得1xy=⎧⎨=⎩或11xy=⎧⎨=-⎩,∵衍生抛物线y=﹣2x2+1的顶点为(0,1),∴原抛物线的顶点为(1,﹣1).设原抛物线为y=a(x﹣1)2﹣1,∵y=a(x﹣1)2﹣1过(0,1),∴1=a(0﹣1)2﹣1,解得a=2,∴原抛物线为y=2x2﹣4x+1.(3)∵N(0,﹣3),∴MN绕点N旋转到与x轴平行后,解析式为y=﹣3,∴再沿y轴向上平移1个单位得的直线n解析式为y=﹣2.设点P坐标为(x,﹣2),∵O(0,0),M(1,﹣4),∴OM2=(x M﹣x O)2+(y O﹣y M)2=1+16=17,OP2=(|x P﹣x O|)2+(y O﹣y P)2=x2+4,MP2=(|x P﹣x M|)2+(y P﹣y M)2=(x﹣1)2+4=x2﹣2x+5.①当OM2=OP2+MP2时,有17=x2+4+x2﹣2x+5,解得,即P,﹣2)或P,﹣2).②当OP2=OM2+MP2时,有x2+4=17+x2﹣2x+5,解得x=9,即P(9,﹣2).③当MP2=OP2+OM2时,有x2﹣2x+5=x2+4+17,解得x=﹣8,即P(﹣8,﹣2).综上所述,当P为(1172+,﹣2)或(1172-,﹣2)或(9,﹣2)或(﹣8,﹣2)时,△POM为直角三角形.【名师点睛】本题考查了一次函数、二次函数图象及性质,勾股定理及利用其表示坐标系中两点距离的基础知识,特别注意的是:利用其表示坐标系中两点距离,是近几年中考的热点,需学生熟练运用.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2﹣4x+5.(2)372;(3)P坐标为(﹣2,7)或(﹣2,﹣3)或(﹣2,6)或(﹣2,﹣1).【解析】试题分析:(1)利用待定系数法即可解决问题; (2)构建二次函数利用二次函数的性质即可解决问题;(3)分三种情形分别求解①当90,ACP ∠=o由222AC PC PA +=,列出方程即可解决.②当90CAP ∠=︒时,由222AC PA PC +=, 列出方程即可解决.③当90APC ∠=︒ 时,由222PA PC AC +=,列出方程即可; 试题解析:(1)把A (−5,0),B (1,0)两点坐标代入2y x bx c =-++,得到255010b c b c --+=⎧⎨-++=⎩,解得45b c =-⎧⎨=⎩,∴抛物线的函数表达式为24 5.y x x =--+ (2)如图1中,∵抛物线的对称轴x =−2,2(,45)E x x x ,--+ ∴2452EH x x EF x =--+=--,,∴矩形EFDH 的周长225372()2(53)2().22EH EF x x x =+=--+=-++ ∵−2<0, ∴52x =-时,矩形EHDF 的周长最大,最大值为37.2 (3)如图2中,设P (−2,m )①当90,ACP ∠=o ∵222AC PC PA +=, ∴22222(52)2(5)3m m ++-=+, 解得m =7, ∴P 1(−2,7).②当90CAP ∠=o 时,∵222AC PA PC +=, ∴22222(52)32(5)m m ++=+-, 解得m =−3, ∴P 2(−2,−3).③当90APC ∠=o 时,∵222PA PC AC +=, ∴2222232(5)(52)m m ,+++-= 解得m =6或−1, ∴P 3(−2,6),P 4(−2,−1),综上所述,满足条件的点P 坐标为(−2,7)或(−2,−3)或(−2,6)或(−2,−1).类型三 【确定动点运动的时间】典例指引3.已知二次函数y =ax 2+bx -2的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当x =-2和x =5时二次函数的函数值y 相等.(1)求实数a ,b 的值;(2)如图①,动点E ,F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F AC 方向运动.当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF.①是否存在某一时刻t ,使得△DCF 为直角三角形?若存在,求出t 的值;若不存在,请说明理由;②设△DEF 与△ABC 重叠部分的面积为S ,求S 关于t 的函数关系式.【解析】试题分析:(1)根据抛物线图象经过点A 以及“当x =﹣2和x =5时二次函数的函数值y 相等”两个条件,列出方程组求出待定系数的值.(2)①首先由抛物线解析式能得到点A 、B 、C 三点的坐标,则线段OA 、OB 、OC 的长可求,进一步能得出AB 、BC 、AC 的长;首先用t 表示出线段AD 、AE 、AF (即DF )的长,则根据AE 、EF 、OA 、OC 的长以及公共角∠OAC 能判定△AEF 、△AOC 相似,那么△AEF 也是一个直角三角形,及∠AEF 是直角;若△DCF 是直角,可分成三种情况讨论:i )点C 为直角顶点,由于△ABC 恰好是直角三角形,且以点C 为直角顶点,所以此时点B 、D 重合,由此得到AD 的长,进而求出t 的值;ii )点D 为直角顶点,此时∠CDB 与∠CBD 恰好是等角的余角,由此可证得OB =OD ,再得到AD 的长后可求出t 的值;iii )点F 为直角顶点,当点F 在线段AC 上时,∠DFC 是锐角,而点F 在射线AC 的延长线上时,∠DFC 又是钝角,所以这种情况不符合题意. ②此题需要分三种情况讨论:i )当点E 在点A 与线段AB 中点之间时,两个三角形的重叠部分是整个△DEF ;ii )当点E 在线段AB 中点与点O 之间时,重叠部分是个不规则四边形,那么其面积可由大直角三角形与小钝角三角形的面积差求得;iii )当点E 在线段OB 上时,重叠部分是个小直角三角形.试题解析:解:(1)由题意得: 16420{4222552a b a b a b +-=--=+-,解得:a =12,b =32-.(2)①由(1)知二次函数为213222y x x =--.∵A (4,0),∴B (﹣1,0),C (0,﹣2),∴OA =4,OB =1,OC =2,∴AB =5,AC =BC AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形,且∠ACB =90°.∵AE=2t,AF,∴2AF ABAE AC==.又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF=12AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE=12AB=52t=52÷2=54;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE=32,∴t=34;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t=34或t=54.②ⅰ)当0<t≤54时,重叠部分为△DEF,如图1、图2,∴S=12×2t×t=t2;ⅱ)当54<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= 12m,DH=2m,∴DB=32m.∵DB=AD﹣AB=4t﹣5,∴32m=4t﹣5,∴m=23(4t﹣5),∴S=S△DEF﹣S△DBG=12×2t×t﹣12(4t﹣5)×23(4t﹣5)=2134025333t t-+-;ⅲ)当2<t≤52时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S=12×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:2225(0)41340255{(2)3334542025(2)2t tS t t tt t t<≤=-+-<≤-+<≤.【名师点睛】此题主要考查的是动点函数问题,涉及了函数解析式的确定、直角三角形以及相似三角形的判定和性质、等腰三角形的性质以及图形面积的解法等综合知识;第二题的两个小题涉及的情况较多,一定要根据动点的不同位置来分类讨论,抓住动点的关键位置来确定未知数的取值范围是解题的关键所在. 【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A (,0)、B (3,0);(2)存在.S △PBC 最大值为2716;(3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】(1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--.设P (p ,213p p 22--),∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+().∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716.(3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -), ∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =-,22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+, 解得:1m 1=-,2m 1=(舍去) . 综上所述,2m 2=-或1m =-时,△BDM 为直角三角形. 【新题训练】1.(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【详解】解:(1)令y=0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧。
探究三角形全等的判定方法压轴题六种模型全攻略【考点导航】目录【典型例题】【考点一用SAS证明两三角形全等】【考点二用ASA证明两三角形全等】【考点三用AAS证明两三角形全等】【考点四用SSS证明两三角形全等】【考点五用HL证明两直角三角形全等】【考点六添一个条件使两三角形全等】【过关检测】【典型例题】【考点一用SAS证明两三角形全等】1(2023春·全国·七年级专题练习)如图,已知点B,E,C,F在一条直线上,AB=DE,BF=CE,∠B=∠E.求证:△ABC≌△DEF【变式训练】1(2023·陕西西安·校考三模)如图,C,A,D三点在同一直线上,AB∥CE,AB=CD,AC=CE.求证:△ABC≌△CDE.2(2023春·七年级课时练习)如图,点E在AB上,DE∥BC,且DE=AB,EB=BC,连接EC并延长,交DB的延长线于点F.(1)求证:AC=DB;(2)若∠A=30°,∠BED=40°,求∠F的度数.1(2023春·广东惠州·八年级校考期中)如图,BC∥EF,点C,点F在AD上,AF=DC,∠A=∠D.求证:△ABC≌△DEF.【变式训练】1(2023·校联考一模)如图,点A、D、B、E在同一条直线上,若AD=BE,∠A=∠EDF,∠E=∠ABC.求证:AC=DF.2(2023·浙江温州·温州市第八中学校考三模)如图,在△ABC和△ECD中,∠ABC=∠EDC=90°,点B为CE中点,BC=CD.(1)求证:△ABC≌△ECD.(2)若CD=2,求AC的长.1例题:(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E在△ABC边AC上,AE= BC,BC∥AD,∠CED=∠BAD.求证:△ABC≌△DEA【变式训练】1(2023·浙江温州·统考二模)如图,AB=BD,DE∥AB,∠C=∠E.(1)求证:△ABC≅△BDE.(2)当∠A=80°,∠ABE=120°时,求∠EDB的度数.2(2023秋·八年级课时练习)如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)求证:△ACD≌△BEC;(2)求证:AB=AD+BE.1例题:(2023·云南玉溪·统考三模)如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=CF,求证:△ABC≌△DFC.【变式训练】1(2023·云南·统考中考真题)如图,C是BD的中点,AB=ED,AC=EC.求证:△ABC≌△EDC.2(2023春·全国·七年级专题练习)如图,已知∠E=∠F=90°,点B,C分别在AE,AF上,AB= AC,BD=CD.(1)求证:△ABD≌△ACD;(2)求证:DE=DF.1(2023·全国·九年级专题练习)如图,在△ABC和△DCB中,BA⊥CA于A,CD⊥BD于D,AC= BD,AC与BD相交于点O.求证:△ABC≌△DCB.【变式训练】1(2023春·广东河源·八年级统考期中)如图,点A,D,B,E在同一直线上,AC=EF,AD=BE,∠C =∠F=90°.(1)求证:△ABC≅△EDF;(2)∠ABC=57°,求∠ADF的度数.2(2023春·七年级单元测试)如图,已知AD、BC相交于点O,AB=CD,AM⊥BC于点M,DN⊥BC于点N,BN=CM.(1)求证:△ABM≌△DCN;(2)试猜想OA与OD的大小关系,并说明理由.1例题:(2023·浙江·八年级假期作业)如图,D在AB上,E在AC上,且∠B=∠C,补充一个条件____ __后,可用“AAS”判断△ABE≌△ACD.【变式训练】1(2023·黑龙江鸡西·校考三模)如图,点B,F,C,E在一条直线上,已知BF=CE,AC=DF,请你添加一个适当的条件使得△ABC≌△DEF.(要求不添加任何线段)2(2023·北京大兴·统考二模)如图,点B,E,C,F在一条直线上,AC∥DF,BE=CF,只需添加一个条件即可证明△ABC≌△DEF,这个条件可以是(写出一个即可).3(2023秋·八年级课时练习)如图,已知∠A=∠D=90°,要使用“HL”证明△ABC≌△DCB,应添加条件:;要使用“AAS”证明△ABC≌△DCB,应添加条件:.【过关检测】一、选择题1(2023·湖南永州·统考三模)判定三角形全等的方法有()①SAS;②ASA;③AAS;④HL;⑤SSAA.①②③④B.①②③⑤C.①②④⑤D.①③④⑤2(2023春·广东佛山·八年级校考期中)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需添加一个条件是()A.AB∥CDB.AE=DFC.AB=CDD.∠B=∠D3(2023·江苏宿迁·统考三模)如图,已知AB=AC,添加一个条件,不能使△ABF≌△ACE的是()A.AE=AFB.∠B=∠CC.∠AEC=∠AFBD.CE=BF4(2023·全国·八年级假期作业)如图,点E在△ABC外部,点D在△ABC的BC边上,DE交AC于F,若∠1=∠2=∠3,AE=AC,则( ).A.△ABD≌△AFEB.△AFE≌△ADCC.△AFE≌△DFCD.△ABC≌△ADE5(2023春·上海宝山·七年级校考期中)如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个二、填空题6(2023·全国·八年级假期作业)如图,AB与CD相交于点O,且O是AB,CD的中点,则△AOC与△BOD全等的理由是.7(2023·广东茂名·统考一模)如图,点A、D、C、F在同一直线上,AB∥DE,AD=CF,添加一个条件,使△ABC≌△DEF,这个条件可以是.(只需写一种情况)8(2023秋·浙江杭州·八年级校考开学考试)如图,已知∠1=∠2,要说明△ABC≌△BAD,(1)若以“SAS”为依据,则需添加一个条件是;(2)若以“ASA”为依据,则需添加一个条件是.9(2023·浙江·八年级假期作业)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽的工具(卡钳).在图中,若测量得A B =20cm,则工件内槽宽AB=cm.10(2023·全国·八年级假期作业)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为.三、解答题11(2023·浙江衢州·三模)已知:如图,△ABC与△ADE的顶点A重合,BC=DE,∠C=∠E,∠B=∠D.求证:∠1=∠2.12(2023春·广东茂名·七年级校联考阶段练习)如图,AB∥CD,AB=CD,CF=BE.求证(1)△ABE≌△DCF;(2)AE∥DF.13(2023·浙江·八年级假期作业)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)△ABD与△ACD全等吗?说明你的理由;(2)请说明BE=CE的理由.14(2023春·全国·七年级专题练习)如图,已知:AB=AC,BD=CD,E为AD上一点.(1)求证:△ABD≌△ACD;(2)若∠BED=50°,求∠CED的度数.15(2023·湖南长沙·校考三模)如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D 在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.16(2023·四川南充·四川省南充高级中学校考二模)如图,四边形ABCD中,∠B=90°,连接对角线AC,且AC=AD,点E在边BC上,连接DE,过点A作AF⊥DE,垂足为F,若AB=AF.(1)求证:△ADF≌△ACB;(2)求证:DF=EF+CE.。
中考数学压轴题【相似三角形的存在性问题】解题训练卷
1中考数学压轴题
【相似三角形的存在性问题】解题训练卷
相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.
判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检
验,如例题1、2、3、4.
应用判定定理
1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理
3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组).例题解析
例?如图1-1,抛物线21
3
482y x x 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C
.动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、
F 两点,动点P 同时从点B 出发,在线段
OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由.
图1-1
【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠
B 的两条边.△AB
C 是确定的.由21
3
482y x x ,可得A (4,
0)、B (8,0)、C (0,4).于是得到BA =4,BC =45.还可得到12CE CO
EF OB .
△BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了.
在Rt △EFC 中,CE =t ,EF =2t ,所以5CF t .。
专题25 二次函数与全等三角形存在问题1.如图,抛物线C1:y=x2﹣2x﹣3与x轴交于A、B两点,点A在点B的左侧,将抛物线C1向上平移1个单位得到抛物线C2,点Q(m,n)在抛物线C2上,其中m>0且n<0,过点P作PQ∥y轴交抛物线C1于点P,点M是x轴上一点,当以点P、Q、M为顶点的三角形与△AOQ全等时,点M的横坐标为_____.【答案】4【分析】此题首先需要确定全等的对应关系,函数图象向上平移后,两个函数上下间距为1,OA=1,所以AO与PQ对应,∠AOQ=∠PQM,可确定OQ=QM,AQ=PB,得到两组线段相等后,设点M坐标,以两组线段相等为等量建立方程即可解决问题.【详解】解:∵△AOQ≌△PQM,AO=PQ∴∠AOQ=∠PQM,AQ=PB,OQ=QM∴AQ2=PB2,OQ2=QM2设Q(m,m2﹣2m﹣2),P(m,m2﹣2m﹣3),M(a,0)如图,过点Q作QH⊥AB,垂足为H,则在Rt△OHQ中,OQ2=(m)2+(m2﹣2m﹣2)2;在Rt△MHQ中,QM2=(a﹣m)2+(m2﹣2m﹣2)2;在Rt△AHQ中,AQ2=(m+1)2+(m2﹣2m﹣2)2;在Rt△PHB中,PB2=(a﹣m)2+(m2﹣2m﹣3)2a由(m)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣2)2,解得m=2由(m+1)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣3)2,解得a=﹣2(舍)或a=4∴点M的横坐标为4.【点睛】此题是代几综合问题,考查了全等关系在二次函数中的应用和二次函数中点坐标与线段长的转换,首先要确定边角的对应关系,发现线段相等后,利用等量建立方程,只要确定了对应关系,此题就好解决了.2.如图,在第一象限内作射线OC ,与x 轴的夹角为30°,在射线OC 上取点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2(x >0)上取点P ,在y 轴上取点Q ,使得以P 、O 、Q 为顶点,且以点Q 为直角顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是__________.【答案】)12233或()或( 【分析】此题应分四种情况考虑:①∠POQ =∠OAH =60°,此时A 、P 重合,可联立直线OA 和抛物线的解析式,即可得A 点坐标;②∠POQ =∠AOH =30°,此时∠POH =60°,即直线OP :y,联立抛物线的解析式可得P点坐标,进而可求出OQ 、PQ 的长,由于△POQ ≌△AOH ,那么OH =OQ 、AH =PQ ,由此得到点A 的坐标.③当∠OPQ =90°,∠POQ =∠AOH =30°时,此时△QOP ≌△AOH ,由此求得点A 的坐标; ④当∠OPQ =90°,∠POQ =∠OAH =60°,此时△OQP ≌△AOH ,由此求得点A 的坐标;【详解】①当∠POQ =∠OAH =60°,若以P ,O ,Q 为顶点的三角形与△AOH 全等,那么A 、P 重合; 由于∠AOH =30°,设A 坐标为(a ,b ), 在直角三角形OAH 中,tan ∠AOH =tanba, 设直线OA 的方程为y =kx ,把A 的坐标代入得k =b a∴直线OA 的解析式: y,联立抛物线的解析式,得:2y y x ⎧=⎪⎨⎪=⎩,解得 00x y =⎧⎨=⎩,13x y ⎧=⎪⎪⎨⎪=⎪⎩ ;∴A13); ②当∠POQ =∠AOH =30°,此时△POQ ≌△AOH ;易知∠POH =60°,则直线OP :yx,联立抛物线的解析式,得:2y y x ⎧=⎪⎨=⎪⎩, 解得00x y =⎧⎨=⎩,3x y ⎧=⎪⎨=⎪⎩∴P3),即可得A (3;③当∠OPQ =90°,∠POQ =∠AOH =30°时,此时△QOP ≌△AOH ;易知∠POH =60°,则直线OP :y,联立抛物线的解析式,得:2y y x ⎧=⎪⎨=⎪⎩, 解得 00x y =⎧⎨=⎩,3x y ⎧=⎪⎨=⎪⎩∴P3), ∴OPQP =2, ∴OH =OPAH =QP =2, ∴A (2);④当∠OPQ =90°,∠POQ =∠OAH =60°,此时△OQP ≌△AOH ;此时直线OP:y,联立抛物线的解析式,得:2y xy x⎧=⎪⎨⎪=⎩,解得xy=⎧⎨=⎩,13xy⎧=⎪⎪⎨⎪=⎪⎩;∴P13),∴QPOP=23,∴OH=QPAH=OP=23,∴A23).综上可知:符合条件的点A有四个,且坐标为:,13),(3,(2),23).【点睛】本题主要考查的是全等三角形的判定和性质以及函数图象交点坐标的求法;由于全等三角形的对应顶点不明确,因此要注意分类讨论思想的运用.3.(2021·陕西·西安市中考三模)如图,抛物线y=ax2+bx+c经过A(0),B0),C(0,3)三点,线段BC与抛物线的对称轴l交于点D,该抛物线的顶点为P,连接P A,AD,线段AD与y轴相交于点E.(1)求该抛物线的表达式和点P的坐标;(2)在y轴上是否存在一点Q,使以Q,C,D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=−13x2+3,P4);(2)存在,点Q的坐标为(0,7).【分析】(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可.(2)先求出直线BC 的解析式,从而得点D 的坐标为D2).可求出AD 并证明CD=DP ,利用三角函数及等腰三角形性质求出∠ADP =120°,则可根据点Q 的位置在y 轴上,分别从两种情况利用SAS 判定两三角形全等的方法来求解. 【详解】解:(1)设抛物线的解析式为:y =a (x(x,将C (0,3)代入得: a (0(3, 解得 a =−13.∴抛物线的解析式:y =−13(x(x−13x 2+3. ∵y =−13x 2x +3=−13(x2+4, ∴P4). (2)存在,设直线BC 的解析式:y =kx +b ,依题意得:3b b +==⎪⎩, 解得3k b ⎧=⎪⎨⎪=⎩∴直线BC 的解析式为:y =+3. 当xy =2, ∴D2). ∴AD=4,CD2=PD .∵tan ∠ABD =DF BF, ∴∠ABD =30°.∵l 是抛物线的对称轴,点D 在l 上, ∴AD =BD .∴∠ABD =∠BAD =30°. ∴∠ADB =120°. ∴∠ADF =∠BDF =60°. ∴∠ADP =120°,△QCD 和△APD 中,CD =PD ,且点Q 在y 轴上,当点Q 在CD 上方,∠DCQ =∠ADP =120°,CQ =AD 时,△QCD ≌△APD , 设点Q (0,y ),则CQ =y -3, 即y -3=4, 解得y =7, ∴Q (0,7),当点Q 在CD 下方时,∠CDQ =120°,此时点Q 在抛物线的对称轴上. 综上,当△QCD ≌△APD 时,点Q 的坐标为(0,7). 【点睛】此题属于二次函数综合题,难度较大,涉及到:函数解析式的确定以及全等三角形的应用等重点知识.在解题时,一定要注意从图中找出合适的解题思路,能否将琐碎的知识运用到同一题目中进行解答,也是对基础知识掌握情况的重点考查.4.(2021·北京市九年级月考)在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点A (-0),B (0),C (0,-3).(1)求抛物线顶点P 的坐标;(2)连接BC 与抛物线对称轴交于点D ,连接PC . ①求证:PCD 是等边三角形.②连接AD ,与y 轴交于点E ,连接AP ,在平面直角坐标系中是否存在一点Q ,使以Q ,C ,D 为顶点的三角形与ADP 全等.若存在,直接写出点Q 坐标,若不存在,请说明理由;(3)在(2)的条件下,点M 是直线BC 上任意一点,连接ME ,以点E 为中心,将线段ME 逆时针旋转60°,得到线段NE ,点N 的横坐标是否发生改变,若不改变,直接写出点N 的横坐标;若改变,请说明理由.【答案】(1)4)P -;(2)①见解析;②存在,2)或(2)--;(3)不改变,N 的理由见解析.【分析】(1)利用待定系数法求得二次函数的解析式,再用配方法解题;(2)①利用勾股定理求出PC ,PD ,CD 的值,即可求解;②存在,在对称轴上取一点Q ,使得DQ =AD ,连接AQ ,证明()ADP QDC SAS ≅,可解得2)Q ,再根据对称性得到,当点Q '与Q 关于A 对称时,Q CD ADP '≅,解得(2)Q '--; (3)设EN 交DM 于J ,利用全等三角形的性质,证明点N 在对称轴上即可. 【详解】解:(1)抛物线y =ax 2+bx +c 经过点A (0),B(0),C (0,-3)330270c a c a c =-⎧⎪∴+=⎨⎪+=⎩133a b c ⎧=⎪⎪⎪∴=⎨⎪=-⎪⎪⎩2221113()3(4333y x x x ∴=-=--=-4)P ∴-;(2)①设直线BC 的解析式为y kx b =+,代入 B(0),C (0,-3),得3b b ⎧+=⎪⎨=-⎪⎩3k b ⎧=⎪∴⎨⎪=-⎩直线BC的解析式为3y x =-当x =2y =-,2)D ∴-2,2,2PD CD PC ∴===CD PC PD ∴==∴PCD 是等边三角形;②存在,理由如下,在对称轴上取一点Q ,使得DQ =AD ,连接AQ ,tan OC ABC OB ∠==30ABC ∴∠=︒ ,DA DB DQ AB =⊥ 30,120DAB ADB ∴∠=︒∠=︒ 60ADQ BDQ ∴∠=∠=︒ 60ADQ CDP ∠=∠=︒ADP CDQ ∴∠=∠,DA DQ DP DC == ()ADP QDC SAS ∴≅ 4AD DQ ∴==2)Q ∴根据对称性可知,当点Q '与Q 关于A 对称时,Q CD ADP '≅,(2)Q '∴--,综上所述,满足条件的点Q 的坐标为:2)或(2)--; (3)不改变,理由如下, 设EN 交DM 于J , 60MEN CED ∠=∠=︒ MEC NED ∴∠=∠,ME NE EC ED == ()MEC NED SAS ∴≅EMC END ∴∠=∠ EJM DJN ∠=∠ 60MEJ JDN ∴∠=∠=︒ 60CDP CDN ∴∠=∠=︒ N ∴在对称轴上, N ∴【点睛】本题考查二次函数综合题,涉及待定系数法求二次函数解析式、配方法求顶点坐标、全等三角形的判定与性质、正切、等边三角形的判定与性质等知识,是重要考点,有难度,掌握相关知识是解题关键.5.如图所示,抛物线()20y ax bx c a =++≠经过()A,()B ,()0,3C 三点,线段BC 与抛物线的对称轴l 相交于点D .设抛物线的顶点为P ,连接P A ,AD ,DP ,线段AD 与y 轴相交于点E .(1)求该抛物线的表达式.(2)在平面直角坐标系中是否存在点Q ,使以Q ,C ,D 为顶点的三角形与△ADP 全等?若存在,求出点Q 的坐标;若不存在,说明理由.(3)将CED ∠绕点E 顺时针旋转,边EC 旋转后与线段BC 相交于点M ,边ED 旋转后与对称轴l 相交于点N ,连接PM ,DN ,若2PM DN =,求点N 的坐标(直接写出结果).【答案】(1)2133y x =-+;(2)存在,点Q的坐标为())2-,()0,7或()-;(3)点N的坐标为⎭【分析】(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可;(2)先求出直线BC 的解析式,求出点D 的坐标;方法1,设点Q 的坐标为(),x y ,利用两点间距离公式AB =22226704210x y y x y y ⎧+--=⎪⎨+---=⎪⎩,从而求解;方法2,利用全等条件先确定点Q 的几何位置,从而利用全等的条件得到对应线段的长来解决问题;注意分类讨论;(3)先证明CEM DEN ≌,设点M 的坐标为,3x x ⎛⎫+ ⎪ ⎪⎝⎭,可得22443PM x =+,22221433CM x x x =+=,根据224PM CM =求出x的值,然后根据2FN DF DN =-==【详解】解:(1)设抛物线的表达式为(y a x x =-,将点()0,3C 代入后,得(003a -=,解得13a =-.∴抛物线的表达式为(211333y x x x =--=-+. (2)设直线BC 的解析式为y kx b=+,由题意, 得03b b ⎧+=⎪⎨=⎪⎩,解得3k b ⎧=⎪⎨⎪=⎩.∴直线BC 的解析式为3y x =+.由抛物线的表达式2133y x =-+,得顶点P 的坐标为)4.当x =32y =+=, ∴点D 的坐标为)2.方法1:设点Q 的坐标为(),x y .∴()()222220369QC x y x y y =-+-=+-+,(()22222247QD x y x y y =+-=+--+,(()2220428AP =+-=,(()2220216AD =+-=,2CD DP ==.∵在QCD 和APD △中,CD PD =,若两个三角形全等,则有以下两种情况. ①当QC AP =,QD AD =时,22QC AP =,22QD AD =,则222269284716x y y x y y ⎧+-+=⎪⎨+--+=⎪⎩,解得114x y ⎧=⎪⎨=⎪⎩222x y ⎧=⎪⎨=-⎪⎩∴点Q的坐标为(),)2-.②当QC AD =,QD AP =时,22QC AD =,22QD AP =,则222269164728x y y x y y ⎧+-+=⎪⎨+--+=⎪⎩, 解得3307x y =⎧⎨=⎩,441x y ⎧=-⎪⎨=⎪⎩∴点Q 的坐标为()0,7,()-. 综上所述,点Q的坐标为(),)2-,()0,7或()-.方法2:∵点A的坐标为(),点B的坐标为(),点C 的坐标为()0,3,点F的坐标为),∴AF =4=AD,OB =3OC =,6BC =,2PD DF CD ===. ∴60BDF ADF ADC PDC ∠=∠=∠=∠=︒,120ADP CDF ∠=∠=︒. 如图所示,分以下四种情况.①当1Q 在y 轴上,且1Q C AD =时,()1SAS ADP QCD ≅. 此时1Q 的坐标为()0,7.②当2Q 在 PD 延长线上,且2Q D AD =时,()2SAS ADP Q DC ≅. ∴此时2Q的坐标为)2-.③当3Q 在AD 延长线上,且3Q D AD =时,()3SAS ADP Q DC ≅. 连接3Q P ,∵3ADF Q DP ∠=∠,∴()3SAS ADF Q DP ≅. ∴3Q P AF =.此时3Q的坐标为().④当4120Q CD ADP ∠=∠=︒且4Q C AD =时,()4SAS ADP Q CD ≅,同理可得,()4SAS ADP Q CE ≅,∴4Q的坐标为()-.综上所述,点Q 的坐标为()0,7,)2-,()或()-. (3)如图所示,∵点D的坐标为)2,点B的坐标为(),∴2DF =,BF =.∴60BDF ADF CDE DCE ∠=∠=∠=∠=︒. ∴CEO 为等边三角形.在CEM 和DEN 中,60CEM DEN ECM EDN CE DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴CEM DEN ≌.∴CM DN =,22PM CM DN ==,设点M的坐标为,3x x ⎛⎫+ ⎪ ⎪⎝⎭,∴)222244343PM x x x ⎛⎫=+-=+ ⎪ ⎪⎝⎭. 又∵22221433CM x x x =+=,∴224PM CM =,即22444433x x +=⨯,解得)16x =(负值舍去).∴)16CM DN x ==,∴2FN DF DN =-==∴点N 的坐标为⎭解后反思本题第(2)问考查“在平面直角坐标系中是否存在点Q ,使以Q ,C ,D 为顶点的三角形与ADP △全等”,这里要注意由于对应点的不同,需要有分类讨论的意识.方法1,设点Q 的坐标为(),x y ,利用两点间距离公式AB =化为方程组22226704210x y y x y y ⎧+--=⎪⎨+---=⎪⎩,从而求解;方法2,利用全等条件先确定点Q 的几何位置,从而利用全等的条件得到对应线段的长来解决问题.相对于以上两种解法,因为方法1需要解复杂的二元二次方程组,所以方法2的几何方法更为简捷. 6.如图,抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点Q 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE ∆与ACD ∆全等时点P 的坐标.【答案】(1)223y x x =--;(2)点Q 的坐标为:1Q ,2Q ;(3)若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 【分析】(1)用待定系数法,直接将,A B 代入解析式即可求解.(2)由MN 平分OMD ∠,MD 平行ON 即可求出OM ON =M 点坐标,由直线OM 解析式即可求出与抛物线交点坐标Q 即可.(3)由,,A C D 三点的坐标可得ACD ∆三边长,由CE 坐标可得PCE ∆和ACD ∆中CD CE =,则另两组边对应相等即可,设P 点坐标为(,)x y ;利用两点间距离公式即列方程求解. 【详解】(1)抛物线23y ax bx =+-经过(1,0)A -,(3,0)B 两点,∴309330a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =--.(2)如图1,设对称轴与x 轴交于点H ,MN 平分OMD ∠,OMN DMN ∴∠=∠,又//DM ON ,DMN MNO ∴∠=∠, MNO OMN ∴∠=∠,OM ON ∴==.在Rt OHM ∆中,90OHM ∠=︒,1OH =.∴1HM ,1(1,1)M ∴;2(1,1)M -.①当1(1,1)M 时,直线OM 解析式为:y x =, 依题意得:223x x x =--.解得:1x 2x点Q 在对称轴右侧的抛物线上运动,Q ∴点纵坐标1y x =.∴1Q ,②当2(1,1)M -时,直线OM 解析式为:y x =-,同理可求:2Q , 综上所述:点Q的坐标为:1Q,2Q , (3)由题意可知:(1,0)A -,(0,3)C -,D (1,4)-,AC ∴,AD ,CD ,直线BC 经过(3,0)B ,(0,3)C -,∴直线BC 解析式为3y x =-,抛物线对称轴为1x =,而直线BC 交对称轴于点E ,E ∴坐标为(1,2)-;CE ∴,设P 点坐标为(,)x y , 则222(0)(3)CP x y =-++, 则222(1)(2)EP x y =-++,CE CD =,若PCE ∆与ACD ∆全等,有两种情况,Ⅰ.PC AC =,PE AD =,即PCE ACD ∆≅∆.∴2222(0)(3)10(1)(2)20x y x y ⎧-++=⎨-++=⎩, 解得:1134x y =-⎧⎨=-⎩,2216x y =-⎧⎨=-⎩,即P 点坐标为1(3,4)P --,2(1,6)P --. Ⅰ.PC AD =,PE AC =,即PCE ACD ∆≅∆.∴2222(0)(3)20(1)(2)10x y x y ⎧-++=⎨-++=⎩, 解得:3321x y =⎧⎨=⎩,4441x y =⎧⎨=-⎩,即P 点坐标为3(2,1)P ,4(4,1)P -.故若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 【点睛】本题主要考查了二次函数与几何图形的综合.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 7.如图,抛物线y 1=ax 2+bx +34与x 轴交于点A (﹣3,0),点B ,点D 是抛物线y 1的顶点,过点D 作x 轴的垂线,垂足为点C (﹣1,0).(1)求抛物线y 1所对应的函数解析式;(2)如图1,点M 在抛物线y 1上,横坐标为m ,连接MC ,若∠MCB =∠DAC ,求m 的值; (3)如图2,将抛物线y 1平移后得到顶点为B 的抛物线y 2.点P 为抛物线y 1上的一个动点,过点P 作y 轴的平行线,交抛物线y 2于点Q ,过点Q 作x 轴的平行线,交抛物线y 2于点R .当以点P ,Q ,R 为顶点的三角形与△ACD 全等时,请直接写出点P 的坐标.【答案】(1)2113424y x x =--+ ;(2)m (3)P 点坐标为(0,34)或P (2,﹣54). 【分析】(1)根据A 、C 两点的坐标用待定系数法求出解析式;(2)如图,当M 点在x 轴上方时,若∠M 1CB =∠DAC ,则DA ∥CM 1,先求直线AD 的解析式,由点C 的坐标可求出直线CM 1的解析式,联立直线和抛物线方程可求出点M 1的坐标,当点M 在x 轴下方时,由轴对称的性质可求出直线CM 2的解析式,同理联立直线和抛物线方程则求出点M 的坐标;(3)先求出y 2的解析式,可设出点P 坐标,表示Q 、R 坐标及PQ 、QR ,根据以P ,Q ,R 为顶点的三角形与△ACD 全等,分类讨论对应边相等的可能性即可求P 点坐标. 【详解】(1)由题意得:3930412a b b a ⎧-+=⎪⎪⎨⎪-=-⎪⎩,解得1412a b ⎧=-⎪⎪⎨⎪=-⎪⎩,抛物线y 1所对应的函数解析式为2113424y x x =--+;(2)当x =﹣1时,y =113424-++=1,∴D (﹣1,1),设直线AD 的解析式为y =kx +n , ∴301k n k n -+=⎧⎨-+=⎩,解得:1232k n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AD 的解析式为y =12x +32, 如图,①当M 点在x 轴上方时, ∵∠M 1CB =∠DAC , ∴DA ∥CM 1,设直线CM 1的解析式为y =12x +b 1, ∵直线经过点C ,∴-12+b 1=0,解得:b 1=12, ∴直线CM 1的解析式为y =12x +12, ∴21122113424y x y x x ⎧=+⎪⎪⎨⎪=--+⎪⎩, 解得:x =-x =-2舍去),∴m =﹣②当点M 在x 轴下方时,直线CM 2与直线CM 1关于x 轴对称, 由轴对称的性质可得直线CM 2的解析式为y =-12x -12, ∴21122113424y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得:xx舍去),∴m综合以上可得m(3)∵抛物线y 1平移后得到y 2,且顶点为B (1,0), ∴()22114y x =--, 即y 2=2111424x x -+-,设P (m ,2113424m m --+),则Q (m ,2111424m m -+-),∴R (2﹣m ,2111424m m -+-),①当P 在Q 点上方时,PQ =1﹣m ,QR =2﹣2m , ∵△PQR 与△ACD 全等,∴当PQ =DC 且QR =AC 时,m =0, ∴P (0,34),R (2,﹣14),当PQ =AC 且QR =DC 时,无解; ②当点P 在Q 点下方时,同理:PQ =m ﹣1,QR =2m ﹣2,可得P (2,54-),R (0,﹣14),综合可得P 点坐标为(0,34)或P (2,54-).【点睛】本题是二次函数综合题,考查了二次函数的性质、待定系数法求函数的解析式,三角形全等的判定,应用了数形结合和分类讨论的数学思想.8.如图,抛物线2y ax bx c =++与x 轴的交点分别为()6,0A -和点()4,0B ,与y 轴的交点为()0,3C .(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得APQ ∆和CDO ∆全等,若存在,求点D 的坐标,若不存在,请说明理由;②若DCB CDB ∠=∠,CD 是MN 的垂直平分线,求点M 的坐标.【答案】(1)211384y x x =--+;(2)①存在点D ,使得APQ ∆和CDO ∆全等,3,02D ⎛⎫⎪⎝⎭,理由见解析;②点3,02M ⎛⎫⎪⎝⎭【分析】(1)利用待定系数法,把A 、C 、G 三点坐标代入一般式,解方程组可求得抛物线解析式; (2)①分D 在线段AO 上和在线段OB 上两种情况讨论;②由已知点求出D 点坐标,连接DN ,证明DN //BC ,则可证DN 为△ABC 的中位线,根据题意可证DM =DN ,即可求出M 坐标. 【详解】(1)将点A ()6,0-,()0,3C ,()4,0B 代入2y ax bx c =++,得366016400a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得18143a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线解析式为:211384y x x =--+(2)①存在点D ,使得APQ ∆和CDO ∆全等当D 在线段OA 上,QAP DCO ∠=∠,3AP OC ==时,APQ ∆和CDO ∆全等 tan tan QAP DCO ∴∠=∠OC ODOA OC = 363OD ∴= 32OD ∴=∴点D 坐标为3,02⎛⎫- ⎪⎝⎭由对称性,当点D 坐标为3,02⎛⎫⎪⎝⎭时,由点B 坐标为()4,0此时点3,02D ⎛⎫⎪⎝⎭在线段OB 上满足条件.②3OC =,4OB =5BC ∴=DCB CDB ∠=∠5BD BC ∴==1OD BD OB ∴=-=则点D 坐标为()1,0-且5AD BD ==连DN ,CM则DN DM =,NDC MDC ∠=∠NDC DCB ∴∠=∠DN BC ∴∥1AN AD NC DB∴== 则点N 为AC 中点.DN ∴是ABC ∆的中位线1522DN DM BC === 32OM DM OD ∴=-= ∴点3,02M ⎛⎫ ⎪⎝⎭【点睛】本题考查二次函数综合题,待定系数法求二次函数解析式,三角形全等的判定定理,锐角三角函数解三角形.能在坐标轴中找准点的坐标与线段之间的关系是解决此题的关键. 9.(2020·四川都江堰·中考二模)如图,抛物线y =ax 2+c (a ≠0)与y 轴交于点A ,与x 轴交于B 、C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H .(1)求a 、c 的值;(2)连接OF ,求△OEF 的周长;(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE 全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.【答案】(1)122ac⎧=-⎪⎨⎪=⎩;(2)(3)存在,点Q(6,Q(6,3).【分析】(1)根据直角三角形的性质,可得B(﹣2,0),A(0,2),C(2,0),将点代入解析式即可求a,c的值;(2)求出AB的直线解析为y=x+2,设F(m,m+2),平移后抛物线解析式y=﹣12(x﹣m)2+m+2,将点C(2,0)代入,得平移后抛物线解析式为y=﹣12x2+6x﹣10,进而求出点E的坐标,即可得出结论;(3)当P在x轴上方时,由△PQE≌△POE,可得QE=OE=10,在Rt△QHE中,OH=Q(6,;当P在x轴下方时,PQ=OE=10,过点P作PK⊥HF与点K,可证明△PKQ∽△QHE,则PK QKQH HE=,则Q(6,3),即可得出结论.【详解】解:(1)∵△ABC为等腰直角三角形,∴AO=12BC,∵△ABC面积为4,∴12BC•OA=4,∴OA=2,BO=4,∴B(﹣2,0),A(0,2),C(2,0),∵点A,B在抛物线y=ax2+c上,∴240ca c=⎧⎨+=⎩,∴122ac⎧=-⎪⎨⎪=⎩,即a、c的值分别为﹣12和2;(2)如图1,连接OF,由(1)可知:y=﹣12x2+2,∵B(﹣2,0),A(0,2),∴AB的直线解析为y=x+2,∵平移后抛物线顶点F在射线BA上,设F(m,m+2),∴平移后抛物线解析式y=﹣12(x﹣m)2+m+2,将点C(2,0)代入y=﹣12(x﹣m)2+m+2,得﹣12(2﹣m)2+m+2=0,∴m=6或m=0(舍),∴F(6,8),∴平移后抛物线解析式为y=﹣12x2+6x﹣10,当y=0时,﹣12x2+6x﹣10=0,∴x=2或x=10,∴E(10,0),∴OE=10,∵F(6,8),∴OF10,EF∴△OEF的周长为OE+OF+EF=(3)当P在x轴上方时,如图2,∵△PQE≌△POE,∴QE=OE=10,在Rt△QHE中,HQ∴Q(6,,当P在x轴下方时,如图3,∵△PQE≌△EOP,∴PQ=OE=10,过点P作PK⊥HF与点K,∴PK=6,在Rt△PQK中,QK8,∵∠PQE=90°,∴∠PQK+∠HQE=90°,∵∠HQE+∠HEQ=90°,∴∠PQK=∠HEQ,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴PK QK QH HE=,∴684 QH=,∴QH=3,∴Q(6,3),综上所述:满足条件的点Q(6,Q(6,3).【点睛】此题是二次函数的综合题,考查了二次函数的性质,抛物线平移的特点,待定系数法求函数解析式,等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,勾股定理,解题中注意分类讨论的思想.10.已知抛物线y=x2+bx+c过点(-6,-2),与y轴交于点C,且对称轴与x轴交于点B (-2,0),顶点为A.(1)求该抛物线的解析式和A点坐标;(2)若点D是该抛物线上的一个动点,且使△DBC是以B为直角顶点BC为腰的等腰直角三角形,求点D坐标;(3)若点M是第二象限内该抛物线上的一个动点,经过点M的直线MN与y轴交于点N,是否存在以O、M、N为顶点的三角形与△OMB全等?若存在,请求出直线MN的解析式;若不存在,请说明理由.【答案】(1)A点的坐标为(﹣2,6);(2)D点的坐标为:(2,﹣2);x+2.(3)存在.直线MN的解析式为y=6或y=﹣12【分析】(1)首先依据顶点坐标先求出b 的值,然后利用待定系数法求出抛物线的解析式;(2)过B 点作CB 的垂线交抛物线与D ,然后过D 点作x 轴的垂线,垂足为E ,通过三角形全等即可求得点D 的坐标.(3)由于三角形的各边,只有OB =2是确定长度的,因此可以以OB 为基准进行分类讨论: ①OB =OM .因为第二象限内点P 到原点的距离均大于4,因此OB ≠OM ,此种情形排除; ②OB =ON .分析可知,只有如答图2所示的情形成立;③OB =MN .分析可知,只有如答图3所示的情形成立.【详解】(1)∵对称轴与x 轴交于点B (﹣2,0),∴A 的横坐标为:x =﹣2, ∴﹣2b a=﹣2, 解得;b =﹣2,∴抛物线为y =﹣12x 2﹣2x +c , ∵抛物线y =﹣12x 2+bx +c 过点(﹣6,﹣2), ∴代入得﹣2=﹣12×(﹣6)2﹣2×(﹣6)+c ,解得c =4, ∴该抛物线的解析式为:y =﹣12x 2﹣2x +4, ∴y =﹣12x 2﹣2x +4=﹣12(x 2+4x +4)+6)=﹣12(x +2)2+6 ∴A 点的坐标为(﹣2,6);(2)过B 点作CB 的垂线交抛物线与D ,然后过D 点作x 轴的垂线,垂足为E , ∵∠CBD =90°,∴∠CBO +∠EBD =90°,∵∠BCO +∠CBO =90°,∴∠EBD =∠BCO ,∠CBO =∠BDE ,∴在△CBO 与△BDE 中EBD BCO BC BDCBO BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CBO ≌△BDE (ASA )∴DE =OB =2,BE =OC =4∴D点的坐标为(2,﹣2)或(﹣6.2),把(2,﹣2)或(﹣6.2)分别代入y=﹣12x2﹣2x+4,(﹣2,2)合适,(﹣6,2)不合适,∴D点的坐标为:(2,﹣2)图1(3)存在.若以O、M、N为顶点的三角形与△OBM全等,可能有以下情形:(I)OB=OM.由图象可知,OM最小值为4,即OM≠OB,故此种情形不存在.(II)OB=ON.若点M在y轴正半轴上,如答图2所示:图2此时△OBM≌△OMN,∴∠OMB=∠OMN,即点P在第二象限的角平分线上,ON=OB=2,M点坐标为:(4,-4),∴直线PE的解析式为:y=﹣12x+2;若点E在y轴负半轴上,易知此种情形下,两个三角形不可能全等,故不存在.(III)OB=MN.∵OB=2,∴第二象限内对称轴左侧的点到y轴的距离均大于2,则点M只能位于对称轴右侧或与顶点A重合.若点M位于第二象限内抛物线对称轴的右侧,易知△OMN为钝角三角形,而△OMB为锐角三角形,则不可能全等;若点M与点A重合,如答图3所示,此时△OBM≌△OMN,四边形MNOB为矩形,图3∴直线MN的解析式为:y=6.综上所述,存在以O、M、N为顶点的三角形与△OMB全等,直线MN的解析式为y=6,y=﹣12x+2.考点:二次函数综合题.11.定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线y=2x2﹣2x+2沿对称轴向下平移3个单位.①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明.【答案】(1)如y=x2,y=x2﹣x+1,y=x2+2x+4等(答案不唯一);(2)详见解析;(3)①y=2x2﹣2x﹣1;②符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【分析】(1)按照黄金抛物线的定义给a、b、c赋值即可;(2)将ac=b2代入判别式当中,消去ac,然后对b分等于0和不等于0两种情讨论即可;(3)①根据“上加下减”写出平移后的抛物线解析式即可;②根据所给的限制条件,只能画出四种图形,分别写出相应的P点坐标即可;【详解】(1)答:如y=x2,y=x2﹣x+1,y=x2+2x+4等;(2)依题意得b2=ac,∴△=b2﹣4ac=b2﹣4b2=﹣3b2,∴当b=0时,△=0,此时抛物线与x轴有一个公共点,当b≠0时,△<0,此时抛物线与x轴没有公共点;(3)①抛物线y=2x2﹣2x+2向下平移3个单位得到的新抛物线的解析式为y=2x2﹣2x﹣1,②存在.如图:若BQ=AO,过点Q作x轴的平行线,交抛物线于点P,P点的坐标为:(0,﹣1),(1,﹣1),此时,△AOB≌△BQP;若BQ=BO,过点Q作x轴的平行线,交抛物线于点P,令2x2﹣2x﹣1=12,解得:x=﹣12或x=32,∴P点的坐标为:(﹣12,12),(32,12).此时,△AOB≌△PQB;综上所述,有四个符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【点睛】此题主要考查新定义下抛物线的性质,熟练掌握,即可解题.。
专题25 全等三角形的存在性破解策略全等三角形的存在性问题的解题策略有:(1)当有一个三角形固定时(三角形中所有边角为定值),另一个三角形会与这个固定的三角形有一个元素相等;再根据全等三角形的判定,利用三角函数的知识(画图)或列方程来求解.(2)当两个三角形都不固定时(三角形中有角或边为变量),若条件中有一条边对应相等时,就要使夹这条边的两个角对应相等,或其余两条边对应相等;若条件中有一个角对应相等时,就要使夹这个角的两边对应相等,或再找一个角和一条边对应相等.例题讲解例1 如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的表达式;(2)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,求点P 的坐标;若不存在,请说明理由.(3)若点M在y轴的正半轴上,连结MA,过点M作MA的垂线,交抛物线的对称轴于点N.问:是否存在点M,使以点M、A、N为顶点的三角形与△BAN全等?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)由题意可列方程组424032a bba-+=⎧⎪⎨-=⎪⎩,解得1432ab⎧=-⎪⎪⎨⎪=⎪⎩,所以抛物线的表达式为213442y x x =-++.(2)显然OA =2, OB =3, OC =4. 所以225BC OB OC BA =+==. 若△P BD ≌△PBC ,则BD = BC =5,PD =PC所以D 为抛物线与x 轴的左交点或右交点,点B ,P 在CD 的垂直平分线上, ①若点D 为抛物线与 x 轴的左交点,即与点A 重合.如图1,取AC 的中点E ,作直线BE 交抛物线于P 1(x 1,y 1),P 2(x 2.y 2)两点. 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2 B D .由A 、C 两点的坐标可得点E 的坐标为(-1,2). 所以直线BE 的表达式为1322y x =-+.联立方程组2132213442y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得114261262x y ⎧=-⎪⎨-+=⎪⎩,224261262x y ⎧=+⎪⎨--=⎪⎩ . 所以点P 1,P 2的坐标分别为(4一26,1262-+).(4+26,1262--).②若D 为抛物线与x 轴的右交点,则点D 的坐标为(8,0). 如图2,取CD 的中点F .作直线BF 交抛物线于P 3(x 3,y 3),P 4(x 4,,y 4)两点. 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4 B D .由C 、D 两点的坐标可得点F 的坐标为(4,2), 所以直线BF 的表达式为y =2x -6.联立方程组22613442y x y x x =-⎧⎪⎨=-++⎪⎩,解得331418241x y ⎧=-+⎪⎨=-+⎪⎩,441418241x y ⎧=--⎪⎨=--⎪⎩ 所以点P 3,P 4的坐标分别为(-1+41,-8+241),( -1-41,-8-241), 综上可得,满足题意的点P 的坐标为(426126-+),(426126--,(-1418+41)或(-1418-41).(3)由题意可设点M (0,m ),N (3,n ),且m >0,则AM 2=4+m 2,MN 2=9+(m -n )2,BN 2=n 2. 而∠AMN =∠ABN =900, 所以△AMN 与△ABN 全等有两种可能: ①当AM =AB ,MN =BN 时,可列方程组2224259()m m n n⎧+=⎪⎨+-=⎪⎩,解得1121521m n ⎧=⎪⎨=⎪⎩2221521m n ⎧=-⎪⎨=⎪⎩(舍), 所以此时点M 的坐标为(021).②当AM =NB ,MN =BA 时,可列方程组:22249()25m nm n ⎧+=⎪⎨+-=⎪⎩·解得113252m n ⎧=⎪⎪⎨⎪=-⎪⎩,223252m n ⎧=-⎪⎪⎨⎪=⎪⎩(舍)所以此时点M 的坐标为(0,32). 综上可得,满足题意的点M 的坐标为(0,21)或(0,32). 例2 如图,在平面直角坐标系xoy 中,△ABO 为等腰直角三角形,∠ABO = 900,点A 的坐标为(4.0),点B 在第一象限.若点D 在线段BO 上,OD = 2DB ,点E ,F 在△OAB 的边上,且满足△DOF 与△DEF 全等,求点E 的坐标.图1 图2 解: 由题意可得OA =4,从而OB =AB =22.所以OD =23OB =423,BD =13OB =223.①当点F 在OA 上时,(ⅰ)若△DFO ≌△DFE ,点E 在OA 上.如图1.此时DF ⊥OA ,所以OF =22OD =43,所以OE =2OF =83,即点E 的坐标为(83,0). (ⅱ)若△DFO ≌△DFE ,点F 在AB 上,如图2.此时ED =OD =2BD ,所以sin ∠BED =BD ED =12;所以∠BED =300, 从而BE =3BD =26,AE =6226-. 过点E 作EG ⊥OA 于点G .则EG =AG =2AE =232-, 所以OG =232+,即点E 的坐标为(232+,232-).图3 图4(ⅲ)若△DFO ≌△FDE ,点E 在AB 上,如图3.此时DE ∥OA ,所以BD =BE . 从而AE =OD =423, 过点E 作EG ⊥OA 于点G , 则EG =AG =22AE =43, 所以OG =83,即点E 的坐标为(83,43).②当点F 在AB 上时,只能有△ODF ≌△AFD ,如图4. 此时DF ∥0A .且点E 与点A 重合, 即点E 的坐标为(4,0). 综上可得,端足条件的点E 的坐标为(83,0),(232+,232-),(83,43)或(4,0).迸阶训练1.如图,在平面直角坐标系xOy 中,已知抛物线21382y x x 与y 轴变于点C . 直线l ;43yx 与抛物线的对称轴交于点E .连结CE ,探究;抛物线上是否存在一点F ,使得△FOE ≌△FCE ..若存在,请写出点F 坐标;若不存在,请说明理由.yxlECO答案:存在.点F 的坐标为(317,-4)或(317,-4)2. 如图,在平面直角坐标系xOy 中,直线l 1过点A (1,0)且与y 轴平行.直线l 2过点B (0,2)且与x 轴平行,直线l 1与l 2相交于点P .E 为直线l 2上一点,反比例函数ky x(k >0)的图象过点E 且与直线l 1相交干点F .(1)若点E 与点P 重合,求k 的值;(2)是否存在点E 及y 轴上的点M ,使得以点M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求点E 的坐标:若不存在,请说明理由.FE Al 2Byxl 1P O备用图Al 2Byxl 1PO答案: (1)k =2(2)存在.点E 的坐标为(38,2)或(83,2) 【提示】(2)易得点E (3k,2),F (1,k ).①如图1,当k <2时,只能有△MEF ≌△PEF .过点F 作FH ⊥y 轴于点H ,易证△BME ∽△HFM ,用k 表示相关线段的长度,从而得到BM =12,再解Rt△BME ,得k =34,所以点E 的坐标为(38,2);②如图2,当k >2时,只能有△MEF ≌△PFE . 过点F 作FQ ⊥y 轴于点Q ,同①可得点E 的坐标为(83,2)图1H FM Pl 2E yxl 1B O图2MQ FAP l 2Eyxl 1B O3.如图,抛物线2yax bx c 经过A (3,0),B (33,0),C (0,3)三点,线段BC 与抛物线的对称轴交干D ,该抛物线的顶点为P ,连结PA ,A D .线段AD 与y 轴相交于点E .(1)求该抛物线的表达式;(2)在平面直角坐标系中是否存在一点Q .使以Q ,C ,D 为顶点的三角形与△ADP 全等?若存在,求出点Q 的坐标;若不存在,请说明理由.答案:(1)抛物线的表达式为212333yx x(2)存在.点Q 的坐标为(4),2),(23,1)或(0,7).【提示】(2)方法一:易求直线BC :33yx ,从而点D 2),可得CD =PD ,所以△QCD 与△ADP 全等有两种情况.设点Q 坐标,通过两点间距离公式列出QC ,QD ,AP ,AD 的长.再分类讨论列方程组,从而求得点Q 点坐标.方法二:连接CP ,易证△CDP 为等边三角形,∠ADC =60°,所以∠PDA =120°.△QCD 与△ADP 全等有两种情况,①如图1,∠DCQ =120°,CQ =DA =4,此时点Q 1的坐标为(0,7),点Q 2的坐标为(23,1);②如图2,∠CDQ =120°,DQ =DA =4,此时点Q 3的坐标为,-2),点Q 4的坐标为(4)。