初高中衔接05二次函数的解析式
- 格式:doc
- 大小:921.00 KB
- 文档页数:5
求二次函数解析式的四种基本方法二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础;熟练地求出二次函数的解析式是解决二次函数问题的重要保证;二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c a ≠0;2、顶点式:y=ax -h 2+k a ≠0,其中点h,k 为顶点,对称轴为x=h;3、交点式:y=ax -x 1x -x 2 a ≠0,其中x 1,x 2是抛物线与x 轴的交点的横坐标;4.对称点式: y=ax -x 1x -x 2+m a ≠0求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式;2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式;3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式;4.若已知二次函数图象上的两个对称点x 1、mx 2、m,则设成: y=ax -x 1x -x 2+m a ≠0,再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可;探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c a ≠0;解:设这个二次函数的解析式为y=ax 2+bx+c a ≠0 依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4;例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式;分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=ax -h 2+k a ≠0,其中点h,k 为顶点;解:依题意,设这个二次函数的解析式为y=ax -42-1 a ≠0又抛物线与y 轴交于点)3,0(;∴a0-42-1=3 ∴a=41 ∴这个二次函数的解析式为y=41x -42-1,即y=41x 2-2x+3; 例3、如图,已知两点A -8,0,2,0,以AB 为直径的半圆与y 轴正半轴交于点C0、4;求经过A 、B 、C 三点的抛物线的解析式;分析:A 、B 两点实际上是抛物线与x 轴的交点,所以可设交点式y=ax -x 1x -x a ≠0,其中x 1,x 2是抛物线与x 轴的交点的横坐标;2解:依题意,设这个二次函数的解析式为y=ax+8x -2例4、 已知函数y=x 2+kx -3k>0,图象的顶点为C 并与x 轴相交于两点A 、B 且AB=4 1求实数k 的值;2若P 为上述抛物线上的一个动点除点C 外,求使S △ABC =S △ABP 成立的点P 的坐标;变式练习,创新发现1、已知抛物线过A -2,0、B1,0、C0,2三点;求这条抛物线的解析式;2、已知抛物线的顶点坐标为)1,2(,与y 轴交于点)5,0(,求这条抛物线的解析式;2、已知二次函数y ax bx c =++2的图象的顶点为1,-92,且经过点-2,0,求该二次函数的函数关系式;3、已知二次函数图象的对称轴是x=-3,且函数有最大值为2,图象与x 轴的一个交点是-1,0,求这个二次函数的解析式;4、已知二次函数y ax bx c =++2的图象如图所示,则这个二次函数的关系式是________;5、已知:抛物线在x 轴上所截线段为4,顶点坐标为2,4,求这个函数的关系式6、已知二次函数y m x mx m m =-++-()()()123212≠的最大值是零,求此函数的解析式; 7. 已知某抛物线是由抛物线y=x 2-x-2经过平移而得到的,且该抛物线经过点A1,1,B2,4,求其函数关系式;9、已知四点A1,2,B0,6,C -2,20,D -1,12,试问是否存在一个二次函数,使它的图象同时经过这四个点 如果存在,请求出它的关系式;如果不存在,说明理由;5、。
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。
本文将分别介绍这三种求法,并且给出相应的例题加以说明。
第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。
二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。
假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。
将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。
然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。
第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。
对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。
假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。
我们可以代入上述方程进行求解。
将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。
然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。
热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
衔接点05 含绝对值函数的图象【基础内容与方法】1.绝对值在自变量上,则去掉函数y 轴左边的图像,再把y 轴右边的图像沿y 轴翻折得到新的图像;2.绝对值在函数解析式上,把x 轴下方的图像沿x 轴翻折得到新的图像;3.同时,函数图像也遵循平移的原则. 类型一:含绝对值的一次函数1.已知函数+2y k x b =+的图象经过点(2-,4)和(6-,2-),完成下面问题: (1)求函数+2y k x b =+的表达式;(2)在给出的平面直角坐标系中,请用适当的方法画出这个函数的图象,并写出这个函数的一条性质; (3)已知函数1+12y x =的图象如图所示,结合你所画出+2y k x b =+的图象,直接写出1+2+12k x b x +>的解集.【答案】(1)3242y x =-++;(2)当2x <-时,y 随x 增大而增大;当2x >-时,y 随x 增大而减少;(3)60x -<<.(1)根据在函数+2y k x b =+中,把点(2-,4)和(6-,2-)代入,可以求得该函数的表达式; (2)根据(1)中的表达式可以画出该函数的图象,根据函数图像增减性几块得出结论; (3)根据图象可以直接写出所求不等式的解集. 解:(1)根据题意,得4622=⎧⎨⋅-++=-⎩b k b解方程组,得324⎧=-⎪⎨⎪=⎩k b所求函数表达式为3242y x =-++. (2)列表如下:描点并连线,函数的图象如图所示, 由图像可知,3242y x =-++性质为:当2x <-时,y 随x 增大而增大;当2x >-时,y 随x 增大而减少.(3)由图象可知:1+2+12k x b x+>的解集是:60x-<<.【点睛】本题考查一次函数和反比例函数的交点、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.类型二:含绝对值的二次函数(一)绝对值在自变量上2.某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①方程﹣x2+2|x|+1=0有个实数根;②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是.【答案】(1)1;(2)详见解析;(3)①函数的最大值是2,没有最小值;②当x>1时,y随x的增大而减小;(4)①2;②1<a<2.【解析】(1)根据对称可得m=1;(2)画出图形;(3)①写函数的最大值和最小值问题;②确定一个范围写增减性问题;(4)①当y=0时,与x轴的交点有两个,则有2个实数根;②当y=a时,有4个实根,就是有4个交点,确定其a的值即可.解:(1)由表格可知:图象的对称轴是y轴,∴m=1,故答案为:1;(2)如图所示;(3)性质:①函数的最大值是2,没有最小值; ②当x >1时,y 随x 的增大而减小; (4)①由图象得:抛物线与x 轴有两个交点 ∴方程﹣x 2+2|x |+1=0有2个实数根; 故答案为2;②由图象可知:﹣x 2+2|x |+1=a 有4个实数根时,即y =a 时,与图象有4个交点,所以a 的取值范围是:1<a <2. 故答案为1<a <2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,结合图像作答是解题的关键. 3.写出函数12)(2+-=x xx f 在什么范围内,y 随x 的增大而增大,. y 随x 的增大而减小?【答案】()f x 的单调递增区间是(1,0]-和(1,)+∞,单调递减区间是(,1]-∞-和(0,1]【解析】由题意转化条件为2221,0()21,0x x x f x x x x ⎧-+≥=⎨++<⎩,作出函数图象,数形结合即可得解.由题意2221,0()21,0x x x f x x x x ⎧-+≥=⎨++<⎩,其图象如图所示:由该函数的图象可得函数2()2||1f x x x =-+的单调递增区间是(1,0]-和(1,)+∞,单调递减区间是(,1]-∞-和(0,1].【点睛】本题考查了分段函数单调区间的确定,考查了二次函数图象与性质及数形结合思想的应用,属于基础题.(二)绝对值在解析式上 4.探究函数22y x x=-的图象与性质.(1)下表是y 与x 的几组对应值.其中m 的值为_______________;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分;(3)结合函数的图象,写出该函数的一条性质:_____________________________;(4)若关于x 的方程220x x t --=有2个实数根,则t 的取值范围是___________________. 【答案】(1)3;(2)见解析;(3)图象关于直线x=1轴对称.(答案不唯一);(4)t >1或t=0.【解析】(1)把x =3代入解析式计算即可得出m 的值;(2)画出图象即可;(3)根据图象得出性质;(4)观察图象即可得出结论.解:(1)当x =3时,y =2323-⨯=3,∴m =3; (2)如图所示:(3)图象关于直线x =1轴对称.(答案不唯一)(4)观察图象可知:当t >1或t =0时,关于x 的方程220x x t --=有2个实数根. 【点睛】本题考查了函数的图象及性质.解题的关键是画出图象. 5.某班数学兴趣小组对函数6||y x =的图象和性质将进行了探究,探究过程如下,请补充完整. (1)自变量x 的取值范围是除0外的全体实数,x 与y 的几组对应值列表如下:其中,m =_________.(2)根据上表数据,在如图所示的平面直角坐标系中描点并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出一条函数性质. (4)进一步探究函数图象发现:①函数图象与x 轴交点情况是________,所以对应方程60||x =的实数根的情况是________. ②方程62||x =有_______个实效根; ③关于x 的方程6||a x =有2个实数根,a 的取值范围是________. 【答案】(1)3;(2)见解析;(3)在第一象限内,y 随着x 的增大而减小;(4)①无交点,无实数根;②2;③0a >.【解析】(1)把x=-2代入6||yx=求得y的值,即可得出m的值;(2)根据表格提供的数据描点,连线即可得到函数6||yx=的另一部分图象;(3)观察图象,总结出函数的性质即可;(4)①由于x的值不能为0,故函数值也不能为0,从而可得出函数图象与x轴无交点,因而6||x=无实数根;解:(1)把m=-2代入6||yx=得,63|2|y==-,所以,m=3,故答案为:3(2)如图所示:(3)观察图象可得,在第一象限内,y随着x的增大而减小;(答案不唯一)(4)①∵0x≠,∴y≠0∴函数图象与x轴无交点,∴6||x=无实数根;故答案为:无交点;无实数根;②求方程62||x=的根的个数,可以看成函数6||yx=与直线y=2的交点个数,如图,函数6||yx=与直线y=2有两个交点,故方程62||x=有2个实数根,故答案为:2;③由②的图象可以得出,关于x的方程6||ax=有2个实数根,a的取值范围是0a>,故答案为:0a>.【点睛】本题考查的是反比例函数,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数的性质及函数特征.6.在学习函数时,我们经历了“确定函数的表达式利用函数图象研究其性质——运用函数解决问题“的学习过程,在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义(0(0)a a a a a ≥⎧=⎨-<⎩).结合上面经历的学习过程,现在来解决下面的问题: 在函数y=|kx -1|+b 中,当x=0时,y=-2;当x=1时,y=-3. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质; (3)在图中作出函数y=3x -的图象,结合你所画的函数图象,直接写出不等式|kx -1|+b≤3x-的解集. 【答案】(1)y=|x -1|-3.(2)图象见解析.性质:图象关于直线x=1对称,在对称轴左侧,y 随x 的增大而减小,在对称轴右侧,y 随x 增大而增大,函数的最小值为-3. ;(3)1≤x≤3或-3≤x<0.【解析】(1)根据在函数y =|kx−1|+b 中,当x=0时,y=-2;当x=1时,y=-3,可以求得该函数的表达式; (2)由题意根据(1)中的表达式可以画出该函数的图象; (3)由题意直接根据图象可以直接写出所求不等式的解集. 解:(1)在函数y=|kx -1|+b 中,当x=0时,y=-2;当x=1时,y=-3∴2131b k b -=+⎧⎨-=-+⎩,解得:31b k =-⎧⎨=⎩,即函数解析式为:y=|x -1|-3.(2)图象如下:图象关于直线x=1对称,在对称轴左侧,y 随x 的增大而减小,在对称轴右侧,y 随x 增大而增大,函数的最小值为-3. (3)图象如下,观察图像可得不等式|kx -1|+b≤3x-的解集为:1≤x≤3或-3≤x<0. 【点睛】本题考查一次函数和反比例函数的交点、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.7.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数⎪⎩⎪⎨⎧>--≤=)1(1)1(2x x x x y 的图象与性质.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象; (2)研究函数并结合图象与表格,回答下列问题: ① 点()15,A y -,27,2B y ⎛⎫- ⎪⎝⎭,15,2C x ⎛⎫⎪⎝⎭,()2,6D x 在函数图象上,1y 2y ,1x 2x ;(填“>”,“=”或“<”)② 当函数值2y =时,求自变量x 的值;③ 在直线1x =-的右侧的函数图象上有两个不同的点()33,P x y ,()44,Q x y ,且34y y =,求34x x +的值;④ 若直线y a =与函数图象有三个不同的交点,求a 的取值范围.【答案】(1)见解析;(2)①<,<;②3x =或1x =-;③342x x +=;④0<<2a . 【解析】 【分析】(1)描点连线即可;(2)①观察函数图象,结合已知条件即可求得答案; ②把y=2代入y=|x -1|进行求解即可;③由图可知1x 3-时,点关于x=1对称,利用轴对称的性质进行求解即可; ④观察图象即可得答案. 【详解】 (1)如图所示: (2)①()1A 5,y -,27B ,y 2⎛⎫- ⎪⎝⎭, A 与B 在1y x=-上,y 随x 的增大而增大,12y y ∴<;15C x ,2⎛⎫⎪⎝⎭,()2D x ,6, C 与D 在y=|x 1|-上,观察图象可得12x <x , 故答案为<,<; ②当y 2=时,12x =-,1x 2∴=-(不符合), 当y 2=时,2x 1=-,x 3∴=或x 1=-; ③()33P x ,y ,()44Q x ,y 在x=1-的右侧,1x 3∴-时,点关于x=1对称,34y y =, 34x x 2∴+=;④由图象可知,0<a<2.【点睛】本题考查反比例函数的图象及性质,一次函数的图象及性质;能够通过描点准确的画出函数图象是解题的关键.。
二次函数解析式的方法
二次函数是高中数学中的一个重要概念。
它是一种二次方程,通常用y=ax+bx+c的形式表示。
其中,a、b、c是常数,a不等于0。
求解二次函数的解析式可以使用以下方法:
1. 完全平方公式:将二次函数的一般式y=ax+bx+c转化为顶点式y=a(x-h)+k,其中(h,k)为顶点坐标。
这个转化可以使用完全平方公式完成,即将x+bx部分平方,得到(x+ b/2a)- (b-4ac)/4a,再乘以a后,得到y=a(x+ b/2a)- (b-4ac)/4a。
2. 配方法:当二次函数的a不为1时,可以使用配方法将其转化为一个完全平方的形式。
具体来说,对于y=ax+bx+c,我们可以先将a提出来,得到y=a(x+ bx/a+c/a),然后将x+ bx/a部分配方,即将它写成(x+b/2a)- (b-4ac)/4a的形式。
这样,原来的二次函数就可以表示为y=a(x+b/2a)- (b-4ac)/4a+c。
3. 公式法:对于已知二次函数的解析式y=ax+bx+c,我们可以使用求根公式来求解它的两个解。
根据二次方程的求根公式,
y=ax+bx+c的解析式可以表示为x=(-b±√(b-4ac))/2a。
以上三种方法都可以求解二次函数的解析式,具体使用哪种方法取决于具体情况。
在解决实际问题时,可以根据需要选择合适的方法,以便更准确地求解问题。
- 1 -。
二次函数的解析式与图像性质二次函数是高中数学中的重要内容,它的解析式和图像性质在数学中有着广泛的应用。
本文将探讨二次函数的解析式及其相关的图像性质,帮助读者更好地理解和运用二次函数。
1. 二次函数的解析式二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于零。
a决定了二次函数的开口方向,正值表示开口向上,负值表示开口向下。
b和c则分别表示二次函数在x轴和y轴上的截距。
解析式中的a、b、c的值可以通过二次函数的特点来确定。
首先,二次函数的顶点坐标为(-b/2a, f(-b/2a))。
其次,二次函数的对称轴为x = -b/2a。
最后,二次函数的判别式Δ = b^2 - 4ac可以用来判断二次函数的解的情况。
当Δ大于零时,二次函数有两个不相等的实根;当Δ等于零时,二次函数有两个相等的实根;当Δ小于零时,二次函数无实根。
2. 二次函数的图像性质二次函数的图像是一条平滑的曲线,其形状由a的正负值决定。
当a大于零时,曲线开口向上;当a小于零时,曲线开口向下。
二次函数的顶点是曲线的最低点或最高点,也是对称轴的交点。
顶点的横坐标为-x = -b/2a,纵坐标为f(-b/2a)。
通过顶点的坐标,我们可以得到曲线的最值。
当a 大于零时,曲线的最小值为f(-b/2a);当a小于零时,曲线的最大值为f(-b/2a)。
除了顶点和对称轴,二次函数的图像还与x轴和y轴有关。
当二次函数与x轴相交时,即为二次函数的实根。
根据判别式Δ的值,我们可以判断二次函数与x轴的交点情况。
当Δ大于零时,曲线与x轴有两个不相等的交点;当Δ等于零时,曲线与x轴有两个相等的交点;当Δ小于零时,曲线与x轴没有交点。
二次函数与y轴的交点为常数项c,即函数在x=0时的值。
这个交点可以用来确定曲线与y轴的位置。
3. 二次函数的应用二次函数的解析式和图像性质在数学中有着广泛的应用。
在物理学中,二次函数可以用来描述抛物线运动的轨迹。
❊2.5二次函数的解析式知识点二次函数的解析式题型一求二次函数解析式(1)例1已知二次函数的图象经过点A (-1,0),B (0,-3)和C (3,12).求二次函数的解析式并求出图象的顶点D 的坐标.【分析】设一般式为y =ax 2+bx +c ,然后把三个点的坐标代入得到a 、b 、c 的方程组,再解方程组即可;【解答】解:设抛物线解析式为y =ax 2+bx +c ,把A (﹣1,0),B (0,﹣3)和C (3,12)代入,得0=−+−3=12=9+3+,解得:=2=−1=−3,∴抛物线解析式为y =2x 2﹣x ﹣3,∵y =2x 2﹣x ﹣3=2(−14)2−258,∴顶点D 的坐标为(14,−258);例2一个二次函数,当x =0时,y =-5;当x =-1时,y =-4;当x =-2时,y =5,则这个二次函数的关系式是()A .y =4x 2+3x -5B .y =2x 2+x +5C .y =2x 2-x +5D .y =2x 2+x -5【答案】A【分析】设二次函数的关系式是y =ax 2+bx +c (a ≠0),然后由当x =0时,y =﹣5;当x =﹣1时,y =﹣4;当x =﹣2时,y =5,得到a ,b ,c 的三元一次方程组,解方程组确定a ,b ,c 的值即可.【详解】解:设二次函数的关系式是y =ax 2+bx +c (a ≠0),∵当x =0时,y =﹣5;当x =﹣1时,y =﹣4;当x =﹣2时,y =5,∴c =﹣5①,a ﹣b +c =﹣4②,4a ﹣2b +c =5③,解由①②③组成的方程组得,a =4,b =3,c =﹣5,所以二次函数的关系式为:y =4x 2+3x ﹣5.故选:A .变1已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点.求这个二次函数的解析式,并求出它的开口方向、对称轴和顶点坐标.【解题思路】设二次函数的解析式为y =ax 2+bx +c ,把(﹣1,10),(1,4),(2,7)三点坐标代入,列方程组求a 、b 、c 的值,确定函数解析式,根据二次函数解析式可知抛物线的对称轴及顶点坐标.【解答过程】解:设二次函数的解析式为y =ax 2+bx +c ,把(﹣1,10),(1,4),(2,7)各点代入上式得−+=10++=44+2+=7,解得=2=−3=5.则抛物线解析式为y =2x 2﹣3x +5;由y =2x 2﹣3x +5=2(x −34)2+318可知,抛物线对称轴为直线x =34,顶点坐标为(34,318).变2已知二次函数的图象经过(4,3)-和(6,3)-两点,与y 轴交于(0,21),求此二次函数的解析式.【分析】利用待定系数法即可求解.【解答】解:二次函数解析式为2y ax bx c =++,二次函数的图象经过(4,3)-和(6,3)-两点,与y 轴交于(0,21),∴1643366321a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得11021a b c =⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为21021y x x =-+.题型二求二次函数解析式(2)例1若二次函数图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数解析式是_________.【答案】243y x x =-+【详解】解:设二次函数解析式为()221y a x =--,把()03,代入得:341a =-,解得:1a =,则二次函数解析式为()222143y x x x =--=-+,故答案为:243y x x =-+.变1已知二次函数当x =1时有最大值是-6,其图象经过点(2,-8),求二次函数的解析式.【解题思路】由于已知抛物线的顶点坐标,则可设顶点式y =a (x ﹣1)2﹣6,然后把(2,﹣8)代入求出a 的值即可.【解答过程】解:设抛物线解析式为y =a (x ﹣1)2﹣6,把(2,﹣8)代入得a (2﹣1)2﹣6=﹣8,解得a =﹣2.所以抛物线解析式为y =﹣2(x ﹣1)2﹣6.例2抛物线2y x bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:x ⋯01234⋯y⋯3-13⋯则抛物线的解析式是_________.【答案】243y xx =-+【分析】结合题意,根据二次函数的性质,通过列二元一次方程组并求解,即可得到答案.【详解】根据题意,得:310c b c =⎧⎨++=⎩将3c =代入到10b c ++=,得:130b ++=∴4b =-∴2243y x bxc x x =++=-+故答案为:243y x x =-+.例3已知二次函数2(0)y ax bx c a =++≠中的x 和y 满足下表:x4-3-2-1-012 y5-0343m5-(1)根据表格,直接写出该二次函数的对称轴以及m 的值;(2)求该二次函数的表达式.【分析】(1)由于2x =-,3y =;0x =,3y =,则可利用抛物线的对称性得到对称轴;然后利用对称性确定m 的值;(2)设顶点式2(1)4y a x =++,然后把(0,3)代入求出a 的值,从而得到抛物线解析式.【解答】解:(1) 抛物线经过点(2,3)-,(0,3),∴抛物线的对称轴为直线1x =-,1x = 和3x =-所对应的函数值相等,0m ∴=;(2)设抛物线解析式为2(1)4y a x =++,把(0,3)代入得23(01)4a =⨯++,解得1a =-,∴该二次函数的解析式为(1)24y x =-++,即223y x x =--+.变2小聪在画一个二次函数的图象时,列出了下面几组y 与x 的对应值:x⋯012345⋯y⋯53-4-3-0⋯该二次函数的解析式是_________.【分析】根据待定系数法即可求得.【解答】解:由表格数据结合二次函数图象对称性可得图象顶点为(3,4)-,设二次函数的表达式为2(3)4(0)y a x a =--≠,将(1,0)代入得440a -=,解得1a =,∴该二次函数的表达式为2(3)4y x =--(或265)y x x =-+.变3二次函数23y ax bx =+-中的x 、y 满足下表:x ⋯-10123⋯23y ax bx =+-⋯-3-4-3m⋯(1)求这个二次函数的解析式.(2)求m 的值.【答案】(1)223y x x =--(2)0【分析】(1)根据表格数据待定系数法求解析式即可求解.(2)根据二次函数的对称性即可求解.(1)解:根据表格可知对称轴为直线1x =,且1x =时4y =-,即顶点为()1,4-,设解析式为()214y a x =--,当0x =时,3y =-,即43a -=-,解得1a =,∴这个二次函数的解析式为:()221423y x x x =--=--,即223y x x =--(2)解:∵对称轴为直线1x =,∴当3x =与1x =-时的函数值相等,∴0m =题型三求二次函数解析式(3)例1在直角坐标系中,抛物线经过点A (0,4)、B (1,0)、C (5,0),求抛物线的解析式和顶点E 坐标.变1已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C (0,3),则二次函数的解析式是_________.变2抛物线经过点(2,0),(1,0)A B -,且与y 轴交于点C .若2OC =,则该抛物线解析式为()A .22--=x x yB .22y x x =---或22++=x x yC .22++-=x x yD .22--=x x y 或22++-=x x y 【答案】D【分析】抛物线和y 轴交点的为(0,2)或(0,-2),根据A 、B 两点坐标设出抛物线解析式为()()21y a x x =-+()0a ≠,代入C 点坐标即可求解.【详解】设抛物线的解析式为()()21y a x x =-+()0a ≠∵2OC =∴抛物线和y 轴交点的为(0,2)或(0,-2)①当抛物线和y 轴交点的为(0,2)时,得()()20201a =-+解得1a =-∴抛物线解析式为()()121y x x =--+,即22y x x =-++②当抛物线和y 轴交点的为(0,-2)时,()()20201a -=-+解得1a =∴抛物线解析式为()()y x 2x 1=-+,即2y x x 2=--故选D .例2在平面直角坐标系xOy 中,二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表,求这个二次函数的表达式.x⋯1-012⋯y⋯3-01⋯【分析】利用表中数据和抛物线的对称性可得到二次函数的顶点坐标为(1,1),则可设顶点式2(1)1y a x =-+,然后把点(0,0)代入求出a 即可.【解答】解:由题意可得二次函数的顶点坐标为(1,1),设二次函数的解析式为:2(1)1y a x =-+,把点(0,0)代入2(1)1y a x =-+,得1a =-,故抛物线解析式为2(1)1y x =--+,即22y x x =-+;例3如图,抛物线23y ax bx =+-与y 轴交于点C ,与x 轴交于A ,B 两点3OB OC OA ==,则该抛物线的解析式是_________.【答案】223y x x =--【分析】根据抛物线与y 轴交于点C 易得点C 的坐标为()0,3C -,根据3OB OC OA ==,可得点A 、B 的坐标,再利用待定系数法即可求得二次函数的解析式.【详解】当0x =时,3y =-,∴()0,3C -,∴3OC =,∴3OB =,1OA =,∴()3,0B ,()1,0A -,将()3,0B ,()1,0A -代入23y ax bx =+-得,093303a b a b =+-⎧⎨=--⎩,解得12a b =⎧⎨=-⎩,∴该抛物线的解析式是223y x x =--.变3小聪在画一个二次函数的图象时,列出了下面几组y 与x 的对应值:x⋯012345⋯y⋯53-4-3-0⋯该二次函数的解析式是_________.【分析】根据待定系数法即可求得.【解答】解:由表格数据结合二次函数图象对称性可得图象顶点为(3,4)-,设二次函数的表达式为2(3)4(0)y a x a =--≠,将(1,0)代入得440a -=,解得1a =,∴该二次函数的表达式为2(3)4y x =--(或265)y x x =-+.变4如图是二次函数2y x c =++的图像,该函数的最小值是_________.将2b =代入930b c -+=得:9320c -⨯+=,解得3c =-,则二次函数的解析式为223y x x =+-,当1x =-时,2(1)2(1)34y =-+⨯--=-,即该函数的最小值是4-,故答案为:4-.课后强化1.已知一条抛物线经过E (0,10),F (2,2),G (4,2),H (3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A .E ,F B .E ,GC .E ,HD .F ,G2.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++经过点(3,0)A 、(2,3)B -、(0,3)C -.求抛物线的表达式.【分析】根据二次函数图象上的点的坐标特征解决此题.【解答】解:由题意得,930a b c ++=,423a b c ++=-,3c =-.1a ∴=,2b =-.∴这个抛物线的表达式为223y x x =--.3.求分别满足下列条件的二次函数解析式:(1)二次函数图像经过(1,2),(0,1),(2,3)-三点.(2)二次函数图像的顶点坐标是()2,3-,并经过点()1,2.4.已知二次函数2y ax bx c =++经过(1,0)A -,(5,0)B ,(0,2.5)C -三点.求二次函数2y ax bx c =++的解析式.【分析】利用待定系数法,即可求出二次函数的解析式;【解答】解:将(1,0)A -,(5,0)B ,(0, 2.5)C -代入2y ax bx c =++得:025502.5a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:0.522.5a b c =⎧⎪=-⎨⎪=-⎩,∴二次函数2y ax bx c =++的解析式为20.52 2.5y x x =--;5.二次函数的图象顶点坐标为(2,2)--,且过(1,0).求该二次函数解析式.【分析】由抛物线顶点式表达式得:2(2)2y a x =+-,将点(1,0)代入上式即可求解;【解答】解:由抛物线顶点式表达式得:2(2)2y a x =+-,1x =时,2(12)20y a =+-=,解得:29a =,故抛物线的表达式为:22(2)29y x =+-;6.一个二次函数的图象与抛物线23y x =的形状相同、开口方向相同,且顶点为(1,4),那么这个函数的解析式是_________.【分析】根据二次函数性质形状及开口方向相同即a 的值一样,设出解析式23()y x h k =-+,根据顶点为(1,4),即可得到答案.【解答】解: 二次函数的图象与抛物线23y x =的形状相同、开口方向相同,3a ∴=,设二次函数的解析式为23()y x h k =-+,顶点为(1,4),1h ∴=,4k =,∴这个函数的解析式是23(1)4y x =-+,故答案为:23(1)4y x =-+.7.若抛物线2y ax bx c =++的顶点是()2,1A ,且经过点()10B ,,则抛物线的函数关系式为()A .243y x x =+-B .243y x x =-+-C .243y x x =---D .243y x x =-++【答案】B 【详解】解:∵抛物线顶点是A (2,1),且经过点B (1,0),∴设抛物线的函数关系式是y =a (x -2)2+1,把B 点的坐标代入得:0=a (1-2)2+1,解得:a =-1,即抛物线的函数关系式是y =-(x -2)2+1,即y =-x 2+4x -3.故选:B .8.二次函数2y ax bx c =++的y 与x 的部分对应值如下表,则下列判断中正确的是()x…0134…y …242-2…A .抛物线开口向上B .当1x >时,y 随x 的增大而减小C .当02x <<时,1724y <≤D .y 的最大值为29【答案】C 【详解】解:将点()0,2,()1,4,()3,2代入二次函数的解析式,得:24934c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:132a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为223173224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∵10-<,∴抛物线开口向下,∴A 选项不符合题意;∵由抛物线解析式可知,抛物线的对称轴为32x =,这时抛物线取得最大值17y 4=,∴当32x <时,y 随x 的增大而增大;当32x >时,y 随x 的增大而减小,∴当1x >时,y 随x 的增大先增大,到达最大值174后,y 随x 的增大而减小,∴B 选项不符合题意;∵当0x =时,2y =;当2x =时,4y =,又∵抛物线的对称轴为32x =,当32x =时,17y 4=,又∵17244<<,∴当02x <<时,1724y <≤,∴C 选项符合题意;∵抛物线的解析式为223173224y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∴当32x =时,抛物线取得最大值17y 4=,∴D 选项不符合题意.故选:C .9.已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1),则这二次函数的表达式为()A .y =-6x 2+3x +4B .y =-2x 2+3x -4C .y =x 2+2x -4D .y =2x 2+3x -4【答案】D【详解】解:设所求函数的解析式为y =ax 2+bx +c ,把(-1,-5),(0,-4),(1,1)分别代入,得:541a b c c a b c -+-⎧⎪-⎨⎪++⎩===解得234a b c ⎧⎪⎨⎪-⎩===所求的函数的解析式为y =2x 2+3x -4.故选D10.如果抛物线2y ax bx c =++的对称轴是x =-3,且开口方向与形状与抛物线y =-2x 2相同,又过原点,那么a =_______,b =_______,c =_______.【答案】-2-120【详解】解:∵抛物线y =ax 2+bx +c 的开口方向,形状与抛物线y =-2x 2相同,∴a =-2,∵抛物线y =ax 2+bx +c 的对称轴是直线x =-3,∴-2b a=-3,即-()22b ⨯-=-3,解得b =-12;∵抛物线过原点,∴c =0.故答案为:-2,-12;0.11.一个二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如表:(1)这个二次函数的对称轴为直线_______,顶点坐标为_______;(2)m 的值是_______,n 的值是_______;(3)这个二次函数的解析式为_________.【分析】(1)根据二次函数图象的对称性,结合表格数据即可求解;(2)根据二次函数图象的对称性,结合表格数据即可求解;(3)待定系数法求解析式即可求解.【解答】解:(1)根据二次函数图象的对称性,可知,当0x =时与2x =时,函数值相等,∴对称轴为直线1x =,当1x =时,1y =-,即顶点坐标为(1,1)-,故答案为:1x =,(1,1)-;(2) 对称轴为直线1x =,3y ∴=时,1x =-或x n =,∴112n -+=,解得:3n =,当4x =与2x =-时,函数值相等,8m ∴=,故答案为:8,3;(3) 顶点坐标为(1,1)-,设该二次函数解析式为2(1)1y a x =--,将(0,0),代入得01a =-,解得:1a =,∴二次函数解析式为:22(1)12y x x x =--=-,故答案为:22y x x =-.12.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点,且BC =5,求该二次函数的解析式.【解题思路】由于已知抛物线与x 轴的交点坐标,则可设交点式y =a (x ﹣1)(x ﹣4),再利用B 点坐标和BC =5得到C 点坐标,然后把C 点坐标代入可求出a 的值,从而得到两个解析式.【解答过程】解:设抛物线的解析式为y =a (x ﹣1)(x ﹣4),∵B (4,0)两点,交y 轴于C ,BC =5,∴C 点坐标为(0,3)或(0,﹣3),当C 点坐标为(0,3),把(0,3)代入得a •(﹣1)•(﹣4)=3,解得a =34,所以此时抛物线的解析式为y =34(x ﹣1)(x ﹣4)=34x 2−154x +3;当C 点坐标为(0,﹣3),把(0,﹣3)代入得a •(﹣1)•(﹣4)=﹣3,解得a =−34,所以此时抛物线的解析式为y =−34(x ﹣1)(x ﹣4)=−34x 2+154x ﹣3,所以该二次函数的解析式为y =34x 2−154x +3或y =−34x 2+154x ﹣3.13.二次函数图象过A ,C ,B 三点,点A 的坐标为(-1,0),点B 的坐标为(4,0),点C 在y 轴正半轴上,且AB =OC ,求二次函数的表达式.【解题思路】根据A .B 两点的坐标及点C 在y 轴正半轴上,且AB =OC .求出点C 的坐标为(0,5),然后根据待定系数法即可求得.【解答过程】解:∵A (﹣1,0),B (4,0)∴AO =1,OB =4,AB =AO +OB =1+4=5,∴OC =5,即点C 的坐标为(0,5),设二次函数的解析式为y =ax 2+bx +c ,∵二次函数图象过A ,C ,B 三点,∴−+=016+4+=0=5,解得=−54=154=5,∴二次函数的表达式为y =−54x +154x +5.。
课题:《初高中衔接05二次函数的解析式》
一 教学目标:
①理解二次函数的解析式的三种表示方法;
②熟练掌握利用待定系数法求解二次函数的解析式;
二 教学重点:二次函数的解析式的表示方式; 三 教学难点:二次函数的解析式的灵活应用。
四 教学过程:
形式 表达式
优劣比较(举例说明) 一般式
2
()f x ax bx c =++
对称轴 顶点坐标 定点式 2
()()f x a x h k =-+
对称轴 顶点坐标 两点式 12()()()f x a x x x x =--
对称轴 顶点坐标
2、例题分析
例1、已知二次函数()f x 满足(2)1f =-,(1)()f x f x -=,且()f x 的最大值是8,
求函数的解析式
例2、已知二次函数的对称轴为x =x 轴上的弦长为4,且过点(0,1)-,
求函数的解析式
例2 已知二次函数的图象过点)0,3(-、)0,1(,且顶点到x 轴的距离等于2,求此二次函
数的表达式.
《初高中衔接05二次函数的解析式》作业
班级 学号 姓名
1.二次函数12
--=ax x y 在区间[0,3]上有最小值-2,则实数a 的值为( )
A .-2
B .4
C .3
10
-
D .2
2.函数1)3(2)(2+-+=x a ax x f 在区间[2,)-+∞上递减,则实数a 的取值范围是( )
A .[-3,0]
B .(]3,-∞-
C .[)0,3-
D .[-2,0]
4.设二次函数)1(,0)(,)(2
+<-+-=m f m f a x x x f 则若的值为( ) A .正数
B .负数
C .正、负不定,与m 有关
D .正、负不定,与a 有关
5.若0<a ,则函数522
-+=ax x y 的图形的顶点在 ( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
6.设函数)0()(2
≠++=a c bx ax x f ,对任意实数t 都有)2()2(t f t f -=+成立,则函数值)5(),2(),1(),1(f f f f -中,最小的一个不可能是( )
A .f (-1)
B .f (1)
C .f (2)
D .f (5)
二、填空题
7.设二次函数f (x ),对x ∈R 有)2
1()(f x f ≤=25,其图象与x 轴交于两点,且这两点的横坐标的立方和为19,则f (x )的解析式为
8.已知二次函数12)(2
++=ax ax x f 在区间[-3,2]上的最大值为4,则a 的值为
9.一元二次方程22
(1)(2)0x a x a +-+-=的一根比1大,另一根比-1小,则实数a 的取值范围是
10.某商品进货单价为每个8元,按10元一个销售时,每天可售出50个.如果该商品每
个提高销售价1元,其每天销售量就要减少5个,为获得最大利润,则该商品最佳售价应为每个 元. 三、解答题
11.已知二次函数∈++=c b a c bx ax x f ,,()(2
R )满足,1)1(,0)1(==-f f 且对任意实
数x 都有)(,0)(x f x x f 求≥-的解析式.
12.已知二次函数c bx ax y ++=2
的图像经过点)1,1(--,其对称轴为2-=x ,且在x
轴上截得的线段长为22,求函数的解析式
13.已知2
2444)(a a ax x x f --+-=在区间[0,1]内有最大值-5,求a 的值. 14.函数)(x f y =是定义在R 上的奇函数,当2
2)(,0x x x f x -=≥时,
(Ⅰ)求x <0时,)(x f 的解析式;
(Ⅱ)问是否存在这样的正数a ,b ,当)(,],[x f b a x 时∈的值域为]1,1[a
b ?若存在,
求出所有的a ,b 的值;若不存在说明理由.
15.某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿
市场售价与上市时间的关系用左图的一条折线表示;西红柿的种植成本与上市时间的关系用右图的抛物线段表示.
(Ⅰ)写出左图表示的市场售价与时间的
函数关系P=f (t);写出右图表示的种植成 本与时间的函数关系式Q=g(t);
(Ⅱ)认定市场售价减去种植成本为纯收益,
问何时上市的西红柿收益最大.
(注:市场售价和种植成本的单位:元/102kg ,
时间单位:天)
《答案与解析》
一、选择题
1.D
2.C
3.A
4.B
5.B
6.B 二、填空题
7.24442
++-x x ; 8.-3或8
3
; 9.-2<a <0; 10.14 三、解答题
11.由,21
,210
)1(1)1(=+=⇒⎩⎨
⎧=+-=-=++=c a b c b a f c b a f ∵对∈x R , ,1610,00021)(2⎪⎩
⎪
⎨⎧≥≥⇒⎩⎨⎧≤∆>⇒≥+-=-ac c a a c x ax x x f
而
c a ac ac ac c a ==∴≤⇒≥+=且16
1
,161221,
∴;4
)1(412141)(2
2+=++=x x x x f
12.∵a >0,∴f(x)对称轴min 0,[()](1)1;2
a
x f x f a b =-
<∴==-⇒= ①当;,11)1()]([,212
m ax 不合时即=⇒=-=≥-≤-
a f x f a a
②当,2221)2()]([,20,021m ax +-=⇒=-=<<<-<-a a
f x f a a 时即
∴212
-=-=a
x .
综上,当.1)]([,21;1)]([,1m ax m in =-=-==x f x x f x 时当时 13.∵f(x)的对称轴为,20a
x =
①当;4
55)2()]([20,120m ax =⇒-==≤≤≤≤a a f x f a a 时即 ②当;5,54)0()]([02
m ax -=⇒-=--==<a a a f x f a 时 ③当1,54)1()]([22
m ax ±=∴-=--==>a a f x f a 时不合; 综上,.54
5
-==
a a 或 14.(Ⅰ)当;2)(,02
x x x f x +=<时
(Ⅱ)∵当,11)1()(,02
≤+--=>x x f x 时
若存在这样的正数a ,b ,则当,111
)]([,],[m ax ≥⇒≤=
∈a a
x f b a x 时 ∴f(x)在[a ,b]内单调递减,∴⎪⎪⎩⎪⎪⎨⎧+-==+-==a a x f a b b b f b
2)(12)(1
22
b a ,⇒是方程01223=+-x x 的两正根,
.2
5
1,1,251,1,0)1)(1(1221223+==∴+=
=∴=---=+-b a x x x x x x x 15.(Ⅰ),100)150()(;300
200,3002200
0,300)(2+-=⎩⎨
⎧≤<-≤≤-=t a t g t t t t t f 设将(50,150)代
入得;3000,100)150(200
1
)(2≤≤+-=
t t t g (Ⅱ)设时刻t 的纯收益为),()()(t g t f t h -= ①当,100)50(200
12175212001)(,200022+--=++-
=≤≤t t t t h t 时 ∴当t=50时;100)]([m ax =t h ②当200,100)350(200
1
21025272001)(,30022+--=-+-
=≤<t t t t h t 时 ∴当t=300时取最大值87.5<100;故第50天时上市最好.。