进程调度
- 格式:ppt
- 大小:17.32 MB
- 文档页数:15
实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。
通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。
就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。
2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。
先来先服务算法按照进程到达的先后顺序进行调度。
短作业优先算法优先调度执行时间短的进程。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。
四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。
实现进程的创建、插入、删除等操作。
实现不同的调度算法。
2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。
分别采用先来先服务、短作业优先和时间片轮转算法进行调度。
记录每个算法下的平均周转时间、平均等待时间等性能指标。
五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。
进程调度算法总结所谓进程,简单来说是计算机中的各种任务,那么计算机如何分配系统资源以供这些任务使⽤呢?此篇博客⽬的就是为⼤家整理⼀下⼏种常见进程调度算法。
进度调度就是按照⼀定的策略,动态地把处理机分配给处于就绪队列的进程,使之执⾏。
常见的进程调度算法:1、先来先服务和短作业(进程)优先调度算法2、⾼优先权优先调度算法3、基于时间⽚的轮转调度算法下⾯细说:1、先来先服务和短作业优先调度算法1.1、先来先服务调度算法这种调度算法由字⾯意思理解很直观,所谓先来先服务,就是谁先来先服务谁。
结合进程,先来先服务调度算法就是对于优先到达就绪队列的进程采取优先服务的策略,直到该进程运⾏结束或发⽣某事件导致阻塞才放弃处理机。
这种调度算法是⼀种最简单的调度算法,适⽤于作业和进程。
当⽤于作业时,先进⼊后备队列的作业先运⾏。
1.2、短作业(进程)优先调度算法短作业(进程)优先调度算法,是对短作业或短进程进⾏得调度算法。
何为短?就是估计运⾏时间短。
该算法从后备队列或就绪队列选择估计运⾏时间较短的作业或进程,将他们调⼊内存运⾏,直到该进程运⾏结束或发⽣某事件导致阻塞才放弃处理机重新进⾏调度。
2、⾼优先权优先调度算法2.1、优先权调度算法上述所说的两种调度算法,过于简单,当系统中有紧急作业或进程,且不满⾜先进队列或运⾏时间短时,这些作业或进程将很难得到资源。
那么对于这些作业或进程,⼜该怎么办呢?因此,⼜有了优先权调度算法,所谓优先权调度算法,顾名思义就是谁的优先权⾼,谁就西安得到资源得以运⾏。
进⼀步将算法分为以下两种:2.1.1、⾮抢占式优先权算法在这种⽅式下,系统⼀旦把处理机分配给就绪队列中优先权最⾼的进程后,该进程便⼀直执⾏下去,直⾄完成;或因发⽣某事件使该进程放弃处理机时,系统⽅可再将处理机重新分配给另⼀优先权最⾼的进程。
这种调度算法主要⽤于批处理系统中;也可⽤于某些对实时性要求不严的实时系统中。
2.1.2、抢占式优先权算法在这种⽅式下,系统同样是把处理机分配给优先权最⾼的进程,使之执⾏。
linux系统中调度的基本单位一、进程调度进程调度是操作系统中的一个重要组成部分,用于决定在多个进程同时竞争CPU资源时,应该选择哪个进程来执行。
Linux系统中的进程调度采用了时间片轮转调度算法。
时间片轮转调度是一种公平的调度算法,它将CPU的执行时间划分为一个个固定长度的时间片,每个进程在一个时间片内执行一段时间,然后切换到下一个进程。
这样可以保证每个进程都有机会执行,并且避免了长时间占用CPU 的情况。
二、线程调度线程调度是指在多线程应用程序中,操作系统决定哪个线程应该被执行的过程。
Linux系统中的线程调度和进程调度类似,同样采用时间片轮转调度算法。
不同的是,线程是共享同一个进程的资源,因此线程的切换相对于进程的切换来说更加轻量级。
线程调度的目标是尽可能地提高CPU利用率和系统响应速度。
三、任务调度任务调度是指在Linux系统中,操作系统决定何时执行某个任务的过程。
任务可以是周期性的,也可以是非周期性的。
周期性任务是指按照一定的时间间隔重复执行的任务,而非周期性任务则是指只执行一次的任务。
Linux系统中的任务调度使用了多种算法,如最早截止时间优先算法和最短作业优先算法等。
这些算法的目标是根据任务的优先级和执行时间来决定任务的执行顺序,以提高系统的性能和响应速度。
四、总结在Linux系统中,进程调度、线程调度和任务调度是操作系统中的重要组成部分。
进程调度决定在多个进程竞争CPU资源时的执行顺序,线程调度决定在多线程应用程序中哪个线程应该被执行,任务调度决定何时执行某个任务。
这些调度的基本单位都采用了时间片轮转调度算法,并根据不同的调度目标采用不同的调度策略。
通过合理的调度算法,可以提高系统的性能和响应速度,保证各个任务的执行顺序和时间片的分配合理。
第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。
引起进程调度的主要因素有:(1)一个进程运行完毕。
(2)一个正在运行的进程被阻塞。
(3)在抢占式调度中,一个高优先级的进程被创建。
(4)在抢占式调度中,一个高优先级进程由阻塞唤醒。
(5)在轮转式调度中,正垢进程运行完进程调度的概念无论是在批处理系统还是分时系统中,用户进程数一般都多于处理机数、这将导致它们互相争夺处理机。
另外,系统进程也同样需要使用处理机。
这就要求进程调度程序按一定的策略,动态地把处理机分配给处于就绪队列中的某一个进程,以使之执行。
进程有四个基本属性1.多态性从诞生、运行,直至消灭。
2.多个不同的进程可以包括相同的程序3.三种基本状态它们之间可进行转换4.并发性并发执行的进程轮流占用处理器进程的三种基本状态:1.等待态:等待某个事件的完成;2.就绪态:等待系统分配处理器以便运行;3.运行态:占有处理器正在运行。
运行态→等待态往往是由于等待外设,等待主存等资源分配或等待人工干预而引起的。
等待态→就绪态则是等待的条件已满足,只需分配到处理器后就能运行。
运行态→就绪态不是由于自身原因,而是由外界原因使运行状态的进程让出处理器,这时候就变成就绪态。
例如时间片用完,或有更高优先级的进程来抢占处理器等。
就绪态→运行态系统按某种策略选中就绪队列中的一个进程占用处理器,此时就变成了运行态进程调度的分级高级、中级和低级调度作业从提交开始直到完成,往往要经历下述三级调度:高级调度:(High-Level Scheduling)又称为作业调度,它决定把后备作业调入内存运行;低级调度:(Low-Level Scheduling)又称为进程调度,它决定把就绪队列的某进程获得CPU;中级调度:(Intermediate-Level Scheduling)又称为在虚拟存储器中引入,在内、外存对换区进行进程对换。
进程调度的方式进程调度有以下两种基本方式:非剥夺方式分派程序一旦把处理机分配给某进程后便让它一直运行下去,直到进程完成或发生某事件而阻塞时,才把处理机分配给另一个进程。
操作系统的调度名词解释作为计算机科学中的重要概念,操作系统的调度在计算机系统的运行中起到了至关重要的作用。
通过合理的调度算法,操作系统能够合理分配和管理计算机资源,提高系统的性能和效率。
本文将对操作系统调度中的一些重要名词进行解释,以帮助读者更好地理解和掌握这一领域。
1. 进程调度进程调度是操作系统中的一个重要概念,它指的是操作系统通过预设的调度算法,合理选择优先级最高的进程,并分配CPU时间片给该进程执行。
进程调度的目标是提高系统的性能和响应速度,以确保各个进程都能得到公平的执行机会。
常见的进程调度算法包括先来先服务、短作业优先、时间片轮转等。
2. 线程调度线程调度是对操作系统中线程的分配和执行进行管理和调度的过程。
线程调度的目标是合理分配CPU时间片,使得多个线程能够并发执行,以提高程序的效率和响应速度。
常见的线程调度算法有优先级调度、时间片轮转、多级反馈队列等。
3. 中断调度中断调度是操作系统对中断事件的处理和分配过程。
在计算机运行中,发生中断事件时,操作系统需要及时响应并进行相应的处理操作。
中断调度的目标是尽快响应中断事件,将控制权转移到相应的中断处理程序,并在处理完之后返回原来的进程继续执行。
4. IO调度IO调度是操作系统在处理IO请求时的调度过程。
由于独立于CPU的IO设备存在速度差异,操作系统需要合理调度IO请求的顺序和时间,以提高系统的整体性能和效率。
常用的IO调度算法有先来先服务、最短寻道时间优先、电梯算法等。
5. 内存调度内存调度是指操作系统对内存中进程的分配和管理过程。
在多道程序设计环境下,操作系统需要合理选择和分配内存资源,以提高系统的利用率和性能。
内存调度的目标是实现内存的最佳利用和动态分配。
常见的内存调度算法有分页调度、分段调度、段页式调度等。
6. 磁盘调度磁盘调度是指操作系统中对磁盘访问请求的调度过程。
由于磁盘访问需要相当的时间,操作系统需要选择合适的算法来优化磁盘访问顺序,以提高磁盘的读写效率和响应时间。
进程调度知识点总结图1. 进程调度概述进程调度是操作系统中的一个重要组成部分,它负责决定哪些进程能够在CPU上执行,以及它们的执行顺序。
进程调度的主要目标是提高系统的吞吐率、减少响应时间、以及实现公平的资源分配。
2. 进程状态在进行进程调度之前,我们需要了解进程的状态。
常见的进程状态包括就绪态、运行态、阻塞态等。
就绪态的进程可以在任何时刻被调度到CPU上执行;运行态的进程正在CPU 上执行指令;阻塞态的进程由于等待外部事件而暂时无法执行。
3. 调度器调度器是负责进行进程调度的组件。
它可以根据特定的调度算法来决定哪些进程应该被分配CPU时间。
调度器通常分为长期调度器、中期调度器和短期调度器。
4. 调度算法调度算法是决定进程调度顺序的关键。
常见的调度算法包括先来先服务、最短作业优先、优先级调度、时间片轮转等。
不同的调度算法适用于不同的场景,需要根据具体的系统需求进行选择。
5. 进程优先级进程优先级是调度算法中常用的一个概念。
通过设定不同的优先级,可以确保高优先级的进程能够得到更多的CPU时间,从而提高系统的响应速度。
但是,过高的优先级也可能导致低优先级进程饥饿的问题,需要做出平衡。
6. 时间片轮转调度时间片轮转调度是一种常见的调度算法,主要用于多道程序设计环境中。
它将进程按照先来先服务的原则排成一个队列,并为每个进程分配一个时间片。
当时间片用完后,进程会被放到队列的尾部,等待下一次调度。
7. 多级反馈队列调度多级反馈队列调度是一种综合利用了时间片轮转和优先级调度的算法。
它将进程根据优先级分成多个队列,并为每个队列分配不同的时间片。
优先级高的队列拥有更短的时间片,从而提高高优先级进程的执行速度。
8. 作业调度作业调度是在长期调度过程中对进程进行排序并决定何时加载到内存中。
它通常会考虑系统资源、作业的运行时间和作业的优先级,以决定何时调度哪些作业。
9. 中期调度中期调度是对内存中的进程进行重新排序的过程,以释放内存空间并为新的进程腾出空间。