昆明市土地利用变化的强度分析与稳定性研究
- 格式:ppt
- 大小:124.00 KB
- 文档页数:1
第38卷第6期2013年12月林 业 调 查 规 划Forest Inventory and PlanningVol.38 No.6Dec.2013doi :10.3969/j.issn.1671⁃3168.2013.06.004滇池流域土地利用动态变化分析黎亚波,李玲,陈俊,曾建,王艳英(云南师范大学旅游与地理科学学院,云南昆明650500)摘要:在RS 和GIS 的支持下,获取了滇池流域1998年、2002年及2010年的土地利用分类图,通过土地利用动态度方法,分析了流域22年间土地利用类型的数量变化。
结果表明:耕地和建设用地主要沿滇池分布,林地面积所占比例较大;土地利用类型变化主要发生在耕地、未利用地、建设用地,其土地利用动态度分别为1.598%、2.698%和9.021%;人口增长和经济的快速发展是滇池流域土地利用/覆被变化的主要驱动力。
关键词:土地利用/覆被变化;土地利用动态度;驱动力分析;RS ;GIS ;滇池流域中图分类号:S718;F301.24 文献标识码:A 文章编号:1671-3168(2013)06-0022-05Dynamic Chang of Land Use in Dianchi Lake BasinLI Ya⁃bo ,LI Ling ,CHEN Jun ,ZENG Jiang ,WANG Yan⁃ying(Tourism and Geography ,Yunnan Normal University ,Kunming 650500,China )Abstract :With the support of RS and GIS ,this paper obtained the land use classification figure of three periods in Dianchi Lake basin ,by using the method of land use dynamic degree ,the number of land use type change of Dianchi lake basin in 22years were analyzed.Results showed that :Arable land and con⁃struction land mainly distributed along the Dianchi Lake ,the proportion of woodland area was larger ;Land use type changes occurred mainly in the land ,unused land ,construction land ,and the land usedynamic degree were 1.598%,2.698%and 9.021%respectively ;The population growth and rapid e⁃conomic development were the main driving force of Dianchi Lake Basin land use /cover change.Key words :LUCC ;Land Use Dynamic degree ;driving force analysis ;RS ;GIS ;Dianchi Lake Basin收稿日期:2013-08-15;修回日期:2013-10-08.基金项目:水利部公益性行业项目“高原盆地城市水源地保护和恢复技术研究”(201101042);云南省社会发展科技项目(2011FB042)。
土壤稳定性评估一、背景在进行区域土地开发时,需要对整个区域的土壤稳定性评估.应用GIS空间分析方法,能够快速有效地对土壤稳定性的因子进行制图并评估打分,通过构建评价体系,利用叠加分析,形成土壤稳定性专用图,以为土地开发提供决策支持二、实验要求经专家研究,土壤稳定性评估原则如下(1)坡度越陡,稳定性越低,坡度分级临界值分别为:3、6、11、20和30。
(2)阴坡比阳坡稳定(3)土地利用类型的稳定性级别由高到低分别为:森林、水域、草原、居住用地和耕地.三、实验步骤(1)提取坡度数据,选择坡度分析工具,设置好参数后点击确定生成坡度数据(2)打开重分类工具,进行设置,根据坡度分级临界值对坡度进行重分类,根据表格更改新值为权重值,值越高表示稳定性越强,得到坡度重分类结果.(3)提取坡向数据。
选择坡向分析工具,选择设置后点击确定,生成坡向数据。
(4)打开重分类工具,进行设置,根据坡向分级临界值对坡向进行重分类,根据表格更新值为权重值,值越高表示稳定性越强,为了统一量化计算,把所有指标统一为1到10。
得到坡向重分类结果。
(5)将landuse依据土地利用类型转化为栅格数据,选择面转栅格数据工具,进行设置,得到土地利用栅格数据。
(6)选择重分类工具,根据土地利用类型进行重分类,依据表格更新值为权重值。
(7)综合考虑坡度、阴阳坡和土地利用类型进行空间叠加分析。
选择加权总和工具.(8)将叠加结果按照土壤稳定性等级进行显示。
打开属性对话框,在【分类】中的中断值一栏进行设置,并修改标注为“不稳定”“较稳定”“很稳定",并选择合适的拉伸角色进行显示。
(9)制作土壤稳定性专题地图。
找出某种珍贵药材的生长区域一、背景某种珍贵药材生长于山区,通过研究了解到这种药材生长具有严格的生长条件。
为了能更好的保护盖药材的生长环境,现在需要使用GIS空间分析方法,将药材适合生长区域找出来,以便于该物种保护物种提供依据。
二、药材的生长条件请依据以下条件,确定此区域适合种植这种药材的范围,并制作专题图,给出适宜种植的面积。
土地利用结构是指某一区域范围内各种土地利用类型所占的面积和比例,以及组合形成的格局和图示。
对土地利用的结构进行研究不仅能够在一定程度上实现土地资源的合理配置,缓解人地矛盾的紧张形势,提高土地利用效率,进而促进社会经济发展。
昆明市是滇中城市群的核心城市,它在区域经济发展中具有重要的战略地位,但是随着城市的扩张,有限的土地资源如何得以优化利用并实现最大效益与价值也成为了一个亟待解决的问题。
一、研究区概况及研究方法(一)研究区概况昆明市位于云南省中部,是云南省省会,东经102°10'至103°40',北纬24°23'至26°33';南北长237.5km ,东西宽152km ,总面积约为21012km 2。
地势北高南低,以湖盆岩溶高原地貌形态为主。
海拔1891m ,属高原山地季风气候,全市矿产及动植物资源丰富。
昆明市近77%的土地为农用地,随着城镇化进程的加快,建设用地需求也在日益增长。
作为我国面向东南亚、南亚等地区的门户,随着近年滇中城市群等政策的影响,昆明市正呈现迅猛的发展态势。
本研究的研究范围包括昆明市下辖的7个市辖区(五华区、盘龙区、官渡区、西山区、呈贡区、晋宁区、东川区)、1个县级市(安宁市)、3个县(富民县、嵩明县、宜良县)、3个自治县(石林彝族自治县、寻甸彝族回族自治县、禄劝彝族苗族自治县)。
涉及的土地利用数据源自第2次全国土地利用调查变更数据。
(二)研究方法1.土地利用动态度模型。
式中,K 为某一种土地利用类型的动态度,U a 、U b 分别表示研究时段初、末的土地面积,T 为时间长度。
K 值的大小可以反映出一定时间内各土地利用类型的数量变化速度。
2.土地多样化指数。
土地利用类型多样化指数反映的是土地利用类型多样化程度,能够表征一个区域内土地利用类型的齐全性,是量化土地利用结构的一个重要指标。
目前,关于该指数的计算多采用吉布斯-马丁多样化指数,模型的计算公式为:式中:G 为多样化指数值,n 为某区域内土地利用类型种类的数量,x i 是第i 种类型土地的利用面积。
城市土地利用规划中的开发强度评估随着城市化进程的加快,城市土地资源的合理利用和规划成为了当代城市发展中的重要问题。
城市土地利用规划中的开发强度评估是一种评价城市土地利用程度和效果的方法,它对城市的可持续发展和生态环境保护具有重要意义。
本文将从城市土地利用规划的背景和意义、开发强度评估的方法和指标以及评估结果的应用三个方面进行论述。
一、城市土地利用规划的背景和意义城市土地利用规划是指对城市土地资源进行科学规划和合理利用的过程。
在城市化进程中,土地资源的有限性和城市发展的需要之间存在着矛盾。
因此,通过制定土地利用规划,可以实现城市土地资源的合理配置,提高土地利用效益,保护生态环境,推动城市可持续发展。
而开发强度评估则是城市土地利用规划的重要组成部分,它可以对土地利用的程度和效果进行客观评价。
二、开发强度评估的方法和指标开发强度评估是通过对城市土地利用情况进行量化分析,得出城市土地开发强度的大小。
常用的评估方法包括遥感影像解译、地理信息系统分析和统计学方法等。
在评估过程中,需要选取一些合适的指标来衡量土地利用的程度和效果。
常用的指标包括建筑覆盖率、绿地率、水体面积比例、人口密度等。
这些指标可以客观反映城市土地利用的情况,为制定合理的土地利用规划提供科学依据。
三、评估结果的应用开发强度评估的结果可以为城市土地利用规划提供重要参考。
首先,评估结果可以揭示土地利用的状况和问题,为规划制定者提供决策依据。
例如,如果评估结果显示某个区域的开发强度过高,就可以采取相应的措施来调整土地利用结构,减少开发强度。
其次,评估结果可以为城市规划的监测和评估提供数据支持。
通过定期进行开发强度评估,可以及时了解城市土地利用的变化,为城市规划的调整和改进提供参考。
最后,评估结果还可以为城市的可持续发展和生态环境保护提供指导。
通过合理控制开发强度,可以保护土地资源,减少生态环境的破坏,实现城市的可持续发展。
综上所述,城市土地利用规划中的开发强度评估是一种重要的评价方法,它对城市的可持续发展和生态环境保护具有重要意义。
土地利用变化对生态环境影响的分析与模拟土地利用变化是指土地利用类型、土地利用强度及其时空变化的过程。
其产生的影响不仅涉及到生态环境,也涉及到社会经济、资源利用和环境治理等方面。
因此,对于土地利用变化的影响进行深入分析和模拟具有重要意义。
一、土地利用变化对生态环境的影响土地利用变化对生态环境的影响主要表现在以下几个方面:1.影响生态系统服务功能土地利用变化会破坏生态系统的完整性和稳定性,降低生态系统的服务功能。
大量的土地开垦和城市化过程中对生态系统的影响至关重要,如农业耕地的减少、城市扩张等,使得很多生态系统服务功能无法维持。
2.影响生态环境的稳定性土地利用变化会引起生态环境的不稳定性,破坏植被、水土流失等生态过程,导致生态环境的破坏和丧失,增加自然灾害的风险,这些灾害如洪涝灾害、滑坡、泥石流等会对生态环境造成巨大的破坏。
3.影响生物多样性土地利用变化也会影响生物多样性,人类活动可能会导致生态系统中某些物种的数量减少,甚至灭绝,进而导致整个生态系统的崩溃。
破坏生态系统中的生物多样性,也会影响到人类的生存条件和社会发展的可持续性。
二、土地利用变化的模拟方法模拟土地利用变化可通过地理信息系统(GIS)与遥感技术相结合,采用定量分析的方法进行模拟。
通过GIS技术遥感图像的分类与土地利用变化规律的探究,可以对未来土地利用变化趋势进行预测和分析。
更具体地说,可以通过以下几个步骤进行:1.获取输入数据获取与土地利用变化相关的数据: 地形、土地利用现状、社会经济因素和自然生态环境因素等信息。
2.处理输入数据数据预处理是采集、管理、转换和归档数据的过程。
处理输入数据可以更好地应用模型和算法,以获得更准确的模拟结果。
3.选择适当的模型和算法模型的选择相当重要。
根据不同的场景和研究目的,选择合适的模型和算法,如马尔科夫链模型、人工神经网络模型等。
4.评估模拟结果通过模拟对模型进行评估,判定模拟结果的可靠性和精度。
评估过程涉及到准确性、可靠性和稳定性等多个方面的指标。
第44卷第1期2024年2月水土保持通报B u l l e t i no f S o i l a n d W a t e rC o n s e r v a t i o nV o l .44,N o .1F e b .,2024收稿日期:2023-03-19 修回日期:2023-09-06资助项目:国家重点研发计划政府间国际科技创新合作重点专项 利用地理空间技术监测和评估土地利用/土地覆被变化对区域生态安全的影响 (2018Y F E 0184300);云南省自然科学资助项目 生态文明建设排头兵引领下的云南省三线协调与优化研究 (202101A T 070052);云南省教育厅项目 基于深度学习的滇中城市群L U L C 遥感信息提取 (2022J 0139) 第一作者:冯婧文(1998 ),女(汉族),甘肃省华亭市人,硕士研究生,研究方向为生态环境遥感智能信息提取㊂E m a i l :2387478740@q q .c o m ㊂ 通信作者:丁雪(1983 ),男(汉族),云南省陆良县人,副研究员,主要从事资源环境遥感㊁遥感智能信息处理等方面的研究㊂E m a i l :d i n gx u e _1983@163.c o m ㊂基于G E E 的昆明市生态系统服务价值与生态风险变化冯婧文1,丁雪2,3,4,易邦进5(1.云南师范大学信息学院,云南昆明650500;2.云南师范大学地理学部,云南昆明650500;3.云南省高校资源与环境遥感重点实验室,云南昆明650500;4.云南省地理空间信息技术工程技术研究中心,云南昆明650500;5.云南省地质科学研究所,云南昆明650051)摘 要:[目的]研究区域生态系统服务价值和生态风险变化及影响,为土地资源合理利用及国土空间生态修复提供决策支持㊂[方法]以L a n d s a t 遥感影像为数据源,使用G E E (G o o g l eE a r t hE n g i n e )平台随机森林分类方法对云南省昆明市1990 2020年的土地利用变化信息进行提取,基于解译结果进行空间动态变化分析,采用当量因子法估算生态系统服务价值,运用生态风险模型揭示生态风险变化趋势,并借助双变量空间自相关模型计算二者的相关性㊂[结果]①1990 2020年,昆明市土地利用类型中林地和草地占地面积最大,建设用地面积明显增加,耕地㊁草地和林地面积减少㊂②昆明市生态系统服务价值总体呈逐年上升趋势,共上升3.08ˑ108元,生态保护政策的有效实施对生态系统服务价值的提升有积极作用;研究期间生态风险以中㊁低风险为主,占总面积的79%,生态风险总体均值下降了0.12,城市经济发展与环境保护向良性态势发展㊂③生态风险对生态系统服务价值变化具有一定的影响㊂随着时间的推移,高价值 高风险区面积逐渐减少,低价值 低风险区面积逐渐增加,无明显极值㊂[结论]将区域生态系统服务价值和生态风险结合,能够较好地刻画昆明市人类活动所引起的生态环境状况的改变,为环境保护和高质量的可持续发展提供决策管理参考,有效防范生态风险,使昆明市经济发展与环境保护向良性态势发展㊂关键词:土地利用土地覆盖;生态系统服务价值;生态风险;相关性;昆明市文献标识码:A 文章编号:1000-288X (2024)01-0335-11中图分类号:F 301,X 24文献参数:冯婧文,丁雪,易邦进.基于G E E 的昆明市生态系统服务价值与生态风险变化[J ].水土保持通报,2024,44(1):335-345.D O I :10.13961/j .c n k i .s t b c t b .2024.01.033;F e n g J i n g w e n ,D i n g X u e ,Y iB a n g ji n .C h a n g e s o f e c o s y s t e ms e r v i c e v a l u e a n de c o l o g i c a l r i s k i nK u n m i n g C i t y ba s e do nG E E [J ].B u l l e t i no f S o i l a n d W a t e rC o n s e r v a t i o n ,2024,44(1):335-345.C h a n g e s o fE c o s y s t e mS e r v i c eV a l u e a n dE c o l o gi c a l R i s k i nK u n m i n g C i t y Ba s e do nG E E F e n g J i n g w e n 1,D i n g X u e 2,3,4,Y i B a n g ji n 5(1.S c h o o l o f I n f o r m a t i o nS c i e n c e a n dT e c h n o l o g y ,Y u n n a nN o r m a lU n i v e r s i t y ,K u n m i n g ,Y u n n a n 650500,C h i n a ;2.F a c u l t y o f G e o g r a p h y ,Y u n n a nN o r m a lU n i v e r s i t y ,K u n m i n g ,Y u n n a n 650500,C h i n a ;3.Y u n n a nP r o v i n c i a lK e y L a b o r a t o r y o nR e s o u r c e s a n dE n v i r o n m e n tR e m o t eS e n s i n g o f U n i v e r s i t y ,K u n m i n g ,Y u n n a n 650500,C h i n a ;4.G e o s p a t i a l I n f o r m a t i o nT e c h n o l o g y E n g i n e e r i n g R e s e a r c hC e n t e r o f Yu n n a nP r o v i n c e ,K u n m i n g ,Y u n n a n 650500,C h i n a ;5.Y u n n a nI n s t i t u t e o f G e o l o g i c a lS c i e n c e s ,K u n m i n g ,Y u n n a n 650051,C h i n a )A b s t r a c t :[O b j e c t i v e ]T h ec h a n g e sa n di m p a c to fr e g i o n a le c o s y s t e m s e r v i c e sa n de c o l o gi c a lr i s k s w e r e s t u d i e d i no r d e r t o p r o v i d e d e c i s i o n -m a k i n g s u p p o r t f o r t h e r a t i o n a l u t i l i z a t i o n o f l a n d r e s o u r c e s a n d e c o l o gi c a l r e s t o r a t i o no f t e r r i t o r i a l s p a c e .[M e t h o d s ]L a n d s a t r e m o t e s e n s i n g i m a g e sw e r eu s e dw i t h t h e r a n d o mf o r e s t c l a s s i f i c a t i o nm e t h o do f t h eG E E (G o o g l eE a r t hE n g i n e )p l a t f o r mt o e x t r a c t l a n du s e c h a n ge i nf o r m a t i o n f o r K u n m i ng C i t y ,Y u n n a nP r o v i n c e f r o m1990t o 2020.As p a t i a l d y n a m i c ch a n g e a n a l y si sw a s c a r r i e d o u t b a s e d o n t h e i n t e r p r e t a t i o n r e s u l t s .T h e e q u i v a l e n t f a c t o rm e t h o dw a s u s e d t o e s t i m a t e e c o s ys t e ms e r v i c e v a l u e s .A ne c o l o g i c a l r i s km o d e lw a s u s e d t od e t e r m i n e t h e c h a n g e i n e c o l o g i c a l r i s ko v e r t i m e.T h e c o r r e l a t i o nb e t w e e n e c o s y s t e ms e r v i c ev a l u ea n de c o l o g i c a lr i s k w a sc a l c u l a t e d w i t hab i v a r i a t es p a t i a la u t o c o r r e l a t i o n m o d e l. [R e s u l t s]①A m o n g t h el a n du s et y p e si n K u n m i n g C i t yf r o m1990t o2020,f o r e s t l a n da n dg r a s s l a n d o c c u p i e d th e l a r g e s ta r e a,t h ea r e ao fc o n s t r u c ti o nl a n di n c r e a s e ds i g n i f i c a n t l y,a n dt h ea r e ao fc u l t i v a t e d l a n d,g r a s s l a n d,a n d f o r e s t l a n dd e c r e a s e d.②T h ev a l u eo f e c o s y s t e ms e r v i c e s i nK u n m i n g C i t y s h o w e da n o v e r a l l u p w a r d t r e n do v e r t i m e,w i t hat o t a l i n c r e a s eo f3.08ˑ108y u a n.T h ee f f e c t i v e i m p l e m e n t a t i o no f e c o l o g i c a l p r o t e c t i o n p o l i c i e si n c r e a s e dt h ev a l u eo fe c o s y s t e m s e r v i c e s.E c o l o g i c a lr i s k sd u r i n g t h es t u d y p e r i o dw e r em a i n l y c l a s s i f i e d a sm e d i u ma n d l o wr i s k s,a n d a c c o u n t e d f o r79%o f t h e t o t a l a r e a.T h e o v e r a l l a v e r a g ee c o s y s t e m s e r v i c e v a l u e d e c r e a s e d b y0.12,i n d i c a t i n g t h a t u r b a n e c o n o m i c d e v e l o p m e n t h a dd e v e l o p e dw i t h l i t t l e i m p a c to nt h ee n v i r o n m e n t.③E c o l o g i c a l r i s kh a dac e r t a i ni m p a c to nt h ec h a n g eo fe c o s y s t e ms e r v i c e v a l u e,a n dw i t ht h e p a s s a g eof t i m e,t h e a r e ao f h ig h-v a l u e a n dhi g h-r i s ka r e a s g r a d u a l l y d e c r e a s e d,a n d t h e a r e a o f l o w-v a l u e a n d l o w-r i s k a r e a s g r a d u a l l y i n c r e a s e d,w i t h o u t o b v i o u s e x t r e m e s.[C o n c l u s i o n] T h e c o m b i n a t i o no f r e g i o n a l e c o s y s t e m s e r v i c ev a l u ea n de c o l o g i c a l r i s kc a nb e t t e rc h a r a c t e r i z ec h a n g e s i n e c o l o g i c a le n v i r o n m e n to f K u n m i n g C i t y c a u s e d b y h u m a n a c t i v i t i e s,a n d p r o v i d e d e c i s i o n-m a k i n g a n d m a n a g e m e n t r e f e r e n c e sf o re n v i r o n m e n t a l p r o t e c t i o na n dh i g h-q u a l i t y s u s t a i n a b l ed e v e l o p m e n t.e f f e c t i v e l y p r e v e n t e c o l o g i c a l r i s k s,a n dm a k e t h e e c o n o m i c d e v e l o p m e n t a n d e n v i r o n m e n t a l p r o t e c t i o no fK u n m i n g C i t y d e v e l o p t o ab e n i g n s i t u a t i o n.K e y w o r d s:l a n du s e l a n d c o v e r(L U L C);e c o l o g i c a l s e r v i c e v a l u e;e c o l o g i c a l r i s k;r e l e v a n c e;K u n m i n g C i t y土地资源承载着人类社会经济发展[1],与人类生存发展息息相关[2],土地利用变化作为人类活动与自然演变的重要纽带[3],影响了生态系统的结构和功能转变[4],进而影响了其服务价值和风险程度,需要指出的是,不合理的土地利用会导致生态系统结构恶化和生态风险加剧[5],同时给生态环境的可持续发展带来极大挑战㊂生态系统服务价值(e c o s y s t e m s e r v i c ev a l u e, E S V)是人们对土地进行开发利用过程中的经济价值和环境价值总称,是生态系统服务内容的市场化表现形式㊂C o s t a n z aR.等[6]较早地提出了E S V的原理和计算方法㊂近年来,H a q u eM.N.等[7]对孟加拉国达卡都市区土地利用和E S V的关系进行了研究,发现水体㊁植被和农业用地覆盖面积的下降会导致E S V 下降㊂谢高地等[8]根据中国实际情况对E S V进行了更全面㊁更客观的模型构建㊂许多学者在此基础上展开了研究,J i a n g W e i等[9]对青藏高原E S V的研究表明,河流㊁湖泊和裸露冰川的减少导致E S V降低,气候变化和人类活动对其也有一定影响㊂Y u a nK e y u e 等[10]发现陕西省商洛市商州区土地利用类型中林地对当地E S V的贡献率最高㊂严长安等[11]通过探究滇池流域土地利用变化与E S V的定量响应关系对区域生态环境保护提供重要借鉴㊂上述研究表明,生态系统服务价值评价已形成相对完善的研究范式㊂生态风险(e c o l o g i c a l r i s k,E R)是指自然因素及人类活动对生态系统结构的稳定性所产生负面影响的可能程度[12],用来评价生态安全情况㊂D a s M.等[13]利用E R对印度加尔各答城市区域进行研究,结果表明过去20a间加尔各答及周边城市的E R都大幅增加;N e m a t o l l a h i S.等[14]研究发现伊朗中部和东部大约10%~25%研究区域属于高风险和中风险类别;S h e n J i a n x i u等[15]指出虽然退耕还林政策实施使得甘肃省正宁县东㊁中㊁西部的E R均减小,但是E R防范仍然是研究的重点方向㊂重视生态风险评价对于化解潜在生态危害,建设生态文明具有现实意义[16]㊂国内外学者已经对E S V和E R展开了大量研究,多数学者把二者作为两个独立的主题开展研究,并取得丰富成果,为E S V和E R相关性的研究奠定了扎实基础㊂蒋伟峰等[17]以淮河流域安徽段的土地利用数据为基础,探讨E S V与E R时空演化过程中的异质性和相关性㊂李辉等[18]核算近30a三峡库区E S V和E R的时空分布特征及二者相关性,属于为数不多进行E S V和E R相关性研究的文献㊂现有研究中,针对生态系统服务价值和生态风险的评估主要表现为将生态系统服务价值引入到生态风险中对其进行应用实践,虽极大程度地提高了评价的时效性,但缺乏两者评价的整体性,对二者的关系影响尚不明确,同时大多数传统评价框架停留在探讨阶段,针对长时期同一区域的相互作用机理研究较少[19-20]㊂E S V和E R的相关性研究是两门独立学科走进融合的综合性研究,两者相结合可以将生态系统服务价值的供需关系融合在一起,及时监测生态环境的变化情633水土保持通报第44卷况,精准地对生态风险区开展生态资源保护和国土空间修复,减少生态环境恶化的概率,提高生态系统服务价值,进一步通过构建有效的生态保护模式找寻两者的整体联系[21]㊂目前针对长时序生态系统服务价值和生态风险的相关性研究还相对较少,二者的融合可以推动区域生态经济协调发展,是实现关联生态过程和风险评估的重要途径㊂土地利用数据是E S V和E R核算的基础,谷歌地球引擎(G o o g l eE a r t hE n g i n e,G E E)的出现为准确快速地提取土地利用信息提供可能[22]㊂昆明市作为云南省省会城市,过去30a来经济快速发展,人口急剧增长,城市不断扩张,及时掌握该区域土地覆被变化引起的生态系统服务价值和生态风险变化,对土地资源的可持续利用与生态环境保护具有至关重要的现实意义,因研究区地处高原城市,不仅对高原相对发达城市具有借鉴意义,更可为具有相似环境背景的大中城市提供新的研究思路㊂基于此,本文以G E E为依托平台,使用随机森林分类算法(R F)提取了昆明市1990 2020年的土地利用信息,并对其30a来生态系统服务价值㊁生态风险及其空间动态变化进行分析,旨在可为昆明市乃至全国未来经济国土空间规划提供决策支持[23]㊂1材料与方法1.1研究区概况云南省昆明市位于东经102ʎ10' 103ʎ40',北纬24ʎ23' 26ʎ22'(图1),地处中国西南㊁云贵高原中部,是云南省省会㊁滇中城市群中心,属于亚热带高原气候,四季如春,素有春城之美誉,总面积为21012.54k m2,全市下辖7个区,3个县,并且代管1个县级市和3个自治县,常住人口为8.46ˑ106人,占全省人口的17.92%,年平均气温17.0ħ,年降水量522.8mm(降水㊁气温数据来源于国家气象科学数据共享服务平台,其他数据来源于2021,2022年云南省统计年鉴和昆明市政府网)㊂1.2数据来源本文研究使用的遥感数据来源于G o o g l eE a r t h E n g i n e平台的1990 2020年的L a n d s a t系列影像数据,其中1990 2012年使用的是空间分辨率为30m 的L a n d s a t5遥感影像,2013 2020年使用的是空间分辨率为30m的L a n d s a t8遥感影像,除2012年遥感数据采用1 4月均值合成数据外,其余年份均采用1 12月均值合成数据㊂行政区边界数据来源于地理国情监测平台(h t t p:ʊw w w.d s a c.c n/),计算单位面积生态系统服务价值均值包含的玉米㊁小麦和水稻等主要作物的单位面积粮食产量来源于国家统计局(w w w.s t a t s.g o v.c n)和云南省统计年鉴(w w w. s t a t s.y n.g o v.c n)㊂其中生态系统服务价值核算模型和生态风险核算模型是在A r c G I S10.4软件中将研究区域按500mˑ500m进行格网化得到85551个评价单元来核算㊂图1昆明市地形F i g.1T o p o g r a p h y o fK u n m i n g C i t y1.3研究方法1.3.1随机森林分类随机森林分类算法(r a n d o mf o r e s t,R F)是由B r e i m a n[24]于2001年提出的结合决策树㊁B ag g i n g法和随机子空间理论[25]的一种基于多颗决策树依赖独立采样随机向量值的监督学习算法,是对传统决策树的算法改进㊂其利用b o o t s r a p方法抽取多个样本构造多颗决策树[26],通过多颗决策树对样本进行训练依靠训练模型对样本类别进行预测[27],即通过投票产生结果 式(1) ㊂C(x)=a j a r g m a xðn i=1b j i(x)(1)式中:C(x)表示随机森林模型;b i表示第i个决策树;a j为类别标记㊂与单颗决策树相比较,R F训练样本的随机性很好地避免了过拟合的缺点;与其他机器学习算法相比,R F具有较强的稳定性,每颗决策树和树中结点特征属性的选择随机性亦使R F具有泛化能力强㊁精度高和速度快等优点㊂根据昆明市的实际情况,参考国家标准‘土地733第1期冯婧文等:基于G E E的昆明市生态系统服务价值与生态风险变化利用现状分类“(G B /T21010 2017),将研究区的土地利用类型分为6类,分别为耕地㊁林地㊁草地㊁水域㊁建设用地㊁未利用土地,为保证样本点的数据精度,采用G o o gl eE a r t h P r o 软件对1990 2020年昆明市地物类型进行目视解译,样本点满足均匀分布原则[28]㊂基于G o o g l e e a r t he n gi n e 云平台进行A P I 编程,为提升分类精度,加入了光谱指数㊁植被指数㊁地形特征进行训练,并对训练样本点和验证样本点按照7ʒ3的比例采用R F 算法进行土地利用分类,得到各个年份分类总体精度和k a p p a 系数(表1)㊂实验结果表明分类结果良好,分类数据能满足后续研究需要㊂表1 昆明市土地利用分类精度T a b l e 1 L a n du s e c l a s s i f i c a t i o na c c u r a c y i nK u n m i n g C i t y年份总体精度/%k a p pa 系数年份总体精度/%k a p pa 系数年份总体精度/%k a p pa 系数199080.040.81200183.560.80201285.930.83199180.650.80200285.770.82201383.020.80199280.400.81200383.690.80201485.110.82199382.120.82200484.530.81201586.050.83199481.960.81200584.150.80201687.720.85199580.200.85200684.800.81201785.100.82199680.050.82200784.400.80201888.140.86199781.140.82200884.180.80201987.040.84199882.930.83200986.670.84202087.750.85199982.780.82201085.500.82200083.010.80201183.760.801.3.2 生态系统服务价值核算模型 目前,E S V 的计算方法主要有基于单位价值的价值功能法和基于单位面积的当量因子法两种,昆明市耕地以水田和旱地为主㊂本文研究尺度较小,属性近似,自然地理特征表现一致,可以直接采用当量赋值的方法进行核算㊂根据谢高地等[8]于2007年提出的生态系统服务价值当量表 式(2),根据徐丽芬等[29]地区修正公式 式(3,4) ,对研究区生态系统服务价值进行修正,计算结果见表2㊂E a =1/7ðni =1m i p i q iM(i =1,2 n )(2)式中:E a 表示单位经济价值;i 表示农作物类型;m i ,p i ,qi 表示对应粮食类型的面积㊁均价㊁单产;M 表示对应粮食的总面积㊂φ=QQ 0,E n =φˑE n 0(3)式中:φ表示修正因子;Q 和Q 0分别表示昆明市和全国单位面积的平均产量;E n 表示第n 类地类修正后的当量因子;E n 0表示谢高地等[8]已经确定的同种地类当量因子㊂E S V=ðnm =1(A m ˑV C m )(4)式中:E S V 表示生态系统服务价值;A m 表示地类m 所占的面积;V C m 表示生态系统服务价值的系数㊂表2 昆明市单位面积生态系统服务价值均值T a b l e 2 A v e r a g e e c o s y s t e ms e r v i c e v a l u e p e r u n i t a r e a i nK u n m i n g C i t y104yu a n /k m 2生态服务类型单位面积生态系统服务价值耕地林地草地建设用地水域未利用地食物生产18.316.047.870.009.704.21原材料生产7.1454.566.590.006.413.66气体调节13.1879.1027.470.009.3414.28气候调节17.7674.5228.560.0037.7215.56水文调节14.1074.8927.830.00343.6814.65废物处理25.4531.4924.170.00271.9014.46保持土壤26.9273.6141.010.007.5122.16维持生物多样性18.6882.5834.240.0062.8020.87提供美学景观3.1138.0815.936.7781.3010.25合计144.65514.88213.686.77830.36120.11833 水土保持通报 第44卷1.3.3 土地利用生态风险核算模型 土地利用生态风险用于描述土地结构和风险程度的关系,不同的土地利用类型拥有不同的价值和功能,计算公式为:E R=ðnm =1C n D nC(5)式中:E R 表示生态风险;C 表示土地总面积;D 表示土地生态风险强度,根据文献[18],将耕地赋值为0.36,林地赋值为0.17,草地赋值为0.05,水域赋值为0.05,建设用地赋值为0.04,未利用土地赋值为0.02㊂运用空间插值法中指数克里金(K r i g i n g)插值法对研究区网格进行插值可得到土地利用生态风险分布情况,基于等间隔分类法(e q u a l i n t e r v a l )将1990 2020年研究区生态风险划分为Ⅰ(低生态风险)㊁Ⅱ(较低生态风险)㊁Ⅲ(中等生态风险)㊁Ⅳ(较高生态风险)和Ⅴ(高生态风险)5种模式㊂1.3.4 双变量空间自相关模型 空间自相关模型反映各个地类在空间中的聚集性㊁随机性等相关程度,分为局部自相关和全局自相关[30]㊂本文通过G e o d a软件使用双变量空间分析模型,利用M o r a n s I 指数反映土地利用类型的空间关联性,M o r a n s I <0,表示空间关联程度为负相关,M o r a n s I =0,表示空间关联程度为不相关,M o r a n s I >0,表示空间关联程度正相关,计算公式为:I i j =k ðkm =1ðkn =1L m n (x m ,i -y i )/γi (x m ,j -y j )/γj (n -1)ðk m =1ðkn =1L m n (6)式中:I i j 为单位面积的双变量全局自相关系数;L m n 表示地理单元相互邻接关系的权重矩阵,空间权重能根据邻接标准和距离标准度量,邻接标准将空间单元定义为1,不连接的定义为0,距离标准将一定范围内定义为1,距离之外定义为0;i 表示生态系统服务价值;j表示生态风险;X m ,i 和X m ,j 分别表示第m 个单元内的生态系统服务价值和生态风险;γ表示方差㊂运用斯皮尔曼(S pe a r m a n )相关分析E S V 与E R 间的相关关系,参考文献[18],显著性系数定为0.01,依据空间分布关系具体分为不显著和显著两种模式,显著又细分为高价值 高风险㊁低价值 低风险㊁低价值 高风险和高价值 低风险4种模式㊂2 结果与分析2.1 昆明市土地利用类型变化分析1990 2020年,林地和草地均为昆明市土地利用占比最大的部分,截至2020年林地和草地分别占全市总面积的44.96%,27.64%(表3 4)㊂30a 间,昆明市耕地面积不断减少,减少了8.78%,建设用地大幅度增加,增加了195.79%,水域和未利用地分别增加了44.85,2.5k m 2㊂由于受气候变化和人类活动影响,1990 2020年昆明市各用地类型变化明显,草地主要转换为林地,转换面积为263.48k m 2,对应的转移率为4.29%,林地大面积增加的原因在于积极响应国家植树造林㊁生态修复政策,将草地逐步转换为更适宜当地发展的土地类型;耕地主要转换为建设用地,转换面积为442.95k m 2,对应的转移率10.16%,林地主要转换为建设用地和耕地,转换面积为116.47,118.48k m 2,对应的转移率为1.22%和1.24%,主要与森林退化㊁毁林开荒有关;水域和未利用地变化不明显㊂2.2 生态系统服务价值空间分布特征1990 2020年,昆明市E S V 在空间分布上基本是相似的,但局部存在差异(图2)㊂1990 2020年,昆明市E S V 总体呈上升趋势,由1990年的7.21ˑ1010元上升至2020年的7.68ˑ1010元,上升了4.70ˑ109元㊂生态服务价值增长速率逐年加快,增幅为6.8%㊂从空间分布来看,昆明市E S V 高值区以滇池㊁阳宗海等水域周围为主,禄劝县北部E S V 也较高,云龙水库处E S V 上升最为明显;低值区主要位于建设用地密集区㊁昆明市主城区及东川植被覆盖较低区域,从土地利用的角度来看,昆明市有效地实施了生态保护政策,使得土地结构分配更加合理,生态得到改善,为城市可持续规划提供了科学参考㊂表3 1990—2020年昆明市土地利用面积及土地利用动态变化度T a b l e 3 L a n du s e a r e a a n dd y n a m i c c h a n g e s d e g r e e o f l a n du s e i nK u n m i n g C i t y fr o m1990t o 2020土地类型面积/k m 21990年2000年2010年2020年土地变化动态度/%1990 2000年2000 2010年2010 2020年耕地4360.144254.874223.453977.78-0.50-0.15-1.17林地9552.719580.949560.839441.030.13-0.10-0.57草地6146.716137.795967.235803.68-0.04-0.81-0.78水域466.90471.30486.17511.750.020.070.12建设用地403.37484.81688.841193.110.390.972.40未利用地68.7368.7472.1971.230.000.020.00933第1期 冯婧文等:基于G E E 的昆明市生态系统服务价值与生态风险变化表41990 2020年昆明市土地利用转移矩阵T a b l e4L a n du s e t r a n s f e rm a t r i x o fK u n m i n g C i t y f r o m1990t o2020k m2项目2020年面积草地耕地建设用地林地水域未利用地总计积面年0 9 9 1草地5427.82194.06236.51263.4819.174.466145.50耕地118.113636.92442.95136.9124.390.484359.75建设用地7.2514.11376.132.023.660.19403.37林地244.01118.48116.479033.2836.561.139549.93水域3.3813.0720.872.84426.470.14466.77未利用地2.110.770.130.490.4764.7568.72总计5802.673977.421193.069439.02510.7271.1520994.04图21990 2020年昆明市生态系统服务价值空间分异及其变化F i g.2S p a t i a l d i f f e r e n t i a t i o na n d c h a n g e s o f e c o s y s t e ms e r v i c e v a l u e i nK u n m i n g C i t y f r o m1990t o2020研究期间,耕地是昆明市生态系统服务价值构成的主体结构(表5),所占的比例最重,其次为水域和建设用地,草地和林地的E S V比例相当,未利用地比例最少㊂水域的E S V呈逐年上升趋势,这主要得益于昆明市水环境治理取得的显著成效;草地㊁耕地建设用地E S V逐年下降,这是由于森林退化以及昆明市经济快速发展,人口急剧增长和城市不断扩张所导致的㊂043水土保持通报第44卷表5 1990 2020年昆明市土地利用类型生态系统服务价值变化T a b l e 5 C h a n g e s i n e c o s y s t e ms e r v i c e v a l u e o f l a n du s e t y p e s i nK u n m i n g C i t y f r o m1990t o 2020土地利用类型1990年E S V/元比例/%2000年E S V/元比例/%2010年E S V/元比例/%2020年E S V/元比例/%草地6.31ˑ1098.756.16ˑ1098.466.11ˑ1098.265.75ˑ1097.49耕地4.92ˑ101068.234.93ˑ101067.824.92ˑ101066.594.86ˑ101063.30建设用地1.31ˑ101018.221.31ˑ101018.031.28ˑ101017.251.24ˑ101016.15林地3.20ˑ1070.043.20ˑ1070.043.30ˑ1070.043.50ˑ1070.05水域3.35ˑ1094.654.03ˑ1095.535.72ˑ1097.749.91ˑ10912.90未利用地8.30ˑ1070.118.30ˑ1070.118.70ˑ1070.128.60ˑ1070.11总计7.21ˑ1010100.007.27ˑ1010100.007.39ˑ1010100.007.68ˑ1010100.002.3 生态风险变化分析1990 2020年昆明市生态风险整体以低风险㊁较低风险和中等风险区为主(表6),其所占比例分别19%,22%和38%,30a 来生态风险值持续降低,总体下降0.12,研究区生态安全状况有所改善㊂从空间分布来看,1990 2020年昆明市生态风险降低区域主要分布在滇池周围,生态风险升高区域较为分散,生态风险降低区域面积占比明显高于生态风险升高区域(图3)㊂低生态风险区主要分布在滇池周围和研究区北部及中东部地区,研究期内低生态风险区面积呈上升趋势,主要表现为昆明市主城区城市化较其他区域更快,建设用地聚集成片,稳定性强,人为及外界干预较少,此外,人们环境保护意识增强,早年间违法砍伐山林破坏山体的现象有所抑制,生态风险得到有效改善,较低风险区面积逐渐上升㊂中等生态风险区主要分布于研究区植被覆盖密集区,多分布于耕地和林地地带,研究期内面积变化整体稳定㊂较高生态风险区分布较为分散,多位于中等风险区和高风险区的过渡地带,面积占比趋于稳定㊂高生态风险区主要分布在城市边缘地带,人为景观和生态景观的交错阻断了生态系统的完整性,一定程度上加大了生态风险,随着时间的推移,高生态风险区面积逐步降低,城市经济发展与环境保护向良性态势发展㊂表6 1990 2020年昆明市生态风险等级所占比例T a b l e 6 P r o p o r t i o no f e c o l o g i c a l r i s k l e v e l s i nK u n m i n g C i t yf r o m1990 2020y e a r s 等级E R各等级E R 在不同年份所占比例/%1990年2000年2010年2020年1990 2020平均值Ⅰ[0.00,0.20)0.200.210.210.230.19Ⅱ[0.20,0.40)0.200.190.200.200.22Ⅲ[0.40,0.60)0.380.390.380.370.38Ⅳ[0.60,0.80)0.100.100.100.100.10Ⅴ[0.80,1.00]0.120.110.110.100.102.4 生态系统服务价值与生态风险相关性分析1990 2020年昆明市E S V -E R 自相关性以不显著为主,不显著区域面积大于显著区域面积,且在研究期内E S V -E R 自相关性不显著区与显著区变化幅度都不大,不显著区域面积所占比例在58.14%~58.83%之间,显著区域所占比例均在41.17%~41.86%㊂显著区域面积以低价值 低风险区㊁低价值 高风险区为主,但这4种模式的变化特点不一样㊂高价值 高风险区所占面积呈持续缓慢增加,低价值 低风险区呈波浪式微幅增加,低价值 高风险区所占面积持续缓慢减少,高价值 低风险区呈先减少后增加再减少趋势(表7)㊂表7 1990 2020年昆明市E S V -E R 自相关性各类型面积及所占比例T a b l e 7 A r e a a n d p r o p o r t i o no f v a r i o u s t y p e s o fE S V -E Ra u t o c o r r e l a t i o n i nK u n m i n g C i t yf r o m1990t o 2020E S V -E R 自相关性1990年面积/k m2比例/%2000年面积/k m2比例/%2010年面积/k m 2比例/%2020年面积/k m 2比例/%不显著12517.5058.5312434.5058.1412582.0058.8312501.7558.45高价值 高风险1046.254.891125.505.261147.255.361305.006.10显著低价值 低风险3601.0016.843732.2517.453599.2516.833747.2517.52低价值 高风险3022.7514.132951.2513.802901.2513.572784.2513.02高价值 低风险1200.255.611144.255.351158.005.411049.504.91143第1期 冯婧文等:基于G E E 的昆明市生态系统服务价值与生态风险变化图31990—2020昆明市生态风险空间分异及其变化F i g.3S p a t i a l d i f f e r e n t i a t i o na n d c h a n g e s o f e c o l o g i c a l r i s k s i nK u n m i n g C i t y f r o m1990t o2020自相关性区域离散分布于研究区整个区域(图4),高价值 高风险区主要零星分布在昆明市西南部和中部地区,由于昆明市积极响应植树造林㊁生态修复政策,该区域面积逐渐减少㊂高价值 低风险区主要分布于低价值 低风险区和不显著区的过渡地带,主要表现在滇池和阳宗海等水域区域,由于昆明市生态环境质量有所提高,该区域面积逐渐增加㊂低价值 高风险区期初主要分布于高价值 高风险区毗邻区域,由于高风险地类的聚类效应,该模式面积逐年减少㊂低价值 低风险区以林地和草地为主,主要分布在东川区人类活动干扰较低的区域,其E S V主要受生态环境影响,处于相对稳定的状态㊂不显著区主要分布在研究区北部,土地覆盖以大面积林地和草地为主,土地利用无明显波动㊂4种类型的E S V-E R自相关性可以用于反映其空间聚集差异,分析整体空间关联性与差异性,在区域整体生态评估中呈现实践价值㊂高价值 高风险区的生态质量改善对区域综合治理开发有明显积极作用,应注意保护,减少人为干扰;高价值 低风险及低价值 高风险区受城市土地利用开发影响,在带来较好社会经济效益的同时,也会导致E S V退化,应增加人造自然景观面积,坚持生态保护和修复,提升部分耕地向林草地转化的概率,维持人口密度较低现状;低价值 低风险区生态系统结构稳定,分布均衡无明显聚集中心㊂3讨论昆明市是云南省的省会城市,作为云南省唯一的特大城市,过去30a来发展迅速㊂随着城镇化的快243水土保持通报第44卷速推进,城镇化率不断提高,城市扩张显著,土地利用变化剧烈,土地资源比较紧张,资源环境承受着较大压力,土地利用生态风险加剧,城市生态系统服务价值和生态风险受着不同程度的影响,其中高等级生态风险区面积增长则需要引起特别关注,伴随着新发展理念的贯彻,土地资源的可持续利用与生态环境保护的协同发展能力将日渐增强,对昆明市今后的发展而言,避免出现不合理的土地利用,不断提高城市土地利用效率,降低土地利用生态风险,减少土地利用高风险区覆盖的面积,实现高质量可持续发展;在此基础上,本文研究结果将为高原相对发达城市提供借鉴意义,为具有相似环境背景的大中城市提供新的研究思路㊂图41990—2020年昆明市单位面积生态系统服务价值与生态风险自相关分布F i g.4A u t o c o r r e l a t i o nd i s t r i b u t i o no f e c o s y s t e ms e r v i c e v a l u e p e r u n i t a r e a a n d e c o l o g i c a l r i s k i nK u n m i n g C i t y f r o m1990t o2020生态系统服务价值高低是生态环境质量好坏的主要依据,高生态系统服务价值也是生态环境保护的重要方向,昆明市应注重滇池和阳宗海 两湖 生态保育,强化高原湖泊保护治理㊂生态风险是生态可持续发展的重要评价指标,本研究中昆明市生态风险整体以低㊁中生态风险为主,生态安全相对整体稳定,与已有研究相契合[31-32],侧面验证了昆明市生态保护措施实施有效㊂可以看出,生态系统服务价值和生态风险都与生态环境密不可分,现有研究主要运用已有模型对二者进行独立研究或者将生态系统服务价值引入到生态风险中进行应用实践,双变量空间自相关模型为生态系统服务价值和生态风险二者的整体联系提供了具体量化标准,对于建立完善的生态评价体系具有重要价值㊂将生态系统服务价值和生态风险有机结合并分析其相关性,可以较好地刻画生态环境变化区域,分析生态功能和风险变化,为区域生态保护和可持续发展提供决策依据,考虑现有研究成果多基于简单的货币量化修正当量因子,未涉及对社会需求㊁经济发展等变化因素的综合考量,对研究成果有一定影响,针对自然本底脆弱的高原地区生态风险存在的空间复杂性导致二者的空间相关性难以明确其关联机理;同时生态系统服务价值和生态风险均通过土地利用进行评估,两者评价针对各个地物类型缺乏明显独立性和稳定性,虽有研究表明将二者相关性融入某一固定识别框架对区域生态安全的识别精度有所提升,但其整体影响尚不明确,怎样准确评估还需进一步摸索㊂目前,从生态系统服务价值 生态风险相关性角度开展研究在研究深度和方法上还处于不断探索阶段,本文侧重于二者研究结果的相互关系研究,厘清两者的内在影响因素同时开展交叉性研究是今后的重点研究方向㊂4结论(1)1990 2020年昆明市土地利用变化显著,耕地大幅退化为草地,减少了8.77%;建设用地占用耕地现象大幅增加,增幅为195.79%;草地逐步转换为更适宜当地发展的土地类型,主要流向为林地,转移率为4.29%㊂(2)昆明市生态系统服务价值和生态风险分布各异㊂生态系统服务价值呈上升,生态风险呈下降趋势,其中生态系统服务价值上升了4.70ˑ109元,生态风险总体均值下降0.12;低生态系统服务价值和高生态风险呈局部聚集但聚集程度逐年下降趋势;生态质量整体向好,研究区生态安全状况有所改善㊂(3)生态风险和生态系统服务价值变化具有一定关联㊂由双变量空间自相关模型分析可知,研究期343第1期冯婧文等:基于G E E的昆明市生态系统服务价值与生态风险变化。
云南土地调研报告一、引言云南是中国西南地区的一个省份,位于中国的东南,与缅甸、老挝、越南等多个国家接壤。
云南是中国的一个多民族省份,拥有丰富的自然资源和独特的地理环境。
本报告将对云南省的土地资源进行调研分析,包括土地利用现状、土地政策和土地问题等方面。
二、土地利用现状2.1 农用土地利用情况根据云南省农业厅的数据,云南省的农用土地面积约为XX万公顷。
农用土地主要用于农作物种植和畜牧业。
农作物种植主要包括水稻、小麦、玉米等粮食作物,以及茶叶、甘蔗、水果等经济作物。
畜牧业主要包括养猪、养牛、养羊等。
农用土地利用率较高,但仍存在一些问题,如农田水利设施不完善、农药施用过量等。
2.2 建设用地利用情况云南省的建设用地主要用于城镇建设和工业园区。
随着城市化的推进,建设用地不断扩大。
目前,云南省的城镇化率约为XX%,在西南地区居于前列。
建设用地的利用率比较高,但也存在一些问题,如土地开发过度、环境污染等。
2.3 生态用地利用情况云南省拥有丰富的生态资源,生态用地主要用于自然保护区和风景名胜区。
云南省有很多著名的自然景点,如丽江古城、泸沽湖等。
生态用地的利用率相对较低,但也存在一些问题,如保护区管理不严格、非法采矿等。
三、土地政策3.1 农地承包政策云南省实行农地承包政策,鼓励农民通过土地承包经营的方式增加农业生产效益。
根据政策规定,农民可以通过与农村集体经济组织签订土地承包合同,获得土地使用权,并享有合同期限内农地的纯收益。
这一政策在一定程度上激发了农民的生产积极性,促进了农业现代化的发展。
3.2 城市土地管理政策云南省实行城市土地管理政策,通过土地出让、土地征收等方式,合理调控城市土地资源的供给。
政府加强对土地利用的监管,提高土地使用效率,推进城市的健康发展。
在城市建设中,云南省也注重保护历史文化遗产和生态环境,力求在发展与保护之间取得平衡。
3.3 生态用地保护政策云南省重视生态用地的保护,出台了一系列政策措施加强自然保护区的管理和保护。
嵩明县土地利用现状分析1.嵩明县基本情况1.1地理位置概况嵩明县位于云南省中部、昆明市东北部,地处北纬25°05′~25°28′、东经102°40′~103°20′,是昆明市辖近郊县,扼滇东北门户。
系三江(盘龙江、牛栏江、南盘江)之源,县境东与马龙县接壤,南部和西南部分别与宜良县、官渡区毗邻,西与盘龙区相交,北与寻甸县相连。
距昆明市区34公里。
嵩明县至2009年辖5个镇、1个乡:嵩阳镇、杨林镇、小街镇、牛栏江镇、滇源镇、阿子营乡。
1.2自然条件与社会经济条件地貌:嵩明县地处云贵高原西缘,山多地少。
67%为山区及丘陵地,面积909平方公里;33%为坝区,其中嵩明坝子面积414平方公里,系云南第七大平坝。
地势由西北向东南倾斜,山川多循北南方向展布,系云贵高原的山岳河谷地带。
北部的梁王山主峰大尖山海拔2840米,为境内最高点;东南部的洼子村海拔1770.5米,为境内最低点;坝区海拔大约在1896至1920米之间。
气候:嵩明县地处内陆,云贵高原面缘,全境气候属属典型的温带、暖温带和北亚热带混合型气候,夏无酷暑,冬无严寒,四季如春,多年平均气温14℃左右,极端最高气温35.7℃,极端最低气温-15.9℃,多年平均无霜期232天,年平均降雨量1000-1400毫米之间,多年平均风速3.1m/s,以西南风居多。
地质:嵩明县所处大地构造单元为昆明凹陷北部,其地质历史较久,地质结构较为复杂,各个地质时代的地层均有出露:碳酸盐地层发育, 岩层走高受北东,南西构造线所控制,平行于构造线。
碳酸盐岩层与玄武盐层为条带呈东西向相间展开,由北东向西南延伸,为北东紧密而南西分散的扇型结构,嵩明县境内以碳酸盐岩层为主,砂页岩与玄武岩次之。
到2003年底,全县国内生产总值达到143187万元(可比价),其中,第一产业完成44891万元,第二产业完成55698万元,三产业完成42598万元。
地方财政收入达9260万元,农民人均纯收入2398元。