4.3.2角的比较与运算
- 格式:doc
- 大小:416.00 KB
- 文档页数:2
课题:4.3.2角的比较与运算(第一课时)授课教师:阳江市实验学校 郑益好教材:人教版义务教育课程标准实验教科书七年级上册一、教学目标1.使学生通过联想线段大小的比较方法,找到角的大小的比较方法.2.使学生通过联想线段和差的表示方法,掌握角的和差的表示方法和计算.3.使学生通过联想线段中点的定义和符号语言,掌握角的平分线的概念和符号语言.4.培养学生类比联想的思维能力和对知识的迁移能力.二、教学重点、难点重点:1.角的大小比较的方法.2.角的平分线的定义.难点:1.从图形中观察角的和差关系.2.角的平分线的符号语言的表述及运用.三、教学方法与手段采取合作探究的教学方法,利用多媒体辅助教学.四、教学过程整体设计:(一)创设情境,提出问题问题1:通过观察,你能将图中扇子张开的角度按从大到小排列吗?问题2:下面的两个角,哪个角较大?(设计意图:学生根据已有经验,用观察法很容易解决问题1,但问题2却不容易解决,这样产生矛盾冲突,教师顺势引出本课课题,使学生认识到学好本课知识的必要性,进而积极主动地投入到学习中去.)(揭题,板书课题)(二)给出目标,自主学习1.展示本课的学习目标(1)会比较角的大小.创设情境 提出问题 ① ②③ ④DE F A B C 给出目标 自主学习 探究新知 解决问题 总结反思 情意发展 布置作业(2)会计算角度的和与差.(3)了解角的平分线的概念,会画角的平分线,并能结合图形用数学符号语言表述角的平分线.(4)通过探究,能熟练运用三角尺画一些特殊度数的角.(5)进一步体会类比的思想.2.展示本课的自学指导阅读教材138-140页例1之前的内容,然后解答下列问题:(1)联想线段大小的比较方法,找出角的大小比较方法有哪些?(2)联想线段和差的表述方法,角的和差如何表述?(3)联想线段中点的定义,叙述角的平分线的概念,并会用符号语言进行表述.三等分线呢?(设计意图:学生是学习的主人,教师是学生学习的引导者.学生明确目标后,在自学指导的提示下,通过自学或小组交流能较好解决的问题,应放手让学生尝试,培养学生的自学能力、合作意识.教师适时的巡视指导、参与学生讨论,既便于了解学情,解决学生疑问,又拉近了师生关系,便于创造良好课堂氛围.)(三)探究新知,解决问题1.探索新知1:角的比较方法问题1:线段大小的比较方法有哪些?学生回答:度量法和叠合法.问题2:角的大小的比较方法有哪些?学生回答:度量法和叠合法.问题3:如图(1),如何用度量法比较∠1和∠2的大小?教师用量角器演示度量角的过程,然后展示符号语言:∵∠1=50° , ∠2=35°∴∠1>∠2教师归纳:方法一:度量法(1)对“中”——角的顶点对量角器的中心;(2)重合——角的一边与量角器的0°刻度线重合;(3)读数——读出角的另一边所对的度数.问题4:如下图,如何用叠合法比较∠ABC和∠DEF的大小?DA1 2①FCE②A ADDEEBBC C FF③分三种情况:①∵AB 在∠DEF 的内部,∴∠ABC< ∠DEF②∵AB 在∠DEF 的外部,∴∠ABC> ∠DEF③∵AB 与EF 重合,∴∠ABC= ∠DEF(设计意图:让学生从已有的数学知识出发,对照线段大小的比较方法,指出角的大小的比较方法,可让学生初步感受类比的数学思想方法.教师动态演示与课件动态演示相结合,加深直观感知,增进学生对两种方法的认识,提高学生的学习兴趣)问题5:用叠合法比较三角板上30°和45°这两个角的大小时,应注意什么?学生思考,教师引导归纳:方法二:叠合法(1)将两个角的顶点及一边重合.(2)两个角的另一边落在重合一边的同侧.(3)由两个角的另一边的位置确定两个角的大小.(设计意图:通过对问题反思,联系教学实物演示配合,由学生自己观察、发现、解决问题,进而提高形象思维,抽象思维以及语言表述能力.)问题6:观察与思考:角的大小与角的两边画出的长短有关吗?结论:角的大小与角的两边画出的长短无关,而与开口大小有关.(设计意图:进一步巩固对角的概念的理解,深化对角的大小比较的认识,明确角的大小与两边的长短无关.)巩固练习:1.选一选:下列说法正确的是( )A.角的边越长,则角越大B.角的大小与边的长短无关C.角的大小与顶点的位置有关D.角的大小决定于始边旋转的方向2.放大镜下看到的角与原角的大小关系如何?(设计意图:了解学习效果,加深对角的大小与角的两边的长短无关的认识,让学生体验成功,激发学习热情)2.探索新知2:角的和差问题1:如何用符号语言表示下面图形线段的和差?课件展示:AB =AC + CB ,AC =AB -CB ,CB =AB -AC .A C B问题2:你能否模仿线段的和差符号语言写出角的和差符号语言?(让一学生上黑板板书)(设计意图:让学生模仿线段的和差的符号语言,写出角的和差的符号语言,既降低学生对问题的理解难度,便于学生直观感知,训练学生的看图能力和几何语言表达能力,又可让学生再次感受类比的数学思想方法.)巩固练习:1.根据图形 (1)填空:∠ABD =∠CBD + ,∠CBD = ─ .2.如图(2),若∠AOC = 32°,∠BOC = 43°,则∠AOB = ;若已知∠AOB = 68°,∠BOC = 40°,∠AOC = .(设计意图:第1题让学生通过试题解答,进一步提高识图能力,并能够熟练进行角的和差运算.在第2题中,将有关度数的和差运算问题融合在角的和差运算中,使学生进一步明确了“角的和差的度数等于它们的度数的和差”的道理.)3.探索新知3:角的平分线问题1:什么叫做线段的中点?展示线段的中点的定义:将一条线段分成相等的两条线段的点,叫做线段的中点.如果AB=BC ,那么点B 就是AC 的中点问题2:什么叫做角的平分线?如果∠AOB=∠BOC,那么OB 是∠AOC 的平分线 OB 、OD 是∠AOC 的三等分线展示角的平分线的定义:像OB 这样,从一个角的顶点出发,把这个角分成相等的两个角的射线,叫这个角的平分线.类似地,还有角的三等分线等.(设计意图:让学生在类比中感受新知,加深对角的平分线的定义的理解.)问题3:如何画一个角的平分线?请在老师课前发的三角形中画出∠AOB 的平分线,并尝试用不同的方法. E C D AC C O B A ((1)A B (2) AB C B O A Cα α BO A C DB O α α α教师归纳:方法1:度量法;方法2:折纸法.(设计意图:学生通过动手画图,提高动手操作能力,体会解决问题方法的多样性,在自主探索的过程中加深对角的平分线的概念的理解.)问题4:如何用符号语言表示线段的中点?课件展示:∵B 是线段AC 的中点∴AB = BC = ─AC ∴AC = 2AB = 2BC问题5:你能否模仿线段的中点的符号语言写出角的平分线的符号语言?(让一学生上黑板板书) (设计意图:通过模仿线段的中点的符号语言,写出角的平分线的符号语言,学生再一次感受到类比思想的重要性.通过强化角的平分线的符号语言,让学生进一步熟识角的平分线的符号语言,养成良好的解题习惯.)巩固练习:1.看谁做得快又准(1)如上图,若OB 是∠AOC 的平分线,那么∠AOB =∠ ;∠AOC =2∠AOB =2∠ ;∠AOB = ∠ =21∠ . (2)如上图,若OB 是∠AOC 的平分线,OC 是∠BOD 的平分线,你能从中找出哪些相等的角? (设计意图:通过练习解答,巩固学生对角的平分线的符号语言的认识.)2.考考你 如图, ∠AOC= 40 °,OB 平分∠AOC ,求∠AOB 的度数?(让一名同学上黑板解答.)(设计意图:通过此题的解答,进一步规范学生的数学符号语言,做到解题有理有据,养成良好的 解题习惯.)4.探究活动用一副三角尺,你还能画出哪些度数的角呢?(0°~180°)教师归纳:15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180° 即用一副三角尺可以画出15°的整数倍的角.(设计意图:除了让学生复习巩固角的和差的概念,也可以使他们对这些角的大小有一直观认识, 培养学生的发现能力和动手操作能力)A B 1 2C B O A Cα α O A B C D O A C B(四)总结反思,情意发展本节课你有哪些收获?学生反思、体会课堂中所学内容并归纳总结,教师补充升华.1.角的比较方法(叠合法、度量法);2.角的和差;3.角的平分线;4.类比思想.(设计意图:培养学生概括的能力,使知识形成体系,并渗透数学思想方法.)(五)布置作业按提示分三部分写一篇总结:一、知识点二、典型题三、疑难点(设计意图:此作业也是分层作业的一种形式,具有很大的自主性.学生根据自身学习情况,通过课后及时的反思,对本课进行全方位的总结.这种形式不但便于学生发现问题,解决问题,也为学生今后复习,把本课知识纳入到体系,提供了很好的一手资料.)4.3.2角的比较与运算一、角的比较方法三、角的平分线练习二、角的和差附:教案说明新的课程标准指出:数学学习的过程就是学生对有关的数学内容进行探索,实践和思考的过程.因此,在本节课的教学中,我首先采取用学生熟悉的实际问题引入教学,目的是让学生带着问题学习,从而积极主动地投入到数学学习中.学生是学习的主人,教师是学生学习的引导者.基于这一教学理念,我让学生明确本节课的学习目标后,在自学指导的提示下,放手让学生通过自学或小组交流来解决问题,从而培养学生的自学能力和合作意识,并使学生能够实现由“学会”到“会学”的转变.在接下来的教学中,我要求学生自己思考,通过对照线段的比较、线段的和差、线段的中点的意义,学习角的比较、角的和与差、以及角的平分线等知识,让学生从中体会一种重要的数学思想:类比思想,并通过一探究活动,让学生经历建构新知识的过程,从而掌握知识,提高技能,把握知识间的联系与区别.在学生学习的过程中,还要重视“图形→文字→符号”的转化过程的教学,为后续学习图形与几何的知识以及其他数学知识打下基础.在教学中,使学生自主参与整个教学过程,主动获取新知识,更重要的是学会获取知识的方法,培养学生的观察、归纳能力和抽象思维能力,充分发挥学生主体参与作用、激发学生学习数学的兴趣.。
4.3.2角的比拟与运算【课题】:角的比拟与运算方案一:【设计与执教者】:广州市美华中学郑燕 sy1220@21cn【教学时间】:【学情分析】:学生在小学已经学习了周角、平角、钝角、锐角、直角的大小关系。
【教学目标】:〔1〕会比拟角的大小〔2〕会求角的和与差〔3〕会计算角度的和与差【教学重点】:会求角的和与差,会比拟角的大小【教学难点】:会求角的和与差,正确计算角度的和与差【教学突破点】:【教法、学法设计】:启发引导、讨论探究【课前准备】:三角尺、矩形的纸片【教学过程设计】:作业如图,BO 、CO 分别平分∠ABC 和∠ACB , 〔1〕假设∠A =60°,求∠O ; 〔2〕假设∠A =100°、120°,∠BOC 又是多少? 〔3〕由〔1〕、〔2〕你发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?〔提示:三角形的内角和等于180°〕1.假设∠A =20o18′,∠B =20o15′30〞, ∠C =20.25o,那么〔 〕〔A 〕∠A >∠B >∠C 〔B 〕∠B >∠A >∠C 〔C 〕∠A >∠C >∠B 〔D 〕∠C >∠A >∠B 2.OC 平分∠AOB ,那么以下各式①∠AOC =21∠AOB ; ②∠AOC =∠COB ;③∠AOB =2∠AOC ,其中正确的有〔 〕〔A 〕0个 〔B 〕1个 〔C 〕2个 〔D 〕3个3.〔1〕9o 6′+71o 50′= 〔2〕53o 8′-17o5′= 4.∠AOB =∠BOC =21∠A0C ,那么___是___的角平分线. 5.如图1,∠AOB =∠COD ,那么∠AOC 与∠DOB 的大小关系是 6.如图2,∠AOB =∠COD =90°,∠AOD =132°,那么∠BOC = 7.如图3,∠AOB =80°,OD 平分∠BOC ,那么∠BOD =8.如图4是正十六角星,每两个角中心线间的夹角α相等,这个夹角等于 度.9.一条射线OA ,从O 作射线OB 、OC ,使∠AOB =60°,∠COB =20°,那么∠AOC 为〔 〕 〔A 〕40°或80° 〔B 〕20° 〔C 〕80° 〔D 〕40°10.试用两种方法比拟∠ABC 与∠DEF 的大小.11.如图5,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD 的度数.4321OCBAF E CD B A图5D C BA O 图1 O D CB A图2 C DBA O 图3 α 图412.如图6,BO 、CO 分别平分∠ABC 和∠ACB , 〔1〕假设∠A =60°,求∠O ;〔2〕假设∠A =100°、120°,∠O 又是多少?〔3〕由〔1〕、〔2〕你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?〔提示:三角形的内角和等于180°〕答案:1.A2.D3.80°56′,36°3′4.OC ,∠AOB5.相等6.48°7.50°8.22.59.A10.用度量法和叠合法 11.45° 12.〔1〕120°〔2〕140°,150°〔3〕∠BOC =180°-∠1-∠4=180°-21〔∠ABC +∠ACB 〕=180°-21〔180°-∠A 〕=90°+21∠A4321O CB A图6。
人教版义务教育课程标准实验教科书七年级上册4.3.2角的比较与运算教学设计一、教材分析1、地位作用:角的比较,角的和与差,角平分线是本章重要的基础知识,也是后续学习图形与几何必备的知识基础。
在本节课中,除了让学生重点掌握以上的基础知识外,还应通过大量的识图和作图训练,来培养学生的图形感,同时,还应在解决问题的过程中注意学生推理语言和能力的培养,这也是教学的难点。
2、目标和目标解析:(1)、目标:1.理解两个角的和、差、倍、分的意义;2.掌握角平分线的概念;3.会比较角的大小,会用量角器画一个角等于已知角.(2)、目标解析:①、能从图形和数量关系两个角度认识角的大小,会用度量法和叠合法比较两个角的大小;能从几何图形和数量关系两方面认识角的和与差及角平分线,知道两个角的和、差仍然是一个角,知道角的和、差或等分的度数的计算;能结合角的大小、和与差、角平分线的直观图形,用文字语言和符号语言描述它们,反之,能将它们用符号语言或文字语言所表述的图形及关系,用图形直观表示出来。
②、在学习过程中,能在回忆线段的大小、和与差、中点内容的同时,想象本节课所要学习的内容,能对学习进程心中有数;能将对线段的大小、和与差、中点的研究方法和基本套路迁移到角的相关问题研究中,不断地提出问题、分析问题、解决问题。
3、教学重、难点教学重点:角的大小、角的和与差、角平分线的意义及数量关系;感受类比的思想。
教学难点:用图形语言、文字语言、符号语言综合描述角的大小、角的和与差关系及角平分线。
突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。
二、教学准备:多媒体课件、导学案、三角板或直尺、量角器、剪刀,透明或半透明纸。
三、教学过程教学内容与教师活动 学生活动 设计意图一、创设情景 引入课题 问题:这两把折扇中,哪一把形成的角度大?与折扇的大小有关系吗?(板书)课题学生观察图片,获得感性认识. 让学生知道,角的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。
《4.3.2 角的比较与运算》教学设计方案(第一课时)一、教学目标本节课的教学目标是让学生掌握角的比较基本概念和基本方法,包括角的度量、角的表示法及如何通过角的比较来解决问题。
同时,培养学生运用数学知识解决实际问题的能力,提高学生的数学思维能力和空间想象力。
二、教学重难点教学重点在于让学生熟练掌握角的比较方法,包括大小比较和数量关系比较。
教学难点在于如何引导学生理解并运用角的运算规则,如角度的加法、减法以及角度与弧度之间的转换等。
同时,通过例题和练习,加深学生对角的比较与运算的理解和运用。
三、教学准备为确保本节课的顺利进行,需要准备的教学资源包括:数学教材、黑板或白板、投影仪、教学课件、例题和练习题等。
同时,教师需要提前熟悉教材内容,准备好相关的教学方法和策略,确保学生能够充分理解和掌握角的比较与运算的知识点。
四、教学过程:一、引入新课在课堂的开始,教师首先通过生活中的实例来引导学生进入本课的主题——角的比较与运算。
可以首先展示几个不同大小的角,让学生观察并描述它们的特点。
随后,教师可以提出一些与角有关的生活问题,如“在道路上行驶的汽车转弯时,如何判断转角的大小?”等,激发学生的思考兴趣。
二、知识铺垫在正式进入角的比较与运算的学习之前,教师需要先对相关的基础知识进行铺垫。
这包括角的定义、角的表示方法、以及之前学过的与角相关的基本概念。
这一环节的目的是为了确保学生能够在已有知识的基础上更好地理解和掌握新的知识。
三、角的比较教学1. 比较方法介绍教师首先介绍几种常用的角的比较方法,如重叠法、度量法等。
在介绍每一种方法时,都要详细说明其操作步骤和注意事项,确保学生能够正确使用这些方法。
2. 实例演示教师通过具体的例子来演示角的比较过程。
在演示过程中,教师可以邀请学生参与,让他们亲自动手操作,加深对角的比较方法的理解。
3. 学生实践学生自己在教师的指导下进行角的比较实践。
教师巡视指导,及时纠正学生的错误操作,确保学生能够正确掌握角的比较方法。
《4.3.2 角的比较与运算》作业设计方案(第一课时)一、作业目标:1. 通过本节课的作业,学生能够熟练掌握角的比较与运算方法,能够独立完成简单的角的大小比较和运算。
2. 培养学生对角的观察能力、比较能力和运算能力。
3. 通过作业,加深学生对数学学习的兴趣和自信心。
二、作业内容:1. 基础练习:(1)画一些角度在15度、30度、45度、60度的角,让学生们通过尺子等工具自己动手比较和运算这些角的大小。
(2)判断题:(a)一个角总比直角大。
(错)(b)两个锐角的和是钝角。
(错)2. 提高练习:(1)小李和小张玩“翻牌游戏”,共有四张牌,分别标记为A、B、C、D,每张牌上都有一个不同的角度,如标记为A的牌上有30度的标记,小李翻到A,小张需要判断自己手中牌的角度是否比A大。
请设计一种方法,让小张能快速准确的做出判断。
(2)小组讨论:在实际生活中,有哪些地方需要用到角的比较与运算?能否举例说明?三、作业要求:1. 独立完成作业:所有作业均需学生独立完成后才能提交,以提高作业的质量和准确性。
2. 正确率:学生需确保作业的正确率,对错误的答案进行多次尝试和修改,直到正确为止。
3. 合作探究:鼓励学生在完成基础练习后,积极进行小组讨论和合作探究,加深对知识点的理解和运用。
四、作业评价:1. 基础练习:批改学生的答案,了解学生对基础知识的掌握情况,对于错误较多的知识点进行重点讲解。
2. 提高练习:根据学生的回答情况,了解学生对知识的运用能力和问题解决能力,对于学生普遍存在的问题,再次进行讲解和说明。
同时,鼓励学生积极举例说明在实际生活中运用角的比较与运算的地方,以增强学生对数学学习的兴趣和自信心。
五、作业反馈:1. 收集学生对于作业的反馈意见和建议,了解学生对作业的评价和要求,以便对今后的作业设计进行改进和提高。
2. 对于学生在作业中普遍存在的问题,进行总结和分析,找出问题的根源,以便更好地指导学生的学习。
3. 对于表现出色的学生给予表扬和鼓励,以提高学生的学习积极性和自信心。
4.3.2角的比较与运算1.角的大小比较方法:(1)度量法;(2)叠合法.2.角的和、差两角的和:如图4-3-7所示,∠AOC是∠AOB与∠BOC的____,记作∠AOC=∠AOB +∠BOC.图4-3-7两角的差:∠AOB是∠AOC与∠BOC的____,记作∠AOB=∠AOC-∠BOC.3.角的平分线定义:从一个角的顶点出发,把这个角分成两个__相等__的角的射线,叫做这个角的平分线.类型之一角的大小过点O引三条射线OA,OB,OC,使∠AOC=2∠AOB,若∠AOB=31°,求∠BOC 的度数.类型之二角的计算计算:(1)103.3°+176°42′-98.34°;(2)24°22′36″×3;(3)147°45′÷5.类型之三 角的平分线[2016秋·黄冈期末]如图4-3-8,已知O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,∠BOE =12∠EOC ,∠DOE =70°,求∠EOC 的度数.图4-3-81.∠ABC 与∠MNP 相比较,若顶点B 与N 重合,且BC 与MN 重合,BA 在∠MNP 的内部,则它们的大小关系是( )A .∠ABC >∠MNPB .∠ABC =∠MNP C .∠ABC <∠MNPD .不能确定 2.[2015·岱岳区期中]已知OC 是∠AOB 的平分线,下列结论不正确的是( )A .∠AOB =12∠BOC B .∠AOC =12∠AOBC .∠AOC =∠BOCD .∠AOB =2∠AOC3.如图4-3-9,点O 在直线AB 上,且∠COD =90°,若∠COA =36°,则∠DOB 的大小为( )图4-3-9A .36°B .54°C .64°D .72° 4.22°20′×8等于( ) A .178°20′ B .178°40′ C .176°16′ D .178°30′5.计算:(1)180°-46°42′=____;(2)28°36′+72°24′=____;(3)50°24′×3=____;(4)49°28′52″÷4=____.1.已知OC平分∠AOB,∠AOB=64°,则∠AOC的度数是()A.64°B.32°C.128°D.不能确定2.[2015·济南]如图4-3-10,∠AOB=90°,若∠1=35°,则∠2的度数是()图4-3-10A.35°B.45°C.55°D.70°3.如图4-3-11,已知∠AOC=∠BOD=90°,∠AOD=120°,则∠BOC的度数为()图4-3-11A.30°B.45°C.50°D.60°4.如图4-3-12,AB是一条直线,如果∠1=65°15′,∠2=78°30′,则∠3=____.图4-3-125.[2016·东平期中]如图4-3-13,OB平分∠AOC,∠AOD=78°,∠BOC=20°,则∠COD 的度数为____.图4-3-136.如图4-3-14,直线AB,CD相交于点O,OE平分∠AOD,若∠BOD=100°,则∠AOE =____.图4-3-147.计算:(1)27°26′+53°48′;(2)90°-79°18′6″;(3)18°13′×5; (4)178°53′÷5(精确到1′).8.[2016·阳谷期中]如图4-3-15,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC =2∠AOC,∠AOB=114°.求∠COD的度数.图4-3-159.(1)如图4-3-16所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)若第(1)题中∠AOB=α,其他条件不变,求∠MON的度数.(3)若第(1)题中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从以上结果中你能看出什么规律?图4-3-16。
靖安双溪中学课堂学案
年级:七年级科目:数学主备:蓝艳审核:
课题: 4.3.2角的比较与运算课型:新授
学习目标:1、运用类比的方法,学会比较两个角的大小;
2、认识角的平分线,会画角的平分线;
3、角的计算。
重点难点:认识角平分线及画角平分线,角的计算
一.预习、导学:阅读课本138页
角的比较
1、与线段长短的比较相类似,比较两个角的大小有2种方法:
方法一为:_________________________;方法二为:____________________________ 2、思考:如图(1)图中共有几个角?怎么数的?在图中表示出来。
(1)
(2)
(2)图(2)中角之间的关系
填空:∠AOB=_________+____________
;∠BOC=________________-__________
角的平分线
1、如图,如果∠AOC=∠BOC,那么射线OC是∠AOB的角平分线。
角平分线的定义:_______________________________________________
关键词是:___________________________
符号语言:∵OC平分∠AOB
∴∠AOC=∠BOC
(∠AOB=2∠或∠AOB =2∠;或∠AOC=
2
1
∠,∠BOC =
2
1
∠_____ ) 2、请画出下面两个角的角平分线,
B
O
A
B
O
A
㈡个体展示
1、如图⑴所示:⑴∠DAB =∠DAC+
⑵∠ACB =∠DCB –
2、如图⑵若∠AOB =∠BOC =∠COD,则OB 是的平分线,
=
2
1
∠AOC,∠BOC =
2
1
= =
2
1
=
3
1二.范例分析
例O是直线AB上一点,∠AOC=53°,OD平分∠
BOC,求∠BOD的度数?
㈠巩固题
1、如下图,用“=”或“>”或“<”填空:
(1)∠AOC_______∠AOB+∠BOC;
(2)∠AOC_______∠AOB;
(3)∠BOD-∠BOC______∠DOC;
(4)∠AOD______∠AOC+∠BOD.
D
C
B
O
A
D
O C
B
A
2、如图,O B 是平角∠AO C 的角平分线,OD 平分∠BOC ,求∠AOD 的度数。
D
C
O B
A
3、如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线。
⑴如果∠AOB=40°,∠DOE=30°,那么∠BOD 是多少度? ⑵如果∠AOE=140°,∠COD=30°,那么∠AOB 是多少度?
㈡ 拓 展 题
4、如图,∠AOB=90°,∠BOC=30°,OM 平分∠AOB ,ON 平分∠BOC , ⑴求∠MON 的度数,
⑵若∠AOB=∠α,若∠BOC=∠β(∠β为锐角)其他条件不变,求∠MON 的度数。
(用含α、β的式子表示)
⑶探究:从⑴⑵中你发现有什么规律?。