蓝牙天线机介绍
- 格式:docx
- 大小:176.07 KB
- 文档页数:7
(10)授权公告号 (45)授权公告日 2015.01.07C N 204088566U (21)申请号 201420543316.0(22)申请日 2014.09.19H01Q 1/38(2006.01)H01Q 1/48(2006.01)H04B 5/00(2006.01)(73)专利权人卓荣集成电路科技有限公司地址中国香港新界沙田香港科学园科技大道西6号集成电路开发中心7楼705-707室(72)发明人贺新华(74)专利代理机构珠海智专专利商标代理有限公司 44262代理人林永协(54)实用新型名称PCB 蓝牙天线及蓝牙设备(57)摘要本实用新型提供一种PCB 蓝牙天线及蓝牙设备,PCB 蓝牙天线具有PCB 基板,PCB 基板上印刷有蓝牙天线,蓝牙天线包括长条状的参考地部分,参考地部分的端部连接接地端部分的第一端,接地端部分的第二端连接有信号接入端部分,信号接入端部分的一端与谐振臂部分连接,其中,谐振臂部分为曲折状。
蓝牙设备具有主控制器以及上述的PCB 蓝牙天线。
本实用新型的PCB 蓝牙天线面积小,且辐射距离长,满足蓝牙设备的工作要求。
(51)Int.Cl.权利要求书1页 说明书3页 附图3页(19)中华人民共和国国家知识产权局(12)实用新型专利权利要求书1页 说明书3页 附图3页(10)授权公告号CN 204088566 U1.PCB蓝牙天线,包括:PCB基板,所述PCB基板上印刷有蓝牙天线,所述蓝牙天线包括长条状的参考地部分,所述参考地部分的端部连接接地端部分的第一端,所述接地端部分的第二端连接有信号接入端部分,所述信号接入端部分的一端与谐振臂部分连接;其特征在于:所述谐振臂部分为曲折状。
2.根据权利要求1所述的PCB蓝牙天线,其特征在于:所述谐振臂部分包括至少二段与所述信号输入端部分平行的第一部分以及与所述参考地部分平行的第二部分,所述谐振臂部分末端的所述第一部分的长度为其他第一部分的长度的一半。
2.4g板载天线工作原理2.4GHz板载天线工作原理随着无线通信技术的发展,2.4GHz频段的应用越来越广泛,而板载天线作为一种常见的天线形式,被广泛应用于无线设备中。
本文将介绍2.4GHz板载天线的工作原理。
一、背景介绍随着物联网、无线通信等技术的迅猛发展,无线设备的需求也越来越大。
尤其是在2.4GHz频段,无线网络、蓝牙、无线传感器等应用广泛。
而板载天线作为一种集成度高、适用于小型设备的天线形式,成为了2.4GHz频段应用中常见的选择。
二、板载天线的结构组成板载天线是指将天线直接集成在电路板上的天线形式。
通常由天线元件、馈线以及与电路板相连的匹配电路等组成。
其中,天线元件一般采用PCB打印工艺制作,可以是线性天线、贴片天线等形式。
三、天线元件的特性与选择天线元件的特性直接影响着天线的性能。
在2.4GHz频段中,一般选择具有较好性能的天线元件,如PCB打印的贴片天线。
这种天线元件体积较小,频段适应性好,并且具有较高的辐射效率和天线增益。
四、馈线与匹配电路在设计板载天线时,合适的馈线和匹配电路能够提高天线的性能。
馈线的长度和宽度应根据设计需求和电路板的尺寸来确定,以确保天线能够正常工作,并且有良好的阻抗匹配。
匹配电路一般采用电感和电容来实现,以进一步提高天线的阻抗匹配。
通过合理设计匹配电路的参数,可以改善天线的反射损耗和传输效率。
五、板载天线的辐射原理板载天线的工作原理基于安培环路定理和法拉第电磁感应定律。
当电流通过天线元件时,会在周围产生一个电磁场。
通过馈线和匹配电路的设计,将电磁能量转化为电磁波,并向空间辐射。
六、优化设计与性能提升在设计2.4GHz板载天线时,需要考虑到天线的辐射效率、工作带宽、方向性等因素。
通过优化天线元件的几何结构、馈线的设计以及匹配电路的参数选择,可以提高天线的性能。
七、应用领域及发展趋势2.4GHz板载天线广泛应用于各种无线设备中,如智能穿戴设备、智能家居、车联网等。
蓝牙天线摘要:蓝牙技术是一种用于无线通信的短距离技术,广泛应用于智能手机、电脑和其他电子设备中。
蓝牙天线是实现蓝牙通信的关键组件之一,它的设计和性能对蓝牙设备的通信质量和传输距离具有重要影响。
本文将介绍蓝牙天线的原理、种类和性能参数,并探讨如何选择和优化蓝牙天线以满足不同应用需求。
1. 引言蓝牙技术是一种无线通信技术,使用2.4 GHz ISM频段的无线电波进行短距离通信。
它具有低功耗、低成本和简化的特点,广泛应用于智能手机、音频设备、电脑配件和家庭自动化等领域。
蓝牙设备之间的通信主要依赖于蓝牙模块和蓝牙天线。
蓝牙天线作为蓝牙模块的关键组件之一,在通信质量和传输距离方面起着至关重要的作用。
2. 蓝牙天线的原理蓝牙天线基于天线工程的原理和技术,主要用于接收和发送无线信号。
它由导体制成,可将电信号转化为无线电波,并将收到的无线电波转化为电信号。
蓝牙天线如何工作取决于它的设计和构造。
常见的蓝牙天线设计包括片状天线、贴片天线、螺旋天线和PCB天线等。
片状天线是一种薄片形状的天线,常用于手机和其他紧凑型设备中。
贴片天线是一种贴在PCB上的天线,适用于电子设备的集成设计。
螺旋天线是一种绕线形状的天线,具有较高的增益和传输距离。
PCB天线指的是直接印制在PCB上的天线,可实现更好的性能和集成度。
3. 蓝牙天线的种类根据应用需求和尺寸限制,蓝牙天线可以分为内部天线和外部天线。
内部天线是直接集成在设备内部的一种天线,常见于智能手机、平板电脑和电脑等设备中。
由于空间限制,内部天线往往较小且性能受限。
外部天线是通过天线接口连接到设备外部的一种天线,常用于特定应用场景或需要更好性能的设备中。
外部天线可以根据需求选择不同类型的天线,如螺旋天线、饰品天线等。
4. 蓝牙天线的性能参数蓝牙天线的性能参数可以通过以下几个指标来评估和比较:4.1 增益:增益是衡量天线能量辐射和接收能力的重要指标。
增益越高,天线的辐射和接收范围越广。
蓝牙天线设计目前最常见的蓝牙天线有偶极天线(dipole antenna),倒 F 型天线(planar inverted F anternna)、曲流线型天线(meander line antenna)、微小型陶瓷天线(ceramic antenna)、液晶聚合体天线(lcp)和棒状天线(2.4G 频率专用)等。
由于这些具有近似全向性的辐射场型以及结构简单、制作成本低的优点,所以非常适合嵌入蓝牙技术装置使用。
下面主要介绍 4 种天线的设计方法。
1、倒F 型天线倒F型天线是由于其结构与倒置的英文字母 F 相似而得名。
如下图 1 所示。
其中(L+H)只有四分之一波长,而且在其结构中已经包含有接触地金属面,可以降低对模块中接地金属米难的敏感度,所以非常适合用在蓝牙模块装置中。
另外一方面,由于倒 F 型天线只需要利用金属导体配合适当的馈线及天线短路到接地面的位置,故其制作成本低,而且可以直接与pcb电路板焊接在一起,一体化设计。
倒 F 型天线的天线体可以为线状或者片状,若以金属片制作则可以为SMD(suerface-mountde device)组件焊接在电路板上达到隐藏天线的目的。
此时为了支撑金属片不与接地金属面产生短路,通常会在金属片与接地面之间加入绝缘介质。
当使用介电常数较高的绝缘材料还可以缩小蓝牙天线尺寸。
图 2 给出了倒 F 型天线的pcb设计封装参数。
作为板载天线的一种,倒 F 型天线设计成本低但是增加了一定的体积,但是实际应用中是最长见一的一种。
倒 F 型天线是1/4 波长天线,除去其天线接入点外,其外轮廓为L 形状。
图 2 中蓝牙天线接入点与蓝牙芯片的天线引脚相连接,外轮廓L 型短边接地,天线接入点介于地和天线开放端之间。
板载F型天线一般放在pcb 顶层,铺地一般放在顶层并位于天线附近,但天线周围务必不能放置地,周围应是净空区。
图 3 给出了倒 F 型天线在PROTEL 中制作成板载天线的应用示范:2、曲流型天线曲流型天线的长度比较难确定。
蓝牙天线的π电路参数1. 引言1.1 背景介绍传统蓝牙天线通常采用的是直线天线或PCB贴片天线,但是这些天线存在着信号弱化、通信距离受限等问题。
研究人员开始关注π天线的设计和优化,在蓝牙设备中的应用也逐渐增多。
π天线通过结合直线天线和贴片天线的优点,能够提高蓝牙设备的传输距离和通信质量,是一种更为高效的蓝牙天线设计方案。
在本文中,我们将结合传统天线设计原理,分析π天线的电路参数,探讨其频率特性和射频性能,进行传输距离的优化,并展望π天线在蓝牙设备中的应用前景。
希望通过本文的研究,能够为π天线在蓝牙通信领域的进一步发展提供一些有益的参考和启示。
1.2 研究目的蓝牙技术在无线通信领域有着广泛的应用,而蓝牙天线作为蓝牙通信中的重要组成部分,对通信质量和传输距离起着至关重要的作用。
本文旨在通过对蓝牙天线的π电路参数进行分析和研究,以期通过优化π天线设计和电路参数来提高蓝牙通信的性能和稳定性。
具体研究目的包括但不限于:深入探讨π天线在蓝牙设备中的设计原理,通过电路参数分析来优化π天线的性能,分析π天线的频率特性以更好地适配蓝牙通信的频段,进行射频性能测试以验证π天线在实际环境下的稳定性和表现,以及探讨如何通过优化π电路参数来进一步优化蓝牙通信的传输距离。
通过对这些研究目的的深入探讨和实验验证,我们将为π天线在蓝牙设备中的应用前景提供更深入的理解和优化策略,同时为未来进一步的研究展望打下基础。
2. 正文2.1 π天线设计原理π天线设计原理是蓝牙设备中的关键组成部分,其设计原理直接影响到整个系统的性能表现。
π天线是一种特殊形状的天线,其名称来源于其形状类似于希腊字母π。
π天线的设计原理主要包括天线的长度、宽度、环绕地线长度和电感等关键参数。
在蓝牙设备中,π天线通常被设计成微带天线或PCB天线的形式,以实现更好的频率特性和较长的传输距离。
π天线的设计原理中,关键参数的选择对天线性能起着至关重要的作用。
天线长度和宽度的选择直接影响到天线的频率特性,而环绕地线的设计则可以有效地提高天线的辐射效率和指向性。
蓝牙天线的工作原理
蓝牙天线是一种用于接收和发送蓝牙无线信号的设备,它通过与蓝牙芯片配对来实现无线通信。
蓝牙天线的工作原理主要包括天线接收和发送两个过程。
在接收方面,蓝牙天线通过接收来自其他设备的无线信号来建立蓝牙连接。
当其他设备发送蓝牙信号时,蓝牙天线会接收到这个信号并将其传递给蓝牙芯片。
蓝牙芯片会解码信号并将数据传递给蓝牙模块或主控制器进行进一步处理。
在发送方面,蓝牙天线通过蓝牙芯片发送信号给其他设备。
当蓝牙芯片需要发送数据时,它会将数据传递给蓝牙天线。
蓝牙天线会将这些数据转换为无线信号并通过天线进行发送。
其他设备的蓝牙天线接收到信号后,会进行相应的解码和处理。
蓝牙天线的工作原理依赖于无线电波的传输和接收。
蓝牙信号属于无线电频段,一般工作在2.4GHz的频率范围。
蓝牙天线
通过在这个频段上发送和接收无线信号来实现蓝牙通信。
总的来说,蓝牙天线的工作原理是利用无线电波的传输和接收,通过将数据转换为无线信号来实现蓝牙通信。
它在蓝牙设备中扮演着重要的角色,实现了设备之间的无线连接和数据传输。
片式天线应用指导1. 介绍被誉为“驱动新经济的引擎”的蓝牙技术,其英文名为Bluetooth ,是1998年5月由爱立信、IBM 、英特尔、诺基亚、东芝等5家公司联合制订的近距离无线通信技术标准,其目的在于实现最高数据传输速率为1Mb/s(有效传输速率为721kb/s)、最大传输距离为10m 的无线通信。
1999年7月,蓝牙特别利益集团(SIG )已公布蓝牙正式规范1.0版本。
蓝牙技术采用公开技术标准,一经推出就获得业界的广泛认同,现已出现了基于此标准的产品。
目前,蓝牙技术已经成为短距离无线通信数据领域的最热门研发方向,已有超过2000家的企业宣布支持和开发蓝牙技术及其相关产品。
蓝牙提供低成本、低功耗的无线接入方式,在信息家电、移动通信、嵌入式应用开发等诸多方面的应用,顺应了现代通信技术和应用的发展潮流,其前景将无可限量。
深圳南玻电子有限公司片式天线系列基于LTCC 封装技术,体积小,重量轻;在信号的接收和传输(包括输入和输出信号的分离)方面发挥各种功能。
广泛应用于无绳电话、无线网卡、蓝牙适配器蓝牙耳机、胎压监测系统、无线音箱、内置蓝牙功能的MP3和手机等。
包括如下种类: * 以上数据在评估板上测试所得。
Part No. 尺寸 (mm) 中心频率 (GHz)带宽 (MHz )增益 (max.dBi )SLDA31 3.2×1.6×1.0 2.80 100 0.5 SLDA52 5.0×2.0×1.0 2.54 200 2.5 SLDA72 7.2×2.0×1.0 2.47 150 2.7 SLDA92 9.0×2.0×1.0 2.66 300 3.0 SLDA16316×3.0×2.00.433 15 3.55020 7220Fig 1 天线尺寸(单位:mm)及测试结果2、推荐使用位置\外界环境1) 天线布局指导天线顶端焊盘应放到PCB板的边缘。
蓝牙天线的π电路参数全文共四篇示例,供读者参考第一篇示例:蓝牙技术在现代生活中扮演着重要的角色,而蓝牙天线则是蓝牙设备中至关重要的组成部分。
蓝牙天线的设计和参数对蓝牙设备的性能起着至关重要的作用。
在蓝牙天线中,π电路是一种常见的天线结构,其参数和特性也对天线性能产生着重要的影响。
π电路是一种常用的传输线天线结构,它具有简单的实现和结构,成本较低,因此在蓝牙天线设计中得到了广泛的应用。
π天线的基本结构是由两个天线元件和一个传输线组成,其中一个元件用作天线发射信号,另一个用作接收信号,传输线用于连接两个元件。
在设计π电路蓝牙天线时,需要考虑一系列参数以保证其良好的性能。
其中最关键的参数包括频率范围、阻抗匹配、增益和辐射效率。
频率范围是指天线可以工作的频率区间,通常设计时需根据蓝牙设备工作频段选择合适的频率范围。
阻抗匹配是指天线与射频传输线之间的匹配情况,一般需要使用匹配网络进行调整以保证信号传输的稳定性。
增益是指天线在某一方向上的电子场放大倍数,增益越高,传输距离就越远。
辐射效率是指天线将输入功率转化为辐射功率的效率,影响着天线的能耗和传输效率。
除了以上几个基本参数外,π电路蓝牙天线的设计还需考虑其辐射图案、带宽和尺寸等因素。
辐射图案是指天线在三维空间中的辐射情况,需要根据具体应用场景选择合适的辐射图案以保证传输稳定性。
带宽是指天线能接收或发射信号的频率范围,通常带宽越宽,传输稳定性就越好。
尺寸通常指天线的物理尺寸大小,对于蓝牙设备来说,小尺寸的天线可以提高设备的便携性和美观性。
在实际的π电路蓝牙天线设计中,通常需要通过仿真软件对天线进行建模,优化设计参数。
通过仿真软件可以模拟不同参数下天线的性能,并根据具体需求进行参数调整以达到最佳性能。
实验测试也是必不可少的一步,通过实际测试可以验证仿真结果,保证天线设计的准确性和可靠性。
π电路蓝牙天线是一种常用的天线结构,其设计参数对蓝牙设备的性能至关重要。
在设计π电路蓝牙天线时,需要考虑频率范围、阻抗匹配、增益、辐射效率等一系列参数,同时也需考虑辐射图案、带宽和尺寸等因素。
蓝牙定位技术AOA和AOD详解根据定位终端上行与下行模式的不同,蓝牙高精度定位可以分为:到达角度定位法(AoA)和出发角度定位法(AoD)AoA定位是利用单一天线发射寻向信号,而接收终端内置天线阵列,当信号通过时,会因阵列天线接收的距离不同而产生相位差,进而计算出信号的方向。
AoD定位则正好相反,由具备阵列天线的设备来发射信号,传给单一天线终端,接收终端可以通过接收到的信号计算出来波的方向,进而定位。
常见的室内无线定位技术有:Wi-Fi、蓝牙、红外线、超宽带、RFID、ZigBee等。
蓝牙作为一种短距离低功耗的无线传输技术,在室内安装适当的蓝牙局域网接入点后,将网络配置成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微网络的主设备,这样通过检测信号强度就可以获得用户的位置信息。
AOA与AOD测距原理:在蓝牙的5.1协议中提出了两种新的更加精确的定位方法。
一种是到达角度(AOA),另一种是离开角度(AOD)。
AOA定位:即蓝牙接收器拥有复数个天线,发射天线与每个接收天线距离有差异,故发射出的信号在每个接收天线有接收时差,就可以计算出相位差。
AOD定位:则是通过蓝牙的定位信标通过天线阵列发出信号,而接收设备通过单根天线接收信号,通过解码接收信号计算出信号的发送方向。
通过这种三角的距离测量,可以实现较高精确度的实时室内定位。
值得一提的是,不论AOA还是AOD定位,都需要保证发射端与接收端之间的环境空旷无阻挡,当两者之间有明显的障碍物阻挡时,蓝牙的信号强度会有所下降,必然导致定位的准确度有非常明显的下降。
这种寻向功能采用的是同相、正交采样来测量出天线的接收相位。
例如在到达角度的测量方法中,信号过程是通过阵列中的所有的天线,依次按照预先设计好的天线顺序进行测试数据发送。
采用数据通过主机的控制器接口传递到设备内部的蓝牙协议栈中,运用协议栈中的算法运算来确定一台设备处于另一台设备的什么方向上,在通过复数的天线定向,确认设备处于另一台设备的哪个位置上。
蓝牙天线蓝牙可以是一种低成本、低功率以及短距离无线通讯的技术,可以广泛的应用在任何个人行动通讯设备上。
而随着1999年1.0版蓝牙规范的正式制订,一场短距离无线通讯网路的革命似乎已经展开,而由蓝牙概念所发展出来的无线个人局域网络(Personal Area Network, PAN)也正式成立。
到目前为止,由于市面上所推出的蓝牙相关产品尚未完全普及,「蓝牙」这个让人耳熟能详的名词在产品应用上还是给人有「犹抱琵琶半遮面」的感觉。
探究其产品尚未全面化推出的原因除了蓝牙规范尚未完全底定外(2.0版正在发展中);另一重要的因素则是整个蓝牙模块的价格仍然居高不下,使得蓝牙产品的售价偏高,以Ericsson所推出的蓝牙耳机为例,其预估的售价便高达200美元左右。
于是,降低模块的价格便成了蓝牙芯片提供厂商与外围组件制造厂商致力发展的方向。
「天线」,是在无线通讯系统中用来传送与接收电磁波能量的重要必备组件。
由于目前技术尚无法将天线整合至半导体制程的芯片中,故在蓝牙模块里除了核心的系统芯片外,天线是另一具有影响蓝牙模块传输特性的关键性组件。
在各种不同的蓝牙应用产品中,所使用的天线设计方法与制作材质也不尽相同。
选用适当的天线除了有助于搭配产品的外型以及提升蓝牙模块的传输特性外,还可以更进一步降低整个蓝牙模块的成本。
这是提供给蓝牙系统厂商在寻求低价格的系统芯片外,另一个可能降低模块成本的考量方向。
在本文中将介绍蓝牙天线的设计考量、相关重要参数、蓝牙天线的种类以及在产品上的应用考量。
重要的天线参数天线最主要的功能在于转换传播介质中(通常是空气介质)辐射电磁波能量与收发机所送出或收到的能量。
在能量转换的过程中,会出现有收发机与天线及天线与传播介质之间的不连续接口。
在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发机、天线以及传播介质之间形成一个连续的能量传输路径,如此便可以顺利的将发射机的能量藉由发射天线辐射到传播介质中,并藉由接收天线将辐射电磁波的能量传送到接收机端。
为了能够说明这两个接口的各项特性,图1列出了一些重要的参数,以下就这些参数的定义加以说明:天线输入阻抗(Input Impedance)天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。
为了让天线与收发机电路间达到阻抗匹配(Impedance Matching)以降低因不匹配现象所造成的反射损失(Return Loss),故天线的输入阻抗必须与收发机电路的输出阻抗互相匹配,如此一来才不至于使得大部份能量在天线与收发机之间就损耗掉。
以一般的天线设计来说,通常输入阻抗是无法做大范围的改变。
最普遍的设计方式是将天线的输入阻抗设计在一般电路中所常使用的50奥姆,如此便可以与收发机电路的输出阻抗达到50奥姆匹配。
但是在特殊的收发机电路设计中,输出阻抗不一定会是50奥姆,此时便需在收发机电路与天线输入端之间设计一个外加的阻抗匹配网络来将天线的输入阻抗值转换到收发机的输出阻抗值。
用来表示阻抗匹配状况的反射损耗,单位为dB。
其数学表示式可以写成:Return Loss(RL)=-20log|r|(dB)其中Γ为天线输入端与收发机输出端之间的反射系数,亦可以天线输入阻抗Za与收发机输出阻抗Zt来表示之:Γ=(Za-Zt)(Za+Zt)由以上两式便可轻易得知RL、Za与Zt三者之间的关系。
举例来说,当天线输入端的RL达到-10dB时,表示由发射机所送入天线的能量将有10%会因为天线与发射机之间的阻抗不匹配而造成能量损失;假设此时发射机的输出阻抗Zt为50奥姆,则可得知天线的输入阻抗Za为96奥姆,由此可验证天线与发射机之间的阻抗并不匹配。
操作频率(Operating Frequency)与频宽(Bandwidth, BW)天线的操作频率需涵盖整个系统所可能使用到的频带,而整个工作频带范围内的最高操作频率fU与最低操作频率fL间的差值即为天线的操作频宽。
通常,天线的频宽大小都以百分比来表示:BW=(f U-f L)/f C×100%其中,f C是中心操作频率。
以蓝牙为例,其操作频率范围如表1所示,故天线的最小操作频宽需为83.5 MHz,也就是3.4%。
在了解了天线操作频宽的定义后,还需要知道如何决定天线的操作频率范围。
一般最常使用的是电压驻波比(VSWR)2:1的标准,如此一来由一连串VSWR小于2.0的频率点所组成的频率范围即为天线的操作频宽。
通常用来决定操作频宽的标准是随着不同的通讯系统而会有所差异,例如VSWR需小于1.5的标准。
但对蓝牙来说,VSWR小于2.0的条件已经可以符合系统上的需求。
辐射场型(Radiation Pattern)辐射场型是用来描述由天线所辐射出的能量与空间中任意位置的相互关系,藉由辐射场型图可以得知由天线所辐射出来的电磁波在空间中每一个位置的相对强度或绝对强度。
以最常见的偶极天线(Dipole Antenna)为例,图2为偶极天线在远场(Far-field)量测系统中的坐标参数示意图,其辐射场型图是以图3之水平面(Azimuth)及垂直面(Elevation)两个正交平面的二维场型图来表示。
简单来说,所谓水平面的辐射场型图即为由z轴上往偶极天线看下去所得到的电磁波强度在x-y平面上的分布图;而垂直面的辐射场型图则为由天线的侧面(即x-y平面上)往偶极天线看进去所得到的电磁波强度在x-z或y-z平面上的分布图。
以偶极天线的水平面场型来看,电磁波强度在任意方向上都相等,这就是所谓的全向性(Omni-directional)辐射场型;但在垂直面场型中,电磁波强度则是在θ等于90度的方向上有最大值,是属于具有方向性(Directional)的辐射场型。
故由天线的辐射场型可以决定天线的摆放位置以及得知天线的最佳发射与接收方向等辐射特性。
指向性(Directivity)与天线增益(Gain)天线的指向性与其辐射场型有关,所以指向性也是方位角的函数,其定义如下:D(θ,ψ)=【天线在(θ,ψ)方向上的辐射强度】/【全向性天线的辐射强度】由于全向性天线在任意方向上的辐射强度都相同,所以在上述指向性的定义中被当作为参考的标准值,故指向性是以dBi为单位。
由以上的定义不难发现,指向性越高的方向其实就是天线辐射能量越集中的方向。
但是在实际的应用上,由于必须考虑天线本身的辐射效率(Efficiency)问题,故通常都以天线增益的大小来代替指向性,两者之间的关系为:G(θ,ψ)=eD(θ,ψ)其中,天线的辐射效率高低与电磁波辐射过程中所损失的能量多寡有关。
图4说明了利用天线来做能量传送与接收的过程中所有可能会产生的能量损失,这些损失的能量包括了天线输入端阻抗不匹配造成的能量反射、天线本身的材质在高频下所产生的能量损耗以及在传播介质中所消耗的能量。
通常天线增益都以最大值来表示,故可将天线增益简单的以G来表示,其单位亦为dBi。
蓝牙天线在不同操作模式下的设计考量蓝牙的传输模式是以一个微微网(Piconet)为基础,一个微微网内可以同时存在七个蓝牙的从动装置(Slave)与一个主动装置(Master),在同一个微微网内所有从动装置的跳频序列(Frequency Hopping Sequence)必须与主动装置互相配合。
如图5所示,在微微网的基础下可以容许单点对单点(Point to Point)、单点对多点(Point to Multipoint)以及数个微微网互相链接的多种传输模式。
在以上这些模式中,不论是微微网内的主动或是从动装置,因为都需要与网内随时改变位置的从动或主动装置联系,故这些装置所使用的天线辐射场型必须是近似全向性的,若是使用指向性过高的天线来做传送或接收,将会造成两个蓝牙装置之间的讯号在某些相对角度上无法正常传送。
图6是在室内环境使用固定式的接取装置(Access Point, AP)来与其它蓝牙装置进行传输的模式。
由于接取装置AP已经被固定在室内的某些适当位置以便对室内的蓝牙装置做数据传输,所以使用在AP装置上的天线不一定需要全向性,反而是依安装位置及传输范围来设计在固定方向上具有高指向性的天线才能得到最好的传输效果。
至于其它的蓝牙装置仍是以全向性的天线最能符合其需求。
蓝牙天线的种类目前最常见的蓝牙天线种类包括有偶极天线(Dipole Antenna)、PIFA(Planar Inverted F Antenna)天线以及微小型陶瓷天线(Ceramic Antenna)等。
由于这些天线具有近似全向性的辐射场型以及结构简单、制作成本低的优点,所以非常适合蓝牙装置的使用,以下便对这些天线做一介绍:偶极天线偶极天线的外观通常是圆柱状或是薄片状,其在天线底端有一转接头做为能量馈入的装置,而与蓝牙模块之射频前端电路所外接的转接头相互连接(如图7所示)。
另外一种天线外接方式是使用可旋转式转接头,这种方式的优点在于天线可以依照使用需求做任意角度的旋动并藉以提高传输效果,但是其缺点在于可旋转式接头的成本较高。
偶极天线的长度与其操作频率有关,一般常用的设计是使用半波长或四分之一波长来做为天线的长度。
另外,偶极天线亦可以应用平面化的设计方式将蓝牙天线设计为可焊接在电路板上的SMD(Surface-Mounted Device)组件,或是直接在PCB电路板上以简单的微带线(Microstrip Line)结构来设计天线(如图8所示),如此可得到低成本的隐藏天线,并有助于产品外观的多样化设计。
PIFA天线PIFA天线是以其侧面结构与倒反的英文字母F外观雷同而命名(如图9所示)。
PIFA天线的操作长度只有四分之一操作波长,而且在其结构中已经包含有接地金属面,可以降低对模块中接地金属面的敏感度,所以非常适合用在蓝牙模块装置中。
另一方面,由于PIFA天线只需利用金属导体配合适当的馈入及天线短路到接地面的位置,故其制作成本低,而且可以直接与PCB电路板焊接在一起。
PIFA天线的金属导体可以使用线状或是片状,若以金属片状制作则可设计为SMD组件来焊接在电路板上达到隐藏天线的目的。
此时为了支撑金属片不与接地金属面产生短路,通常会在金属片与接地面之间加入绝缘的介质,如果使用介质常数(Dielectric Constant)较高的绝缘材质还可以缩小蓝牙天线的尺寸。
陶瓷天线陶瓷天线是另外一种适合于蓝牙装置所使用的小型化天线。
陶瓷天线的种类可分为块状(Block)陶瓷天线与多层(Multilayer)陶瓷天线,前者是使用高温(摄氏1000度以上)将整块陶瓷体一次烧结完成后再将天线的金属部份印在陶瓷块的表面上;后者则采用低温共烧(LowTemperature Cofired)的方式将多层陶瓷迭压对位后再以800~900度的温度烧结,所以天线的金属导体可以依设计需要印在每一层陶瓷介质层上,如此一来便可有效缩小天线所需尺寸,并能达到隐藏天线设计布局的目的(如图10所示)。