排列问题的方法总结
- 格式:ppt
- 大小:1.37 MB
- 文档页数:25
排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A443由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。
排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。
以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。
2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。
3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。
4.分类讨论:对于一些复杂的问题,需要进行分类讨论。
根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。
5.排除法:在某些情况下,可以通过排除法求解问题。
根据问题的限制条件,排除一些不可能的情况,从而减少计算量。
6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。
通过递推关系,逐步推导出最终的排列组合情况。
7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。
通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。
8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。
通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。
解决排列组合问题需要掌握一定的方法和策略。
通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。
同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。
排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。
例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。
2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。
排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。
在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。
1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。
解决排列问题时,可以使用如下的排列公式。
公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。
2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。
解决组合问题时,可以使用如下的组合公式。
公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。
3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。
解决重复排列问题时,可以使用如下的重复排列公式。
公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。
4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。
解决重复组合问题时,可以使用如下的重复组合公式。
公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。
排列组合问题的几种解题方法排列、组合问题,在高考中通常是以选择题或填空题的形式考察,它联系实际,题型多样,解法灵活。
自2010年新课改以来,这类问题的难度有所降低,只要掌握恰当的解决方法问题就可以迎刃而解。
备考中有效的方法是将题型与解法归类,识别模型、熟练运用。
下面我将排列組合中的常规题型及解法总结如下:一、相邻元素捆绑法所谓“捆绑法”,就是在解决某几个元素要求相邻问题时,可整体考虑将视为一个“大元素”.例1. 6名同学排成一排,其中甲、乙两人必须在一起的不同排法共有种.解析:因甲、乙两人要排在一起,故甲、乙两人捆在一起视作一人,与其余四人全排列共有种排法,但甲、乙两人之间有种排法,由分步计数原理可知,共有不同的排法.二、相离问题插空法相离问题是指要求某些元素不能相邻,由其他元素将它隔开,此类问题可以将其他元素排好,再将所指定的不相邻元素插入到空隙及两端位置,故称“插空法”.例2. 6个男同学和4个女同学排成一列照相,任何两个女同学不相邻,问有多少种不同的排法?解析:现将6个男同学排好,其不同的排法为种,这6个男同学的空隙及两端共七个位置中再排4个女同学共有种排法,由分步计数原理可知,任何两个女同学不相邻的排法共有种.三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序称为定序问题,这类问题用缩小倍数的方法求解比较方便.例3. 信号兵红旗与白旗挂在旗杆上表示信号,现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是解析:5面旗全排列有种挂法,由于3面红旗与2面白旗分别全排列只能作一次挂法,故共有不同信号的种数是=10种.四、定位问题优先法所谓“优先法”,即有限制条件的元素(或位置)在解题时优先考虑.例4. 计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须在一起,并且水彩画不放在两端,那么不同的陈列方式有()种A. B.C. D.解析:先把3种品种的画看成整体,而水彩画受限制应优先考虑,不能放在头尾,故只能放在中间,又油画与国画有放法,再考虑油画与国画本身各有与种放法,故排列的方法为,故选D.五、至少(至多)问题间接法含“至少”、“至多”的排列组合问题,是分类问题,可用间接法。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类方法,在第1类方法中有1m 种不同的方法,在第2类方法中有2m 种不同的方法,…,在第n 类方法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步与多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少与取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。
解决排列组合问题常见策略学习指导1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。
组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。
较复杂的排列组合问题一般是先分组,再排列。
必须完成所有的分组再排列,不能边分组边排列.排列组合问题的常见错误是重复和遗漏.弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧.集合是常用的工具之一.为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。
“正难则反”是处理问题常用的策略。
常用方法:一. 合理选择主元例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有种不同坐法。
例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。
二. “至少"型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个"型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。
例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:(种)三。
注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。
再用分类计数原理求出总数。
例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。
解:比2015大的四位数可分成以下三类:第一类:3×××,4×××,5×××,共有:(个);第二类:21××,23××,24××,25××,共有:(个);第三类:203×,204×,205×,共有:(个)∴比2015大的四位数共有237个。
排列组合方法总结1、【特殊元素、特殊位置】优先法在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。
例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为( )解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的元素占了这两个位置,先安排末位共有13C ;然后排首位共计有14C ;最后排其他位置共计有34A ;由分步计数原理得.288341413=A C C 2、【相邻问题】捆绑法题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( )解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,3、【相离问题】插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例:七人并排站成一行,如果甲乙两人必须不相邻,那么不同的排法种数有( )解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种 4、【选排问题】先选后排法从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法.例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种. 5、【相同元素分配问题】隔板法将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用 m-1块隔板插入n 个元素排成一排的n-1个空隙中,所有分法数为:11--m n C 。
例:(1)10个三好生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案故共有不同的分配方案为为6984C =种 (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵6、【平均分组问题】消序法平均分成的组,不管他们的顺序如何,都是一种情况,所以分组后一定要消除顺序(除以n n A ,n 为均分的组数),避免重复计数。
344 4 3 4A C 5 2 2 5 排列组合解题技巧归纳总结教学内容1. 分类计数原理(加法原理)完成一件事,有n 类办法,在第 1 类办法中有m 1 种不同的方法,在第 2 类办法中有m 2 种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成 n 个步骤,做第 1 步有 m 1 种不同的方法,做第 2 步有 m 2 种不同的方法,…,做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C 1 然后排首位共有C 1 最后排其它位置共有 A 3由分步计数原理得C 1C 1A 3 = 288443练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里, 问有多少不同的种法? 二.相邻元素捆绑策略例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合常用方法总结排列组合常用方法总结排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
下面是排列组合常用方法总结,请参考一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n 步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1.从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。
分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。
设a,b,c成等差,∴2b=a+c,可知b由a,c决定,又∵2b是偶数,∴a,c同奇或同偶,即:从1,3,5, (19)2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,因而本题为2=180。
例2.某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。
若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入(一)从M到N必须向上走三步,向右走五步,共走八步。
高三数学排列组合知识点归纳总结数学是一门需要大量的思考和应用的学科,其中排列组合是数学中的一个重要部分。
在高三数学学习中,排列组合也是必修的一个内容,掌握了排列组合的知识,既能够帮助我们解决实际问题,又能够培养我们的思维能力和数学思维方式。
本文将对高三数学中的排列组合知识点进行归纳总结。
一、排列问题排列是指将若干个不同的元素按照一定的顺序排列起来,根据实际问题的不同,排列分为不放回排列和放回排列。
1. 不放回排列不放回排列的特点是每次抽出一个元素后不再放回,下一次的抽取范围减少一个元素。
例如,将10个不同的球依次排列,共有多少种排列方式?解法:根据乘法原理,第一个球有10种选择,第二个球有9种选择……依次类推,最后一个球有1种选择,因此共有10*9*…*1=10!种排列方式。
2. 放回排列放回排列的特点是每次抽出一个元素后将其放回,下一次的抽取范围不变。
例如,将10个不同的球排列,每次抽取时都将球放回,共有多少种排列方式?解法:与不放回排列不同,放回排列时每次抽取的元素都是独立的,因此每个位置上都有10种选择,所以共有10*10*…*10=10^n种排列方式。
二、组合问题组合是指从若干个不同的元素中取出一部分元素,不考虑其顺序,根据实际问题的不同,组合分为不放回组合和放回组合。
1. 不放回组合不放回组合的特点是每次抽取一个元素后不再放回,下一次的抽取范围减少一个元素。
例如,从10个不同的球中取出3个球,共有多少种组合方式?解法:根据组合的定义,只要选择了球,无论其顺序如何,都算作同一种组合方式。
所以,共有C(10,3) = 10!/(3!*(10-3)!)种组合方式。
2. 放回组合放回组合的特点是每次抽取一个元素后将其放回,下一次的抽取范围不变。
例如,从10个不同的球中取出3个球,每次抽取时都将球放回,共有多少种组合方式?解法:与不放回组合不同,放回组合时每次抽取的元素都是独立的,因此每个位置上都有10种选择,所以共有C(10+3-1,3) = C(12,3) =12!/(3!(12-3)!)种组合方式。
超全的排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列与组合问题的解题方法排列与组合是数学中重要的组合数学问题,常用于解决计数和选择问题。
在排列与组合中,排列是指从一组元素中选取若干个按特定顺序排列的方式;而组合则是指从一组元素中选取若干个无序的方式。
解决排列与组合问题的方法有很多,下面将介绍一些常用的解题方法。
一、排列问题的解题方法1. 全排列方法:全排列是指对给定的一组元素进行全面排列,确保每个元素都排在不同的位置上。
全排列问题可以通过递归算法来解决。
具体步骤如下:1)选取第一个元素作为排列的首位;2)将剩余的元素进行全排列;3)将选取的元素与全排列的结果进行组合。
2. 循环方法:循环方法是指通过循环遍历的方式来求解排列问题。
具体步骤如下:1)确定排列的元素个数和位置;2)通过循环遍历的方式确定每个位置上的元素。
3. 递归方法:递归方法是指通过递归函数的调用来求解排列问题。
递归方法可以将一个问题分解为更小的子问题,并通过递归调用来解决子问题。
具体步骤如下:1)选取第一个元素作为排列的首位;2)将剩余的元素进行递归调用,求解子问题的排列;3)将选取的元素与子问题的排列进行组合。
二、组合问题的解题方法1. 递推公式法:递推公式法是一种求解组合问题的常用方法。
通过递推公式,可以将大的组合问题分解为更小的子问题,并通过递归调用来解决子问题。
具体步骤如下:1)确定组合的元素个数和位置;2)通过递推公式计算每个位置上的元素。
2. 数学公式法:数学公式法是指通过数学公式来求解组合问题。
常用的组合公式有排列组合公式、二项式定理等。
通过应用数学公式,可以快速计算组合问题的解。
具体步骤如下:1)确定组合的元素个数和位置;2)通过数学公式计算每个位置上的元素。
3. 动态规划法:动态规划法是一种求解组合问题的高效算法。
通过定义递推关系和初始条件,可以通过动态规划的方式求解组合问题。
具体步骤如下:1)定义递推关系和初始条件;2)通过递推公式计算每个位置上的元素。
总结:排列与组合问题的解题方法有很多种,选择合适的方法取决于具体的问题和求解的要求。
高中排列与组合方法总结(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素.例如:用组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数是指从个元素中取出个元素,再将这个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列.(二)排列组合的常见模型1、分类讨论:(1)元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.(2)“至少”“至多”问题----间接排除法或分类讨论.2、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.3、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序.注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序依次插空:如果在个元素的排列中有个元素保持相对位置不变,则可以考虑先将这个元素排好位置,再将个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空)4、分组问题:平均分组、局部平均分组---除序法5、分配问题:(1)有序分配问题----逐分法;(2)全员分配问题---分组法;(3)名额分配问题---隔板法;(4)限制条件的分配问题---分类法.6、涂色问题:解答区域涂色问题,一是根据分步计数原理,对各个区域分步涂色;二是根据共用了多少种颜色分类讨论;三是根据相间区域使用颜色的种数分类.以上三种方法常会结合起来使用。
7、圆排列问题:把个不同元素放在圆周个无编号位置上的排列,顺序(例如按顺时针)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,下列个普通排列:在圆排列中只算一种,因为旋转后可以重合,故认为相同,个元素的圆排列数有种.因此可将某个元素固定展成单排,其它的元素全排列.类型一:分类讨论例1 在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。
排列组合题型方法总结排列组合是高中数学中的一个重要概念,是组合数学的一部分。
在实际问题中,排列组合经常用于解决具体的计数问题。
在本文中,我将总结一些常见的排列组合题型及解题方法。
一、排列题型排列是指将一组元素按照一定的顺序进行排列,其中每个元素只能使用一次。
在排列题中常见的有以下几个题型:1. 线性排列:将不同的元素排成一列,求出排列的总数。
解题方法:根据要求确定对应的元素个数,并使用乘法法则计算排列的总数。
2. 圆排列:将不同的元素排成一个圆,求出排列的总数。
解题方法:将圆转成线性排列问题,然后使用相应的公式计算总数。
3. 重复排列:将一组相同的元素排列,求出排列的总数。
解题方法:根据相同元素的个数和元素总数使用组合计数的方法求解。
4. 位置固定:将一组元素排列,其中有一些元素的位置是固定的,求出排列的总数。
解题方法:先将固定位置的元素排列,再将剩余的元素排列,最后将两部分排列的总数相乘。
二、组合题型组合是指从一组元素中选取一部分元素进行组合,其中元素的顺序不重要。
在组合题中常见的有以下几个题型:1. 选取固定元素数量:从一组元素中选取固定数量的元素,求出组合的总数。
解题方法:根据选取数量使用排列计数的方法求解,然后除以固定元素的排列数。
2. 选取至少/至多元素数量:从一组元素中选取至少或至多数量的元素,求出组合的总数。
解题方法:分别计算满足要求的最少元素数量和最多元素数量的组合数,再将两者相加。
3. 选取按顺序:从一组元素中按照一定的顺序选取元素,求出组合的总数。
解题方法:根据顺序确定每个元素的选取范围,然后使用乘法法则计算总数。
4. 选取排除元素:从一组元素中选取一部分元素,其中不能包含某些特定的元素,求出组合的总数。
解题方法:先计算从总元素中选取的组合数,再计算不包含特定元素的组合数,最后将两者相减。
三、应用题在实际问题中,排列组合常常用于解决具体的计数问题。
下面列举几个常见的排列组合应用题:1. 手环问题:将不同颜色的手环依次戴在手上,求出不同戴法的总数。
=A7—card(A o A o A)7123 A77排列知识点及题型归纳总结知识点精讲一、特殊元素与特殊位置问题排列时,某个(或某些)元素一定在(或一定不在)某个(或某些)位置.二、捆绑问题某些元素作为一个整体在排列中不能分开.三、插空问题某些元素互补相等.四、定序问题某些元素相对顺序保持不变.五、其他排列双排列和有相同元素的排列等.题型归纳及思路提示题型1特殊元素或特殊位置的排列问题思路提示(1)加法:①把全部特殊位置上的元素排好;②剩余位置由剩余元素排列.(2)减法:①取消某些“不能”的限制去排列;②减去因此而“扩进”的方法数.注:对于含有特殊元素或特殊位置的排列问题,一般采用直接法,即先排特殊元素或特殊位置,有时也采用间接法,通常有以下解决问题的途径:①以元素为主体,即先满足特殊元素的要求,再考虑其他元素.②以位置为主体,即先满足特殊位置的要求,再考虑其他位置.③先不考虑附加条件,计算出排列数或组合数,在减去不合要求的排列数或组合数.例12.127个人排成一排.(1)甲在左端,乙不在右端的排列有多少个?(2)甲不在左端,乙不在右端的排列有多少个?(3)甲在两端,乙不在中间的排列有多少个?(4)甲不在左端,乙不在右端,丙不在中间的排列有多少个?(5)甲、乙都不在两端的排列有多少个?解析(1)左端定甲,右端(去掉甲、乙)有C5,剩余5元任排A;,共qA?-6oo(种)排法.6i i5(种)方法.A厂2A6+A5=3720(种)排法.(3)先定甲位O,再定中间位C1,共CCA5=1200(种)排法.25255(4)解法一:宜用减法:7人全排—甲在左或乙在右或丙在中间设A表示甲坐左端,A表示乙坐右端,A表示丙坐中间.123card甲不在左端,乙不在右端,丙不在中间)(card(A)+card(A)+card(A)-card(A n A)-card(A n A)-card(A n A)+card(A n A n A))123122313123 =A7—3A6+3A5—A4=3216(种)排法(见容斥原理).7654解法二:甲不排左端,乙不排右端—甲不排左端,乙不排右端,且丙在中间的情形,+,n A133720—A 5—C i C i A 4=3216种5444(5) 第一步:先排“特位”一一两端A 2,第二步:排中间A 5,故共有A 2A 5=2400(种)排法.5555评注①第(2)与(4)题减法用到card (C A )=card (U )—card (A ),其中card (4)表示有限集合A 中U元素的个数•②容斥原理:A =A i U A 2A 3,card (A )=card (A )+card (A )+card (A )—card (A n A )—card (A n A )—1231223card \A n A n A 丿123变式10~9共10个数字,可组成多少个无重复数字的 (1) 四位数; (2) 五位偶数; (3) 五位奇数;(4)大于或等于30000的五位数;(5) 在无重复数字的五位数中,50124从大到小排第几; (6) 五位数中大于23014小于43987的数的个数.变式2方程ay =b 2x 2+c 中的a ,b ,c G C 3,—2,0,1,2,3),且a ,b ,c 互不相同,在所以这些方程所表示的曲线中,不同的抛物线共有().A.60条B.62条C.71条D.80条变式3广州亚运会组委会要从小张,小赵,小李,小罗,小王5名志愿者选派4人分别从事翻译、导游、礼仪、司机4项不同的工作,其中小张和小赵只能从事前两项工作,其余3人均能从事着4项工作,则共有()种选派方案. A.12B.18C.36D.48变式4一生产过程有4道工序,每道工序需要一个人照看,现从甲、乙、丙等6人中安排4人分别照看每一道工序,第一道只能从甲、乙中安排1人,第四道工序只能从甲、丙中安排1人,则共有()种安排方法. A.24B.36C.48D.72题型2元素相邻的排列问题 思路提示先把排在一起的元素(m 个)捆绑成一个板块(有A m 种方法);再把板块当作一个大元素与其他元m素精心排列.注对于元素相邻排列问题,通常采用捆绑法,即可以把相邻元素看作一个整体,再参与其他元素的排列.例12.13七个人排成一排.(1) 甲、乙、丙排在一起,共有多少种排法?(2)甲、乙相邻,且丙、丁相邻,共有多少种排法?(3)甲、乙、丙排在一起,且都不在两端,有多少种排法?(4)甲、乙、丙排在一起,且甲在两端,有多少12-16所示,先作出板块(A;A;种方法),与其余3个元素排列,(6)如图12T7所示,先作甲乙丙排法.出板块,彎与其他4个元素排列,共A jA广240(种)种排法?(5)甲、乙之间恰有2人的排法有多少?(6)甲、乙之间是丙的排法有多少?解析⑴甲、乙、丙板块(A|种排法)与其余4人排列’共A 汽二720(种)排法.(2)甲、乙板块(A 2种方法),丙、丁板块(A 2种方法)与其他3人排列,共A 2A 2A 5二480(种)排22225法.(3)甲、乙、丙板块(A 3种排法)与其余4人排列,板块不在两端,共A 3C 1A 4二432(种)排法.3334(4)如图12-15所示,甲在两端(A i 种方法),乙、丙板块(A 2种方法)与甲相邻,共A 1A 2A 4二96(种)22224图12-15共A 2A 2A 4=960(种)排法.224评注关键在于板块的形成.变式1一排8个车位,停5辆不同车,每车位至多停一车.(1)停车的5个车位相邻有多少停法? (2)不停车的3个空位相邻有多少停法?(3)一共多少停法?变式2某次文艺汇演要将A ,B ,C ,D ,E ,F 这6个不同节目排成一个节目单(如图12-18所示),如果A ,B两个节目要相邻,且都不排在第3个位置,则共有()种节目单的不同排序方式.A.192B.96C.10图12-18).144例12.14用1,2,3,4,5,6组成无重复数字的六位数,要求任意两个相邻数字的奇偶性不同且1和2相邻,共有个这样的六位数(用数字作答).分析由题意知,这6位数字奇偶相间,且1和2相邻,关键是排1,2的位置.解析解法一:先排1,2的位置(C i 种方法),再将1,2排列(A 2种排法),然后其他位置的元素排列(A i A i5222种方法),故共有C 1A 2A 1A 1=40(种).5222解法二:可分三步来做这件事.第一步:将3,5排列,共有A2种排法;第二步:将4,6插空,共有2A2种排法;第三步:将1,2放到3,4,5,622形成的空中,共有C i种排法.5由分步计数原理得,共有A2(2A2)C i=40(种).225变式1用0,1,2,3,4组成无重复数字的五位数,其中1,2相邻的偶数有个.变式2用0,1,2,3,4这5个数字组成无重复数字的五位数,其中一个偶数夹在两个奇数之间,这样的五位数有()个.A.48B.12C.36D.28题型3元素不相邻排列问题思路提示步骤1:m个不同的元素在n个不同元素中抽空,先把n个元素排好,有A n种排法.m步骤2:n个元素有n+1个空,m个不同的元素互不相邻有A m种排法.n+1步骤3:共有A n A m种排法.mn+1注对于元素不相邻的排列,通常采用插空的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.例12.157个人排成一排.(1)甲乙丙互不相邻,共有多少种排法?(2)甲乙相邻,丙丁不相邻有多少种排法?(3)甲不与乙相邻,丙不与乙相邻,有多少种排法?解析(1)共有A4A3=1440种排法.(2)甲、乙板块(A2种)与其他3人共4个元素排列,丙、丁在4525个空中插空,共有A2A4A2=960种排法.(3)甲、丙可能相邻也可不相邻,分两类:245甲、乙、丙互不相邻,有A4A3=1440种排法.45甲、丙相邻形成板块(A2种排法)与乙在其余4人中插空A2A4A2=960,共有1440+960=2400种排2245法.评注捆绑与插空同时发生时,先捆后插,如与特殊位(某元不在某位)问题结合宜用减法.变式1一排8个车位,停5辆不同车,每车位至多停一车.(1)空车位互不相邻有多少停法?(2)恰两个车位相邻有多少停法?变式2某电影院第一排共有9个座位,现有3名观众来就坐.(1)若3名观众互不相邻,共有多少种坐法?(2)若3名观众互不相邻,且要求每人左右都至多有两个空位,共有多少种不同的坐法(用数字作答).变式32男3女共5个同学站成一排,男生甲不站两端,3女中有且仅有2女相邻,则有()种不同的排法.A.60B.48C.42D.36例12.16用1,2,3,4,5,6组成的没有重复数字的6位偶数中,1与3都不与5相邻的有()个.A.72B.96C.108D.144分析分析用插空法求解时要注意限制条件(六位偶数),3个偶数形成4个空位,但另3个数只能插入前3空位中.解析:1,3,5互不相+1,3相邻与5不相邻=A s A3+A3A2A3=108。
数字排列问题是一种常见的数学和计算机科学问题,通常涉及从给定的一组数字中选出几个数字并按特定顺序排列。
这类问题可以通过不同的方法来解决,包括递归、动态规划、回溯算法等。
下面是对数字排列问题的一些总结:1. 问题类型:排列:从n个不同元素中取出m(m≤n)个不同元素按照一定的顺序排成一列。
组合:从n个不同元素中取出m(m≤n)个不同元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
2. 求解方法:递归:递归是处理排列问题的一种直观方法。
可以定义一个递归函数,该函数每次选择一个数字并将其放入排列中,然后递归地处理剩余的数字。
动态规划:对于更复杂的排列问题,可以使用动态规划来优化计算。
动态规划通常用于求解具有重叠子问题和最优子结构的问题。
回溯算法:回溯算法是另一种处理排列问题的常用方法。
它通过尝试所有可能的排列来找到所有解。
当发现某个排列不满足条件时,它会回溯到前一步并尝试另一种可能。
3. 注意事项:避免重复:在生成排列时,需要确保每个数字只使用一次,避免生成重复的排列。
排序:如果问题要求生成所有可能的排列并进行排序,可以使用排序算法(如快速排序、归并排序等)对生成的排列进行排序。
时间复杂度:在处理大型数据集时,需要注意算法的时间复杂度。
某些算法可能在处理大量数据时变得非常慢。
4. 应用场景:密码学:数字排列问题在密码学中有着广泛的应用,如排列密码等。
计算机科学:在计算机科学中,数字排列问题常用于解决搜索、优化等问题。
日常生活:在日常生活中,数字排列问题也经常出现,如彩票选号、赛事排程等。
总之,数字排列问题是一类具有挑战性的问题,可以通过多种方法来解决。
在处理这类问题时,需要根据问题的具体要求和约束条件选择合适的算法和方法。
排列方法总结1、特殊元素的“优先安排法”:对于特殊元素的排列组合问题,一般应先考虑特殊的元素,再考虑其他的元素。
例1:用0、1、2、3、4、这五个数字,组成没有重复数字的三位数,其中偶数的个数有多少?2、总体淘汰法:对于含有否定词语的问题,可以从总体中把不符合要求的减去,但是应注意不能多减也不能少减。
例1、3、合理分类与准确分步:解含有约束条件的排列组合问题,应按元素的性质进行分类,事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
例2:五人从左到右站成一排,其中甲不站在排头,乙步站在第二个位置,那么不同的站法有多少?4、相邻问题用“捆绑法”:对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”在一起,看做一个“大”的元素与其他元素排列,燃烧在对相邻的元素内部进行排列。
例:7人站成一排照相,要求甲乙丙三人相邻,分别有多少种不同的排法?5、不相邻问题用“插空法”:对于某些元素不相邻的排列问题,可以现将其他的元素排列好,然后再将不相邻的元素在已排好的元素之间以及两端的空隙之间插入即可。
例:7人站成一排照相,要求甲乙丙三人不相邻,分别有多少种不同的排法?6、顺序固定问题用“除法”:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总得排列数除以这几个元素的全排列数。
例:5人排队甲在乙的前面的排法有几种?7、消序例:有4个男生,3个女生,高矮互不相等,先将他们排成一行,要求从左到右,女生从矮到高排列,有多少中排法?8、分排问题用“直排法”:把n个元素排成若干排的问题,若没有其他的特殊要求,课采取统一排成一排的方法来处理。
例:7人坐两排座位,第一排坐3人,第二排坐4人,则有多少种排法?9、特征分析:研究有约束条件的排数问题,需要紧扣题目提供的数字特征、结构特征,进行推理、分析求解。
例:由1、2、3、4、5、6六个数可组成多少个无重复数字且是6的倍数的五位数?10、住店法:解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类元素不能重复。
排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。
例2: 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。