岩石力学 岩石的变形 破坏特征
- 格式:pdf
- 大小:3.77 MB
- 文档页数:119
2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。
一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。
对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。
图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。
图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。
本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。
2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。
它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。
朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。
考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。
当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。
土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。
根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。
因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。
第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。
(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。
2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。
公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。
2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。
它间接地反映了岩石中裂隙间相互连通的程度。
四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。
它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。
岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。
它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。
3 岩石的膨胀性:岩石浸水后体积增大的性质。
(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。
(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。
(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。
五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。
岩石动力学特征、含损伤本构模型及破坏机理研究一、引言岩石是地球地壳的重要组成部分,其力学性质和破坏机理对地质工程和岩土工程具有重要影响。
岩石动力学特征、含损伤本构模型及破坏机理的研究,不仅对工程设计和施工具有指导意义,也对地质灾害预测和防治具有重要意义。
本文将从岩石的动力学特征入手,探讨其损伤本构模型和破坏机理,为岩石力学的研究提供一些思路和方法。
二、岩石的动力学特征1.岩石的基本性质岩石作为地壳的固态材料,具有一定的物理性质和化学成分。
其物理性质包括密度、孔隙度、饱和度等,化学成分则影响岩石的力学性质和破坏特征。
同时,岩石的结构、晶体排列和裂纹分布也是其动力学特征的重要组成部分。
2.岩石的动力学参数岩石在受力作用下会产生应力和应变,这些动力学参数对岩石的力学性质和破坏机理具有重要影响。
岩石的弹性模量、剪切模量、泊松比等参数是其动力学特征的重要指标,通过实验测试和数值模拟可以获得这些参数,为岩石力学研究提供了基础数据。
三、含损伤本构模型1.损伤本构模型的概念损伤本构模型是描述岩石在受力过程中损伤演化和力学行为的数学模型。
其基本思想是将岩石的承载能力随损伤参数的增加而减小,从而描述岩石的破坏过程。
损伤本构模型是岩石力学研究的重要理论工具,为分析岩石的变形和破坏提供了重要思路。
2.典型的损伤本构模型目前常用的损伤本构模型包括Mohr-Coulomb损伤模型、Drucker-Prager损伤模型、Hoek-Brown损伤模型等。
这些模型都是基于损伤力学和弹塑性理论发展而来,通过引入损伤参数描述岩石的力学性质和破坏行为,为工程实践和科学研究提供了重要的参考。
四、岩石的破坏机理1.岩石的破坏形式岩石在受到外力作用下会出现不同形式的破坏,包括拉裂破坏、压碎破坏、剪切破坏等。
不同形式的破坏对岩石的力学性质和稳定性具有不同影响,因此破坏形式的研究是岩石力学研究的重要内容。
2.破坏机理的研究岩石的破坏机理是岩石力学研究的核心问题,不同的岩石类型和受力条件下会出现不同的破坏机理。
岩石力学与地下工程稳定性分析地下工程在现代城市建设中扮演着重要的角色,然而地下工程的稳定性常常受到岩石力学的影响。
岩石力学作为一门研究岩石的力学性质及其变形和破坏规律的学科,对地下工程的稳定性分析起着至关重要的作用。
本文将探讨岩石力学与地下工程稳定性分析的相关内容。
一、岩石力学基础知识1. 岩石的力学性质岩石的力学性质是指岩石在受力作用下的变形和破坏特征。
了解岩石的力学性质对于地下工程的稳定性分析是必要的。
2. 岩石的力学参数岩石的力学参数是描述岩石力学性质的量值,如弹性模量、抗压强度、剪切强度等。
通过测定岩石的力学参数可以为地下工程的设计和稳定性分析提供依据。
3. 岩石的变形和破坏规律岩石在受力作用下会发生变形和破坏,了解岩石的变形和破坏规律对于地下工程的稳定性分析具有重要意义。
二、地下工程稳定性分析方法1. 应力—应变分析法基于岩石的弹性性质,通过建立应力—应变关系来分析地下工程的稳定性。
这种方法适用于小变形和较为简单的工程情况。
2. 基于岩石力学参数的数值模拟方法基于岩石的力学参数和地下工程具体情况,利用数值模拟方法对地下工程进行稳定性分析。
数值模拟方法能够考虑更多复杂的因素,对于复杂工程情况具有较高的适用性。
三、岩石力学与地下工程稳定性分析实例1. 地下隧道工程地下隧道工程是岩石力学与地下工程稳定性分析的典型应用。
通过对岩石的力学性质和力学参数进行研究,可以对隧道的稳定性进行分析和评估,为隧道的设计和建设提供依据。
2. 地下采空区地下采空区是地下矿山开采过程中形成的空隙地带。
通过岩石力学的研究和分析,可以预测地下采空区的稳定性,制定有效的支护和加固措施,以减少地质灾害的发生。
3. 地下水库工程地下水库工程是一种新型的水利工程形式,在设计和建设过程中需要进行地下工程的稳定性分析。
岩石力学的知识可以为地下水库的开挖和建设提供科学依据,确保工程的安全和稳定性。
结论岩石力学与地下工程稳定性分析密切相关,通过深入研究岩石的力学性质和力学参数,可以为地下工程的设计、建设和维护提供科学依据。
岩石的地质力学特征岩石是地球上最常见的物质之一,其地质力学特征对于了解地球内部的构造和地质活动具有重要的意义。
在本文中,我将介绍岩石的地质力学特征,包括岩石的类型、力学性质、破裂与变形等方面。
首先,让我们来了解一下岩石的类型。
岩石可以分为三种主要类型:火成岩、沉积岩和变质岩。
火成岩是由地壳或地幔中的熔融岩浆冷却所形成的,例如花岗岩和玄武岩。
沉积岩是由岩屑、有机物或溶解物质在地表沉积并经过压实而形成的,例如砂岩和石灰岩。
变质岩是由原有岩石在高温和高压下发生变化而形成的,例如片麻岩和云母片岩。
接下来,我们来了解一下岩石的力学性质。
岩石的力学性质可以通过一些实验来测试。
其中,最常用的是强度测试和弹性模量测试。
强度测试可以用来评估岩石的破裂和破坏的能力。
弹性模量测试则可以用来评估岩石的变形和回弹能力。
这些测试结果可以帮助我们对岩石的力学性质有更深入的了解。
岩石在地质过程中会发生各种破裂和变形。
其中,最常见的是岩石的断裂和褶皱。
断裂是指岩石在外力作用下发生断裂并形成断层。
断层可以是平行于地层的走向、顺层倾向或垂直于地层的倾角。
褶皱则是指岩石在外力作用下发生挤压并形成褶皱。
褶皱可以是正褶皱或逆褶皱,取决于褶皱的折叠方向。
除了断裂和褶皱,岩石还可以发生岩浆侵入和岩石变形等现象。
岩浆侵入是指岩浆从地壳或地幔中向上运动并进入岩石中的过程。
岩浆侵入的形式有很多,常见的有岩浆柱、岩浆包裹体和岩浆岩等。
岩石变形是指岩石在外力作用下发生形状和体积的变化。
岩石变形可以是弹性变形或塑性变形,取决于岩石的力学性质和外力的大小。
总结起来,岩石的地质力学特征包括其类型、力学性质、破裂和变形等方面。
了解和掌握这些特征对于地质研究和工程建设具有重要的意义。
我们可以通过实验和观察来深入了解岩石的地质力学特征,并将其应用于实际的工程项目中。
随着科技的不断发展,我们对岩石的了解也会越来越深入,为地球科学的进一步发展提供更多的支持。
压缩岩石破坏形式
在压缩条件下,岩石的破坏形式主要有以下几种:
1.脆性破裂:在受到压缩时,岩石可能会发生脆性破裂,形成一系
列平行的破裂面。
这种破坏形式通常发生在岩石中存在弱面或者缺陷的情况下,例如层理、节理或者裂缝等。
脆性破裂的特点是破裂面比较平直,没有明显的塑性变形。
2.延性破裂:在受到压缩时,岩石也可能发生延性破裂,形成一系
列的剪切面。
这种破坏形式通常发生在岩石中不存在明显的弱面或者缺陷的情况下,例如密实的石英岩或者花岗岩等。
延性破裂的特点是破裂面比较粗糙,同时伴随着明显的塑性变形。
3.压缩屈服:在受到压缩时,岩石可能会发生压缩屈服,表现为岩
石的变形量突然增大,但是并不发生破坏。
这种破坏形式通常发生在岩石中存在大量的微裂纹或者孔洞的情况下,这些微裂纹或者孔洞在受到压缩时会被压缩变形,但是并不会贯通形成破裂面。
岩石的1岩石的力学性质-岩石的变形岩石的强度:岩石抵抗外力作用的能力,岩石破坏时能够承受的最大应力。
岩石的变形:岩石在外力作用下发生形态(形状、体积)变化。
岩石在荷载作用下,首先发生的物理力学现象是变形。
随着荷载的不断增加,或在恒定载荷作用下,随时间的增长,岩石变形逐渐增大,最终导致岩石破坏。
岩石变形过程中表现出弹性、塑性、粘性、脆性和延性等性质。
▪ 1.5岩石变形性质的几个基本概念▪1)弹性(elasticity):物体在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的性质称为弹性。
▪弹性体按其应力-应变关系又可分为两种类型:▪线弹性体:应力-应变呈直线关系。
▪非线性弹性体:应力—应变呈非直线的关系。
▪2)塑性(plasticity):物体受力后产生变形,在外力去除(卸载)后变形不能完全恢复的性质,称为塑性。
▪不能恢复的那部分变形称为塑性变形,或称永久变形,残余变形。
▪在外力作用下只发生塑性变形的物体,称为理想塑性体。
▪理想塑性体,当应力低于屈服极限时,材料没有变形,应力达到后,变形不断增大而应力不变,应力-应变曲线呈水平直线.▪3)黏性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质,称为粘性。
▪应变速率与时间有关,->黏性与时间有关▪其应力-应变速率关系为过坐标原点的直线的物质称为理想粘性体(如牛顿流体),▪4)脆性(brittle):物体受力后,变形很小时就发生破裂的性质。
▪5)延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质,称为延性。
▪ 1.7岩石变形指标及其确定▪岩石的变形特性通常用弹性模量、变形模量和泊松比等指标表示。
3)全应力-应变曲线的工程意义▪①揭示岩石试件破裂后,仍具有一定的承载能力。
▪②预测岩爆。
▪若A>B,会产生岩爆▪若B>A,不会产生岩爆▪③预测蠕变破坏。
▪当应力水平在H点以下时保持应力恒定,岩石试件不会发生蠕变。
岩石的力学特性及强度准则岩石力学性质主要是指岩石的变形特征及岩石的强度。
由于在石油工程中,并壁稳定、出砂分析、水力压裂、储层物性变化等都与岩石力学性质亲密相关,因此有必要讨论岩石的力学性质及其在物理环境下应力场中的反映。
影响岩石力学性质的因素许多,例如岩石的类型、组构、围压、温度、应变率、含水量、载荷时间以及载荷性质等。
要讨论这些简单因素对岩石力学性质的影响,只能在试验艾博希室内严格掌握某些因素的状况下进行。
岩石的变形特性,最直观的表达方法是通过应力一应变关系曲线及应变随时间变化的曲线来表示。
通常首先讨论在常温、常压(即室温与通常大气压)条件下岩石的力学性质,然后再考虑其他影响因素下岩石的力学性质。
这样才能渐渐弄清在地质条件下,综合因素对岩石力学性质的影响。
岩石在常温、常压下一般产生脆性破坏,但深埋地下的岩石却表现为明显的延性。
,岩石这一性质的变化是由于所处物理环境的转变造成的。
所谓脆性与延性至今尚无非常明确的定义。
一'般所谓脆性破坏是指由弹性变形发生急剧破坏,破坏后塑性变形较小。
延性是指弹性变形之后产生较大的塑性变形而导致破坏,或直接进展为延性流淌。
所谓延性流淌IC现货商是指有大量的永久变形而不至于破坏的性质* 对于岩石而言,破坏前的应变或永久应变在3%以下可作为脆性破坏,5%以上作为延性破坏,3% 一5%为过渡状况。
由于地下的岩体和井壁围岩均处于三向应力状态,所以对岩石力学性态的测定不能靠简单的单轴压缩试验方法,而必需在肯定的围压作用厂(必要时还要考虑温度的作用)进行试验测定。
真三轴试验(岩石上三个主方向的作用力均不等)非常简单,一般均不采纳。
普退采纳的是常规三轴压缩试验方法,一般用圆柱形岩样,在其横向施加液体围压,即在水平的两个主方向上的应力相等且等于围压久,如图1—1所示。
假如上下垫块是带孔可渗透的,亦可通入孔隙流体压力以讨论孔隙压力的影响。
在试验过程中把岩样放在高压室中先对岩样四周用围压油加压至所需的值9c(需要时亦可加孔隙压至所需的夕。
第一部分填空题宇文皓月1、岩石力学定义①岩石力学是研究岩石的力学性态的理论和应用的科学,是探讨岩石对其周围物理环境中力场的反应的科学。
识记(1分/空)②岩石力学是研究岩石在荷载作用下的应力、变形、破坏规律以及工程稳定性等问题。
识记(1分/空)2、岩石力学研究内容①岩石力学研究的主要领域可概括为基来源根基理、实验室和现场试验、实际应用。
识记(1分/空)3、岩石力学研究方法①岩石力学研究方法主要有工程地质研究法、试验法、数学力学、分析法、综合分析法。
理解(1分/空)4、岩石的经常使用物理指标①在工程上经常使用到的物理指标有:容量、比重、孔隙率、吸水率、膨胀性、崩解性等。
识记(1分/空)的重力,单位是识记(1分/空)是指岩石的单位体积的质量(包含孔隙体(1分/空)与4。
C时水的容重相比。
计算公式是:1分/空)比,工程设计上所用的孔隙率常是利用识记(1分/空)⑥孔隙率是反映岩石的密度和岩石质量的重要参数。
孔隙率愈大暗示岩石中的空隙和细微裂隙愈多,岩石的抗压强度随之是降低。
理解(1分/空)⑦暗示岩石吸水能力的物理指标有吸水率和饱和吸水率,两者的比值被称为饱水系数,它对于判别岩石的抗冻性具有重要意义。
理解应用(1分/空)⑧岩石的吸水能力大小,一般取决于岩石所含孔隙的多少以及孔隙和细裂隙的连通情况。
岩石中包含的孔隙和细微裂隙愈多,连通情况愈好,则岩石吸入的水量就愈多。
理解(1分/空)⑨岩石的抗冻性就是岩石抵抗冻融破坏的性能,一般用抗冻系数和重力损失率两个物理指标来暗示。
识记(3分/空)5、岩石的渗透性及水对岩石的性状影响①岩石的渗透性是指在水压力的作用下,岩石的孔隙和裂隙透过水的能力。
暗示岩石渗透能力的物理指标是渗透系数k。
识记(1分/空)②渗透系数的物理意义是介质对某种特定流体的渗透能力,它的大小取决于岩石的物理特性和结构特征。
理解(1分/空)③水对岩石性状的影响主要表示在岩石的抗冻性、膨胀性、崩解性、软化性。
第38卷第8期煤炭学报Vol.38No.82013年8月JOURNAL OF CHINA COAL SOCIETYAug.2013文章编号:0253-9993(2013)08-1319-06不同开采条件下岩石的变形破坏特征及对比分析左建平1,2,刘连峰1,周宏伟1,2,黄亚明1(1.中国矿业大学(北京)力学与建筑工程学院,北京100083;2.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京100083)摘要:基于3种典型的煤层开采方式(无煤柱开采、放顶煤开采和保护层开采),借助MTS -815电液伺服岩石实验系统对潞安李村煤矿灰岩进行了同时恒定降围压、变速率加轴压的三轴卸荷试验,由此研究了不同开采卸荷条件下的应力路径对围岩的力学行为影响。
实验获得了不同围压不同加载速率条件下灰岩的全应力-应变曲线及宏观破坏模式,认为灰岩的破坏模式与达到峰值时围压的大小有很大关系,而轴向加载应力路径影响较小;放顶煤开采条件下围岩的变形较保护层开采和无煤柱开采要大,特别是塑性变形较后两者也大。
另外围岩的脆性和延性特征的转变与轴向加载速率有很大关系,即与煤层开采方式有关,并且围压越大,塑性特征越明显。
关键词:开采方式;卸荷;破坏模式;塑性应变中图分类号:TD315文献标志码:A收稿日期:2012-08-02责任编辑:王婉洁基金项目:国家重点基础研究发展计划(973)资助项目(2010CB732002,2011CB201201);国家自然科学基金资助项目(11102225)作者简介:左建平(1978—),男,江西高安人,教授,博士。
E -mail :zjp@cumtb.edu.cnDeformation failure mechanism and analysis of rockunder different mining conditionZUO Jian-ping 1,2,LIU Lian-feng 1,ZHOU Hong-wei 1,2,HUANG Ya-ming 1(1.School of Mechanics and Civil Engineering ,China University of Mining and Technology (Beijing ),Beijing 100083,China ;2.State Key Laboratory of Coal Resources and Safe Mining ,China University of Mining and Technology (Beijing ),Beijing 100083,China )Abstract :Based on three typical mining models (non-pillar mining ,top-coal caving and protected coal seam mining ),a series of triaxial tests which keeping confining pressure at the same unloading rate and axial pressure in different loading rates were carried out on the limestone samples through MTS-815electrohydraulic servo Rock Test System.Based on experimental results ,the relationship between stress path and surrounding rock under different mining condi-tions was investigated in detail.The complete stress-strain curves and macro-damaged characteristics were studied and compared.The experimental results indicate that the failure mode is mainly related to the confining pressure near peak strength rather than the axial loading rate under unloading condition.The top-coal caving can lead to more bigger de-formation and plastic deformation than non-pillar mining and protected coal seam mining.The axial loading rate trans-form the rock property between brittle and ductile ,when the confining pressure is bigger ,the conversion of brittle-duc-tile property will be more obviously.Key words :mining layout ;unloading ;failure mode ;plastic strain 深部煤炭开采后,巷道和工作面附近的围岩处于卸荷状态[1],即煤岩体经历了从原岩应力、轴向应力差(σ1-σ3)在升高而围压σ3在递减(即卸荷)到破坏卸荷的完整采动力学过程[2]。