【新】人教版数学五年级下册第五单元《图形的运动》知识点总结
- 格式:docx
- 大小:81.59 KB
- 文档页数:3
图形运动知识点总结图形运动是在一个平面上的移动,我们可以用数学知识来表达和分析图形的运动。
在这里,我们将总结一些关于图形运动的知识点,包括平移、旋转和变形等。
1. 平移平移是指图形在平面上沿着某个方向以相同的距离移动。
平移可以通过向量来描述,其中向量的方向和大小代表了图形的移动方向和距离。
平移不改变图形的形状和大小,只是改变了图形的位置。
在平移中,平移前后的图形是全等的,也就是说它们的对应的边和角都是相等的。
平移的公式可以表示为:(x', y') = (x + a, y + b)其中 (x', y') 是平移后的点的坐标,(x, y) 是平移前的点的坐标,a 和 b 分别是平移的横向和纵向的距离。
2. 旋转旋转是指图形绕着一个固定点旋转一定的角度。
旋转可以通过变换矩阵来描述,其中矩阵的元素代表了旋转的角度和固定点的位置。
旋转改变了图形的方向和位置,但不改变图形的形状和大小。
旋转的变换矩阵可以表示为:x' = x*cos(θ) - y*sin(θ)y' = x*sin(θ) + y*cos(θ)其中 (x', y') 是旋转后的点的坐标,(x, y) 是旋转前的点的坐标,θ 是旋转的角度。
3. 变形变形是指通过拉伸、挤压、剪切等操作改变图形的形状和大小。
变形可以通过矩阵来描述,其中矩阵的元素代表了图形的变形比例和方向。
变形改变了图形的形状和大小,但不改变图形的位置。
变形的变换矩阵可以表示为:x' = a*x + c*y + ey' = b*x + d*y + f其中 (x', y') 是变形后的点的坐标,(x, y) 是变形前的点的坐标,a、b、c、d 分别是x和y的拉伸、挤压和剪切比例,e 和 f 是平移的横向和纵向的距离。
4. 复合变换在图形运动中,我们可以将平移、旋转和变形等多种变换组合在一起,形成复合变换。
人教版五年级下册第五单元《图形的运动(三)》单元学习要点第五单元《图形的运动》,是在学生已经初步感知了生活中的对称、平移和旋转现象的基础上,进一步认识图形的旋转变换,并学习在方格纸上画出一个简单的图形旋转90°后的图形,发展空间观念。
一、旋转的意义及要素1、旋转的意义旋转就是物体绕一个点向某一方向转动一定的角度。
如:指针的转动2、旋转的三要素(1)旋转点(或旋转中心):物体旋转时所绕的点,就是旋转点(或旋转中心)。
(2)旋转方向:钟表中指针运动的方向为顺时针方向;与钟表中指针的运动方向相反的方向为逆时针方向。
(3)旋转角度指对应线段的夹角或对应顶点与旋转中心连线的夹角。
(简单的讲就是物体旋转了多少度)二、图形旋转的特征与性质1、旋转前后的图形,旋转中心的位置不变;2、旋转前后的图形,形状、大小不变;3、图形绕某一点按某种方向旋转一定的度数,图形中的对应点、对应线段都按某种方向旋转了相同的度数;4、旋转前后的图形,对应点到旋转中心的距离相等,对应的线段和对应的角度都相等。
三、简单图形旋转90°的画法1、找出原图形的几个关键点或线段(一般是图形的顶点或线段的交点、端点),根据旋转方向,从关键点与旋转点所在线段的某一侧借助三角板作垂线;2、从旋转点开始,在所作垂线上量出(数出)与原线段相等的长度,标出原图形关键点的对应点;3、顺次连接所标出的对应点。
简单概括画法就是三个字:找、标、连。
四、重要习题1、2、数学书第86页第6题这一题是要画出将三角形OAB绕点O按顺时针方向旋转90°后得到的图形。
观察:三角形OAB的关键点是A点和B点,关键线段是OA和OB。
三角形要绕点O按顺时针方向旋转90°,线段OA也会按顺时针方向旋转90°。
根据旋转角度和A点到O点的距离,通过数正方形格子数很快找到A'点,接着用同样的方法找到B'点,(也可以根据对称关系找到B'点),最后连接O、A'、B'三点,旋转后的三角形就画好了。
第五单元《图形的运动三》
【知识梳理】
轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。
1。
五年级下册数学第五单元《图形的运动(三)》知识点归纳+典例讲解【知识点归纳】图形变换的基本方式是平移、对称和旋转。
1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
2、对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
3、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
4、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数【典例讲解】例1.下列图形中,对称轴条数最少的是()A.圆B.半圆C.等边三角形D.长方形【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.【解答】解:圆有无数条对称轴,半圆有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,所以半圆的对称轴的条数最少;故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.例2.如图共有 4 条对称轴.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:如图共有4条对称轴.故答案为:4.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.例3.长方形和正方形的对称轴条数相等.×(判断对错)【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:长方形有2条对称轴,正方形有4条对称轴,长方形和正方形的对称轴条数不相等,所以本题说法错误;故答案为:×.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.例4.在如图的方格纸中,照样子画出所给的图形【分析】先确定圆心和半径作出外圆,再找到对应点作出正方形,再找到正方形的边长的中点找到半圆的圆心,作出4个半圆即可求解.【解答】解:如图所示:【点评】考查了运用平移、对称和旋转设计图案,关键是确定圆的圆心和半径.例5.将图向右平移五格得到图形A;再将图形A绕O点顺时针旋转90°画出图形B.【分析】(1)首先把点O以及其他四个顶点向右平移五格得到对应的点,再顺次连接各点得到图形A;(2)再把图形A以点O为旋转中心,顺时针旋转90°画出图形B即可解决问题.【解答】解:答案如图,【点评】解答此类问题,要注意旋转的方向、角度,平移的方向和距离.。
五年级下数学第五单元《图形的运动(三)》线上线下衔接梳理一、单元梳理(一)课标具体要求(二)教材编排内容2.能从对称、平移和旋转的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案,进一步感受图形变换带来的美感以及在生活中的应用。
(四)教学重点认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上画出简单图形旋转90°后的图形;(五)教学难点能在方格纸上画出简单图形旋转90°后的图形。
二、线上学情学生通过线上学习已经基本掌握本单元知识,初步感知了生活中的旋转现象,了解了旋转的含义,知道了图形旋转的特征和性质,能在方格纸上画出简单图形旋转90°后的图形。
通过答疑,我们发现学生在以下方面还存在不足:1.运用旋转三要素描述旋转现象还不够完整、熟练、准确,在判读旋转方向和旋转角度时容易出错;2.在方格纸上画出简单图形旋转90°后的图形时,出没有围绕中心的旋转或旋转方向、旋转角度错误;3.探究多个图形拼组的运动变化过程,不会运用想象、画图等方式准确判断图形运动的现象,解决实际问题。
三、考察标准1.学生能否正确理解旋转的含义,并具有一定的空间观念;能否运用旋转三要素完整、准确、熟练地描述旋转现象;2.学生是否掌握图形旋转的特征和性质;能否运用图形旋转的特征和性质准确方格纸上画出简单图形旋转90°后的图形;3.学生能否用想象、画图等方式,探究多个图形拼组的运动变化过程,并进行简单的设计。
五年级下册第五单元线上教学质量评估卷一、填一填。
(共54分)1.图形旋转有三个关键要素,一是旋转的(),二是旋转的(),三是旋转的()。
2.图形(1)是以点()为中心旋转的;图形(2)是以点()为中心旋转的;图形(3)是以点()为中心旋转的。
3.如图(上右),指针从A开始,顺时针旋转了90°到()点,逆时针旋转了90°到()点;要从A旋转到C,可以按()时针方向旋转()°,也可以按()时针方向旋转()°。
图形的运动知识总结图形的运动是指图形在平面上进行移动的过程。
图形的运动可以是平移、旋转、翻转等不同的变换方式,这些运动会改变图形的位置、形状或方向。
通过研究图形的运动,可以帮助我们更好地理解几何学中的各种概念和性质。
平移运动是指图形在平面上沿某一方向移动一定距离,保持图形的大小、形状和方向不变。
平移运动是一种刚体运动,即图形的每一个点都沿着相同的方向和距离移动。
可以用平移向量来描述平移运动,平移向量的大小和方向决定了图形的平移量。
由于平移运动不改变图形的形状和大小,所以平移后的图形与原图形是全等的。
旋转运动是指图形绕某一点或某一直线旋转一定的角度。
旋转运动可以分为顺时针旋转和逆时针旋转两种。
图形绕某一点旋转时,该点称为旋转中心;图形绕某一直线旋转时,该直线称为旋转轴。
旋转运动改变了图形的方向和形状,但不改变图形的中心点位置。
翻转运动又称为对称运动,是指图形关于某一直线或某一点对称。
图形关于直线对称时,称为轴对称;图形关于点对称时,称为中心对称。
轴对称图形按照轴线翻转180度,而中心对称图形则按照中心点旋转180度。
翻转运动改变了图形的形状和方向,但保持了图形的大小。
除了这些基本的运动方式,图形还可以通过组合运动来达到更复杂的效果。
例如,可以先进行平移运动,再进行旋转运动,或者先进行旋转运动,再进行翻转运动。
组合运动可以改变图形的位置、形状、方向和大小,而具体的效果取决于运动的顺序和方式。
图形的运动可以通过向量和矩阵来进行描述和计算。
向量表示平移运动的大小和方向,矩阵表示旋转和翻转运动的变换关系。
通过矩阵乘法的运算,可以将一个图形经过一系列的运动变换之后得到新的图形。
图形的运动在实际生活中有着广泛的应用。
例如,在工程设计中,图形的运动可以用来模拟机械装置的运动轨迹和变换方式;在计算机图形学中,图形的运动可以用来实现动画效果和模拟物体的运动行为。
此外,在数学教育中,图形的运动也是学习几何学和空间感知的重要内容。
小学数学图形的运动知识点总结1.圆与组合图形【知识点归纳】1.圆知识的相关回顾:(1)圆的周长C=2πr=或C=πd(2)圆的面积S=πr2(3)扇形弧长L=圆心角(弧度制)×r=(n为圆心角)(4)扇形面积S==(L为扇形的弧长)(5)圆的直径d=2r2.组合图形的面积计算,可以根据几何图形的特征,通过分割、割补、平移、翻折、对称、旋转等方法,化复杂为简单,变组合图形为基本图形的加减组合.2.组合图形的面积【知识点归纳】方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减.③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形.【命题方向】常考题型:例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个圆,阴影部分的面积等于梯形的面积减去圆的面积再加上圆的面积减去三角形面积的差,列式解答即可得到答案.解:[(5+8+5)×5÷2﹣×3.14×52]+(×3.14×52﹣5×5÷2),=[18×5÷2﹣0.785×25]+(0.785×25﹣25÷2),=[90÷2﹣19.625]+(19.625﹣12.5),=[45﹣19.625]+7.125,=25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr2的应用.3.轴对称【知识点归纳】1.轴对称的性质:像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.2.性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.【命题方向】常考题型:例:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.分析:依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.解:据分析可知:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.故答案为:一条直线、完全重合、轴对称图形.点评:此题主要考查轴对称图形的意义.4.确定轴对称图形的对称轴条数及位置【知识点归纳】1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.【命题方向】常考题型:例:下列图形中,()的对称轴最多.A、正方形B、等边三角形C、等腰三角形D、圆形分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;(3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;(4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.所以说圆的对称轴最多.故选:D.点评:解答此题的主要依据是:轴对称图形的概念及特征.例2:下列图形中,对称轴条数最多的是()分析:先找出对称轴,从而得出对称轴最多的图形.解:A:根据它的组合特点,它有4条对称轴;B:这是一个正八边形,有8条对称轴;C:这个组合图形有3条对称轴;D:这个图形有5条对称轴;故选:B.点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.5.轴对称图形的辨识【知识点归纳】1.轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.【命题方向】常考题型:例:如图的交通标志中,轴对称图形有()A、4B、3C、2D、1分析:依据轴对称图形的定义即可作答.解:图①、③沿一条直线对折后,直线两旁的部分能够互相重合,所以图①、③是轴对称图形;图②、④无论沿哪一条直线对折后,直线两旁的部分都不能够互相重合,所以它们不是轴对称图形.如图的交通标志中,轴对称图形有2个.故选:C.点评:此题主要考查轴对称图形的定义.6.作轴对称图形【知识点归纳】1.如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.通过以上图形的组合就可以得到轴对称图形了.【命题方向】常考题型:例:(1)画出图A的另一半,使它成为一个轴对称图形.(2)把图B向右平移4格.(3)把图C绕O点顺时针旋转180°.分析:(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的下边画出图形A的关键对称点,连结涂色即可.(2)根据平移的特征,把图形B的各点分别向右平移4格,再依次连结、涂色即可.(3)根据旋转图形的特征,图形C绕点O顺时针旋转180°,点O的位置不动,其余各部分均绕点O按相同的方向旋转相同的度数即可画出旋转后的图形.解:(1)画出图A的另一半,使它成为一个轴对称图形(下图).(2)把图B向右平移4格(下图).(3)把图C绕O点顺时针旋转180°(下图).点评:此题是考查作轴对称图形、作平移的图形、作旋转图形.关键是确定对称点(对应点)的位置.7.平移【知识点归纳】1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移.2.平移后图形的位置改变,形状、大小不变.【命题方向】常考题型:例:电梯上升是()现象.A、旋转B、平移C、翻折D、对称分析:平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动.电梯的升降是上下位置的平行移动所以是平移,据此解答判断.解:电梯的升降是上下位置的平行移动,所以电梯的升降是平移现象;故选:B.点评:本题主要考查平移的意义,在实际当中的运用.8.作平移后的图形【知识点归纳】1.确定平移后图形的基本要素有两个:平移方向、平移距离.2.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.【命题方向】常考题型:例:分别画出将向上平移3格、向右平移8格后得到的图形.分析:根据平移图形的特征,把平行四边形A的四个顶点分别向上平移3格,再首尾连结各点,即可得到平行四边形A向上平移3格的平行四边形B;同理,把平行四边形B的四个顶点分别向右平移8格,再首尾连结各点,即可得到平行四边形B向右平移8格的平行四边形C.解:作平移后的图形如下:点评:作平移后的图形关键是把对应点的位置画正确.。
5图形的运动(三)
一、认识图形的旋转,探索图形旋转的
特征和性质,体会图形旋转的基本要素。
1.旋转的含义:
物体绕某一点或轴运动,这种运动现象称为旋转。
2.旋转的特征:
旋转中心的位置不变,所有边旋转的方向相同,旋转的角度也相同;旋转后图形的形状、大小都没有发生变化,只是位置变了。
3.把与钟表上指针的旋转方向相同的方向称为顺时针方向,与钟表上指针的方向相反的方向称为逆时针方向。
4.图形旋转的性质:
图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应线段、对应角都分别相等。
5.旋转的三要素:
(1)旋转中心:
物体旋转时所绕的点,也叫旋转中心。
(2)旋转方向:
顺时针方向或逆时针方向。
(3)旋转角度:
对应线段的夹角或对应顶点与旋转点连线的夹角的度数。
6.描述图形旋转的方法:
图形绕哪个点按什么方向转动了多少度。
二、能在方格纸上进行旋转作图。
温馨提示:
把钟面看作一个圆周,是360度。
钟面上有12个大格,每个大格是360÷12=30(度),也就是说,指针每走1个大格就旋转了30度。
温馨提示:
描述物体的旋转时,一定要说清旋转中心、旋转方向和旋转角度。
旋转后的图形与旋转前的图形相比较,每条边、每个点都旋转了相同的角度,但图形的大小、形状都没有发生改变。
易错点:用平移和旋转拼组图形时,要先观察和思考变化前后各部分。