《线性代数》ch1.1__矩阵与方程组之间的转换
- 格式:ppt
- 大小:1.47 MB
- 文档页数:4
线性方程组与矩阵运算线性方程组与矩阵运算是线性代数中重要的基础概念和计算工具。
线性方程组的解等于矩阵运算结果的应用在各个领域中具有广泛且重要的应用,如经济学、物理学等。
本文将介绍线性方程组与矩阵运算的概念、性质以及计算方法。
一、线性方程组在研究线性方程组之前,我们先来了解线性方程的概念。
一个线性方程可以写成形如a₁x₁ + a₂x₂ + ... + aₙxₙ = b的形式,其中x₁,x₂, ..., xₙ是未知数,a₁, a₂, ..., aₙ是已知系数,b是常数项。
一个线性方程组是由若干个线性方程组成的集合,形如:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中m表示方程的个数,n表示未知数的个数。
解一个线性方程组是指找到一组数x₁, x₂, ..., xₙ使得所有的方程都满足。
二、矩阵运算矩阵运算是在线性方程组求解中的重要工具。
一个矩阵是一个由数按照一定规则排列而成的矩形阵列。
在线性方程组中,系数矩阵A是由方程组的所有系数按顺序排列形成的矩阵,常数项矩阵B是由方程组的所有常数项按顺序排列形成的矩阵,未知数矩阵X是由方程组的所有未知数按顺序排列形成的矩阵。
(此处应有矩阵的排版示例)通过矩阵的运算,我们可以将线性方程组表示为:AX = B其中A是系数矩阵,X是未知数矩阵,B是常数项矩阵。
为了求解线性方程组,我们可以通过矩阵的基本运算,如乘法、加法和求逆来计算。
三、矩阵运算的性质矩阵运算具有一些重要的性质,这些性质在线性方程组的求解中起着重要的作用。
1. 加法的交换律和结合律对于任意的矩阵A、B和C,满足以下等式:A +B = B + A(A + B) + C = A + (B + C)2. 数乘的结合律和分配律对于任意的矩阵A和数k,满足以下等式:k(A + B) = kA + kB(k + l)A = kA + lA3. 矩阵乘法的结合律对于任意的矩阵A、B和C,满足以下等式:(AB)C = A(BC)四、线性方程组的求解方法求解线性方程组可以通过矩阵运算中的逆矩阵来实现。
第三章 矩阵的初等变换与线性方程组上一章我们看到, 当我们引进矩阵的运算和逆矩阵等概念后, 矩阵逐渐显露出它的作用. 这一章我们再引进矩阵的初等变换和秩的概念, 又增添了它的应用活力. 利用它们我们可以很方便地判断一个线性方程组是否有解, 若有解, 又有什么样的解. 并方便的求出它的解.主要内容1. 矩阵的初等变换.2. 矩阵的秩.3. 线性方程组的解.重点内容 矩阵的初等变换与矩阵的秩.第一节 矩阵的初等变换一、消元法解线性方程组引例 求解线性方程组1231231233 48,23 9,121212 1.x x x x x x xx x ++=⎧⎪-+-=⎨⎪-+=-⎩(1)解 用消元法求解.对方程组进行变换: 对增广矩阵B 作初等行变换:(1)1231231231212121,2 3 9, 3 4 8.x x x x x x x x x -+=-⎧⎪↔-+-=⎨⎪++=⎩13121212123193148r r -⎛⎫⎪↔-- ⎪ ⎪⎝⎭B ; 123123123 2,223 9, 3 4 8;x x x x x x x x x -+=-⎧⎪⨯-+-=⎨⎪++=⎩ 11112 2 23193148r --⎛⎫⎪⨯-- ⎪ ⎪⎝⎭; 1232323 2,2 5,(3) 4 14;x x x x x x x -+=-⎧⨯+⎪+=⎨⨯-+⎪+=⎩12131112(2)0115(3)04114r r r r --⎛⎫⨯-+⎪ ⎪⨯-+ ⎪⎝⎭; 1232332,(4) 5, 3 6.x x x x x x -+=-⎧⎪⨯-++=⎨⎪-=-⎩231112(4)01150036r r --⎛⎫⎪⨯-+ ⎪ ⎪--⎝⎭. 由此回代得: 3212,3, 1.x x x ===-说明 1) 解线性方程组可以通过对其对应的系数矩阵做一系列变换来进行;2) 引例中最后一个方程组称为阶梯型方程组, 其对应的矩阵称为行阶梯型矩阵(简称阶梯形矩阵), 其特点是每一个非零行的第一个非零元素下方的元素全为零.例1 求解线性方程组123123123231,352,22 3.x x x x x x x x x -+=⎧⎪-+=⎨⎪++=⎩ 解 将增广矩阵化为阶梯型12311231123131520541054121230541002---⎛⎫⎛⎫⎛⎫⎪⎪⎪=→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭B , 对应的阶梯型方程组为12323323 1,54 1, 0 2.x x x x x x -+=⎧⎪-=-⎨⎪⋅=⎩由此可看出方程组无解.二、矩阵的初等变换定义1 对矩阵做如下三种变换称为矩阵的初等行(列)变换: 1)对调矩阵的任意两行(对调j i ,两行, 记作j i r r ↔); 2)用0k ≠乘矩阵的某一行(第i 行乘k , 记作k r i ⨯);3)将矩阵的某一行乘数k 加到另一行(第j 行的k 倍加到第i 行上, 记作j i kr r +). 把定义中的“行”换成“列”, 即得初等列变换的定义(所用记号是把r 换成c ). 矩阵的初等行变换与矩阵的初等列变换统称为矩阵的初等变换. 说明 1) 矩阵的三种初等变换都是可逆的;2) 若矩阵A 经有限次初等行变换变成B , 则称A 与B 行等价, 记为: B A r~; 若矩阵A 经有限次初等列变换变成B , 则称A 与B 列等价, 记为: B A c~; 若矩阵A 经有限次初等变换变成B , 则称A 与B 等价, 记为: B A ~. 等价关系具有以下性质: (i) 反身性 ~A A ;(ii) 对称性 若~A B , 则~B A ;(iii) 传递性 若~A B , ~B C , 则~A C .数学上把具有上述三条性质的关系称为等价, 例如, 两个线性方程组同解, 就称这两个线性方程组等价.例2 试用初等变换将矩阵12133250323814312121--⎛⎫⎪-⎪= ⎪-⎪--⎝⎭A化为阶梯型.解12133121330123801238~~024512000140001400014----⎛⎫⎛⎫⎪⎪---- ⎪ ⎪⎪ ⎪---⎪⎪--⎝⎭⎝⎭A11213301238~000140000--⎛⎫⎪-- ⎪= ⎪-⎪⎝⎭B ,矩阵1B 为阶梯形矩阵. 若将1B 再作初等行变换化为如下形状1210501701204~00014000-⎛⎫ ⎪-⎪= ⎪- ⎪⎝⎭B B ,则2B 称为行最简形矩阵, 其特点是非零行的第一个非零元素为1, 且这些非零元所在列的其他元素全为零.说明 1) 用数学归纳法可以证明, 任何一个矩阵m n ⨯A , 是可以经有限次初等行变换化为行阶梯形矩阵和行最简形矩阵.2) 再经过初等列变换, 1B 或2B 可化为21000001 000~0010000⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭B F , 矩阵F 称为矩阵A 的标准形, 其特点是F 的左上角为一个单位矩阵, 其余元素全为零. 一般地, 对m n ⨯矩阵A , 总可以通过初等变换(行变换和列变换)化为下面的标准形:00 0r m n⨯⎛⎫= ⎪⎝⎭E F ,此标准型由r n m ,,三个数完全确定, 其中r 就是行阶梯型矩阵中非零行的行数. 所有与A 等价的矩阵组成一个集合, 称为一个等价类, 标准型F 是这个等价类中最简单的矩阵.第二节 初 等 矩 阵一、初等矩阵的概念定义2 由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵. 三种初等变换对应三种初等矩阵:1、对调两行或对调两列1011(,)11011i j ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭E2、以数0k ≠乘某行(列)11(())11i k k ⎛⎫ ⎪ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭E3、以数k 乘某行(列) 加到另一行(列)11(())11k ij k ⎛⎫ ⎪ ⎪ ⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭E第i 行第j 行第i 列第j 列第i 行第j 列第i 行第j 行第i 列第j 列二、矩阵的初等变换与初等矩阵之间的关系下面观察用初等矩阵左乘和右乘A 与初等变换有何关系. 例如111213111213212223313233313233212223100(2,3)001010a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭E A .由上面可以看出, 用初等矩阵(2,3)E 左乘A , 相当于将A 的2,3行交换, 即对A 做相应的初等行变换.11121311121113212223212221233132333132313310(13())010001a a a a a ka a k k a a a a a ka a a a a a a ka a +⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭AE .由上面可以看出, 用初等矩阵(13())k E 右乘A , 相当于将A 的第一列乘数k 加到第三列, 即对A 做相应的初等列变换.定理 1 用初等矩阵左乘A , 相当于对A 做相应的初等行变换; 用初等矩阵右乘A , 相当于对A 做相应的初等列变换.注记 容易验证, 这三种初等矩阵都可逆, 且它们的逆阵也都是初等矩阵1(,)(,)i j i j -=E E ; 11(())(())i k i k-=E E ; 1(())(())ij k ij k -=-E E .三、矩阵可逆的充要条件定理2 矩阵A 可逆的充要条件是存在有限个初等矩阵12,l P P P , 使12l =A P P P .证 先证充分性. 设12l =A P P P , 因为12,,,l P P P 可逆, 从而12l =≠A P P P 0,所以A 可逆.再证必要性. 设n 阶矩阵A 可逆, 它的标准型矩阵为F , 因为~F A , 所以存在初等矩阵12,,,l P P P , 使121s s l +=A P P P FP P .因为A 及12,,,l P P P 都可逆, 所以11111111s s l s ------+=F P P P AP P ,即F 也是可逆矩阵, 故=F E , 从而有12l =A P P P . 证毕推论 1 方阵A 可逆的充要条件是~rA E .推论2 m n ⨯矩阵~A B 的充要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q , 使得=PAQ B .四、初等变换在求逆矩阵中的应用设有矩阵方阵=AX B , 当A 为可逆阵时, 得1-=X A B . 下面利用定理2可推导出用初等变换求1-A B 及1-A 的方法.设A 为可逆阵, 则由定理2 知12l =A P P P , 其中i P (1,2)i l =为初等方阵. 于是,111111221()l l -----==A P P P P P P .设1(1,2)i i i l -==P Q , 则i Q 也是初等方阵, 且有121l-=A Q Q Q , 故有21l =Q Q Q A E ; ① 121l-=Q Q Q B A B , ②①、②两式说明: 对A 做一系列初等行变换, 将A 化为单位阵E 的同时, 用同样的初等行变换可将B 花为1-A B , 即1(,)~(,)r-A B E A B ,当=B E 时, 有1(,)~(,)r-A E E A .例3 设112215319--⎛⎫⎪=- ⎪ ⎪-⎝⎭A , 求1-A .解 由于11210010047 3(,)215010~0103 3 1319001001121r ----⎛⎫⎛⎫⎪⎪=--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A E , 所以1473331121---⎛⎫⎪=-- ⎪ ⎪--⎝⎭A .例4 设三阶矩阵,A B 满足2=+AB A B , 其中301110014⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,求矩阵B .解 由2=+AB A B 得(2)-=A E B A . 而1012110012⎛⎫ ⎪-=- ⎪ ⎪⎝⎭A E ,易知210-=-≠A E . 所以, 2-A E 可逆, 故1(2)-=-B A E A . 由于101301101301(2,)110110~011211012014012014r ⎛⎫⎛⎫⎪⎪-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E A 101301100522~011211~010432001223001223rr --⎛⎫⎛⎫⎪⎪------⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭100522~010*********r --⎛⎫⎪-- ⎪ ⎪-⎝⎭, 所以522432223--⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭B .说明 若做初等列变换, 则采用如下格式:(1) 1~c-⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E E A ; (2)1 ~ c-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A EB BA . 第三节 矩阵的秩一、 矩阵的秩的概念定义3 在m n ⨯矩阵A 中任取k 行与k 列(min(,))k m n ≤, 位于这些行、列交叉处的2k 个元素, 不改变他们在A 中所处的位置次序而得到的k 阶行列式, 称为A 的k 阶子式.说明 m n ⨯矩阵A 的k 阶子式共有k km n C C ⋅个.定义4 若在矩阵A 中有一个r 阶子式D 不为零, 且所有的1r +阶子式(如果存在的话)全等于零, 则D 称为A 的最高阶非零子式. 数r 称为矩阵A 的秩. 记作()R A . 并规定零矩阵的秩等于零.说明 1) 由行列式按行按列展开的性质知, 在A 中所以的1r +阶子式全为零时, 所有高于1r +阶的子式也全为零. 因此, 矩阵A 的秩()R A 就是A 中不为零的子式的最高阶数.2) 由定义知()min(,)R m n ≤A , 且有且()()TR R =A A .3) 对n 阶方阵A , 当()R n =A 时, 称A 为满秩矩阵; 当()R n <A 时, 称A 为降秩矩阵. 若n 阶方阵A 可逆, 则0≠A , 故()R n =A , 因此可逆矩阵一定是满秩矩阵, 从而A 可逆⇔A 非奇异⇔A 满秩.例5 求矩阵A 和B 的秩, 其中1025341214312-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A , 1025045170000-⎛⎫ ⎪=- ⎪ ⎪⎝⎭B解 易知A 的一个二阶子式104034=≠- , 而A 的四个三阶子式都为零 即:1023410143--=--, 1534201412-=-,12531201312--=--, 02541204312-=-,所以()2R =A .矩阵B 为阶梯形矩阵, 很容易观察得出其秩为()2R =B , 即为其非零行的行数.二、 矩阵的秩的求法定理3 若~A B , 则()()R R =A B .证 先证明: 若A 经一次初等行变换变为B , 则()()R R ≤A B . 设()R r =A , 且A 的某个r 阶子式0D ≠.1)当~ i jr r ↔A B 或~ i r k⨯A B 时, 在B 中总能找到与D 相对应的子式1D , 由于1D D =, 或1D D =- 或1D kD =, 因此10D ≠, 从而()R B r ≥.2)当 ~ j i kr r +A B 时, 分三种情况讨论:(i) D 中不含第i 行, 此时10D D =≠, 所以()R r ≥B ;(ii) r D 中同时含有第i 行和第j 行, 此时由行列式的性质知, 此时10D D =≠, 所以()R r ≥B ;(iii) r D 中含有第i 行但不含第j 行, 此时由12ij ij D r kr r k r D kD =+=+=+,若20D =, 则10D D =≠, 所以()R r ≥B ; 若20D ≠, 由于2D 是不含第i 行的r 阶子式, 因此在矩阵A 中必有一个不含第i 行的非零r 阶子式. 从而由情形(1)知, ()R r ≥B .综上所述, 若A 经一次初等变换变为B , 则()()R R ≤A B . 由于B 亦经一次初等行变换变为A , 故()()R R ≤B A , 因此有()()R R =B A . 因为经一次初等行变换矩阵的秩不变,那么经有限次初等行变换矩阵的秩也不变. 设A 经初等列变换变B , 则TA 经初等行变换变为TB , 由上段证明知()()T T R R =A B , 又()()T R R =A A , ()()T R R =B B , 所以()()R R =A B .总之, 若A 经有限次初等列变换变为B (即~A B ),则()()R R =A B . 证毕 说明 据此定理, 我们可以找到一个求()R A 的简便方法, 先通过初等行变换将A 化为阶梯形矩阵B , 则()R A 等于B 的非零行的行数.例6设1234532050323612015316414 ⎛⎫ ⎪--⎪= ⎪- ⎪---⎝⎭↓↓↓↓↓A ααααα 求A 的秩, 并求A 的一个最高阶非零子式.解 对A 做初等行变换化为阶梯形矩阵:1641404311000480000--⎛⎫⎪--⎪= ⎪-⎪⎝⎭A ,所以()3R =A .下面求A 的一个最高阶非零子式. 因为()3R =A , 所以A 的最高阶非零子式为三阶,而A 的三阶子式共有334540C C =个, 要从中找出一个非零子式比较麻烦. 若A 的第i 列记为,(1,2.3,4,5)i i =α, 则A 的可记为()12345,,,,=A ααααα,又易知矩阵()124,,=B ααα的行阶梯形矩阵为161041004000-⎛⎫⎪- ⎪ ⎪⎪⎝⎭, 所以()3R =B . 由此知B 中必有三阶非零子式, 而()124325326,,205161⎛⎫⎪-⎪== ⎪⎪-⎝⎭B ααα 的前三行构成的子式325326160205⎛⎫ ⎪-=-≠ ⎪ ⎪⎝⎭.所以, 这就是我们所求的一个最高阶非零子式.例7 求矩阵112302164132711161a b -⎛⎫⎪-- ⎪=⎪-⎪---⎝⎭A 的秩.解 因为1123001221~008000002a b -⎛⎫ ⎪----⎪⎪+ ⎪+⎝⎭A , 所以1) 当8,2a b =-=-时, ()2R =A ;2) 当8,2a b ≠-=-或当8,2a b =-≠-时, ()3R =A 时; 3) 当8,2a b ≠-≠-时, ()4R =A .例8 设1112312536αβ-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A ,已知()2R =A , 求,αβ的值. 解 对A 作行初等变换, 得111211120344034408540510ααβαβ--⎛⎫⎛⎫⎪⎪→+--→+-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭A . 因为()2R =A , 所以505101ααββ-==⎧⎧⇒⎨⎨-==⎩⎩. 三、 矩阵的秩的性质1) {}0()min ,m n R m n ⨯≤≤A . 2) ()()TR R =A A .3) 若~A B , 则()()R R =A B . 4) 若,P Q 可逆, 则()()R R =PAQ A .5) {}max (),()(,)()()R R R R R ≤≤+A B A B A B , 特别地, 当=Βb 为列向量时 , 有()(,)()1R R R ≤≤+A A b A .证 因为A 的最高阶非零子式总是矩阵(,)A B 的非零子式, 所以()(,)R R ≤A A B ; 同理有()(,)R R ≤B A B , 因此有{}max (),()(,)R R R ≤A B A B .设(),()R r R t ==A B , 将,A B 分别做初等列变换化为列阶梯形,A B , 则,A B 中分别含有r 个和t 个非零列. 故可设1~(,,00)cr =A A a a , 1(,,00)t c =B B b b从而(,)~(,)cA B A B . 因为矩阵(,)A B 只含有r t +个非零列, 所以(,)R r t ≤+A B .而(,)(,)R R =A B A B , 故(,)R r t ≤+A B . 即(,)()()R R R ≤+A B A B . 证毕6) ()()()R R R +≤+A B A B .证 不妨设,A B 为m n ⨯矩阵, 对矩阵(,)+A B B 做列变换(1,2)i n i c c i n +-=, 即得(,)~(,)c+A B B A B . 于是由性质5, 有()(,)(,)()()R R R R R +≤+=≤+A B A B B A B A B . 证毕7) {}()min (),()R R R ≤AB A B , 即()()R R ≤AB A 且()()R R ≤AB B . 8) 若m n n l ⨯⨯=A B 0, 则()()R R n +≤A B . 说明 性质7)和8)的证明在后续章节中进行. 例9 已知12324369t ⎛⎫ ⎪= ⎪ ⎪⎝⎭Q ,P 为三阶非零矩阵, 且=PQ 0, 则下列结论中正确的是: ()6A t =时 , ()1R =P ; ()6B t =时 , ()2R =P ;()6C t ≠时 , ()1R =P ; ()6D t ≠时 , ()1R ≠P .分析:当6t =时,123123246~000369000⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭Q ,所以()1R =Q , 由性质8)知, ()()()13R R R +=+≤P Q P , 所以()2R ≤P . 证明P 的秩可以是2或1, 排除(),()A B 两选项. 当6t ≠时, 易知()2R =Q , 从而()1R ≤P , 又因为0≠P , 所以()0R ≠P , 故()1R =P , 所以选()C .第四节 线性方程组的解一、线性方程组求解设有m 个方程的n 元线性方程组11112211211222221122,,,n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (2)(2)式可写成以向量x 为未知元的向量方程=Ax b , (3) 其中()ij m n a ⨯=A 称为(2)的系数矩阵, b 为m 维列向量, (,)=B A b 称为增广矩阵. 说明 线性方程组(2)有解, 就称它是相容的,如果无解,就称它不相容.定理4 设有n 元线性方程组=Ax b , 则 1) =Ax b 无解的充要条件是()(,)R R <A A b ; 2) =Ax b 有唯一解的充要条件是()(,)R R n ==A A b ; 3) =Ax b 有无穷解的充要条件是()(,)R R n =<A A b . 证 只证充分性, 必要性在充分性成立的情况下是显然的.设()R r =A , 为叙述方便不妨设矩阵(,)=B A b 的行最简形为:111,1212,21,11000100010000000000000000n r n r r r n r r r b b d b b d b b d d ---+⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭B . 1) 若()()R R <A B , 则B 中的11r d +=, 于是B 的第1r +行对应矛盾方程01=, 故方程无解;2) ()()R R r n ===A B , 则B 中的10r d +=(或1r d +不出现), 且ij b 都不出现, 于是B 对应方程组1122,,,n n x d x d x d =⎧⎪=⎪⎨⎪⎪=⎩ 故方程组有唯一解.3) ()()R R r n ==<A B , 则B 中的10r d +=(或1r d +不出现, 于是B 对应方程组11111,122112,211,,,,r n r n r n r n n r r r n r n r x b x b x d x b x b x d x b x b x d +-+-+-=---+⎧⎪=---+⎪⎨⎪⎪=---+⎩令自由未知数11,r n n r x c x c +-==, 即得方程组的含n r -个参数的解:1111,1111,11n r n r r r r n r n r r r n n r b c b c d x x b c b c d x c x c ----+----+⎛⎫⎛⎫ ⎪ ⎪⎪⎪ ⎪⎪---+ ⎪= ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭即1,11111,1100001n r r r r n r r n r r n b x b d x b b d c x x ---+-⎛⎫-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪--=+++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (4)因为参数1,n r c c -可任意取值, 所以方程组有无穷多解.说明 1) 求解线性方程组的步骤归纳如下:(i) 写出=Ax b 的增广矩阵(,)=B A b , 并把它化为行阶梯形, 若()()R R ≠A B , 则方程组无解;(ii) 若()()R R =A B , 则进一步化为行最简形, 由此得出方程组的解. 2) 解(4)称为线性方程组(2)的通解. 3) 对于n 元齐次方程组A =x 0, 有: (i) A =x 0只有零解的充要条件是();R n =A (ii) A =x 0有非零解的充要条件是()R n <A . 例10 求解齐次方程组12341234123450,2230,3480.x x x x x x x x x x x x ++-=⎧⎪+-+=⎨⎪+++=⎩ 解 将系数矩阵A 化为行最简形1151115110125122301740174348100000000---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ,由此得出同解方程组1342341250,740.x x x x x x +-=⎧⎨-+=⎩ 故得134234125,74x x x x x x =-+⎧⎨=-⎩ (34,x x 可以任意取值).令3142,x k x k ==把它写为参数形式1122123142125,74,,x k k x k k x k x k =-+⎧⎪=-⎪⎨=⎪⎪=⎩ (12,k k 为任意实数). 还可以写成向量形式121234125741001x x k k x x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 例11 求解非齐次方程组12341234123424,3222,235310.x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩ 解 对增广矩阵做初等行变换化为行阶梯形11214112143212201112235310000 00----⎛⎫⎛⎫⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭B 1020201112000-⎛⎫⎪→-- ⎪ ⎪⎝⎭. 因为()()24R R n ==<=A B 所以方程组有无穷多解.同解方程组为132342,2x x x x x =+⎧⎨=++⎩ (34,x x 可以任意取值). 令3142,x k x k ==, 把它写为参数形式1121231422,2,,x k x k k x k x k =+⎧⎪=++⎪⎨=⎪⎪=⎩(12,k k 为任意实数), 或向量形式121234************x x k k x x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 例12 设有线性方程组123123123(1)0,(1)3,(1).x x x x x x x x x λλλλ+++=⎧⎪+++=⎨⎪+++=⎩ 问λ取何值时, 此方程组(1)有唯一解;(2)无解;(3)有无穷多解?并在无穷多解时求其通解.解法1 对增广矩阵(),=B A b 作初等行变换1110111111311131111110λλλλλλλλ++⎛⎫⎛⎫⎪⎪=+→+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭B 1110300(3)(1)(3)λλλλλλλλλ+⎛⎫⎪→-- ⎪ ⎪-+-+⎝⎭. 1) 当0λ≠, 且3λ≠-时, 因为()()3R R ==A B , 所以有唯一解; 2) 当0λ=时, 因为()1()2R R =≠=A B , 所以无解;3) 当3λ=-时, 因为()()2R R n ==<A B , 所以有无穷多解解, 此时1123101103360112000000----⎛⎫⎛⎫⎪ ⎪=-→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B , 由此解得13231,2,x x x x =-⎧⎨=-⎩ 或123112101x x k x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ()k R ∈.解法2 因为系数矩阵A 为方阵, 所以方程组有唯一解0⇔≠A . 而2111111111(3)111(3)111111A λλλλλλλλ+=+=++=+++,所以当0λ≠, 且3λ≠-时方程组有唯一解;当0λ=时, 由于111011101113000111101110⎛⎫⎛⎫⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B , 而()()R R ≠A B , 所以方程组无解;当3λ=-时, 同解法1.注记 1) 解法2 只适于系数矩阵为方阵的情形.2) 对含参数的矩阵作初等变换时, 含参变量的式子不宜作分母, 若作分母, 则使分母为零的参数值需另行讨论.二、线性方程组理论中的几个基本的定理定理5 =Ax b 有解的充要条件是()(,)R R =A A b .定理6 n 元齐次线性方程组=Ax 0有非零解的充要条件是()R n <A . 为了下一章论述的需要, 下面把定理5 推广到矩阵方程. 定理7 矩阵方程=AX B 有解的充要条件是()(,)R R =A A B . 证 设,,m n m l n l ⨯⨯⨯A B X , 把X 和B 按列分块, 记为()()1212,,,,,,,l l ==X x x x B b b b ,则=AX B 有解等价为l 个向量方程i i =Ax b , 1,2i l =有解.先证充分性. 设()(,)R R =A A B , 由于()(,)(,)i R R R ≤≤A A b A B ,故有()(,)i R R =A A b , 从而根据定理5 知l 个向量方程i i =Ax b , 1,2i l =都有解, 于是矩阵方程=AX B 有解.再证必要性. 设矩阵方程=AX B 有解, 从而l 个向量方程i i =Ax b , 1,2i l =都有解, 设解为12i i i ni λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭x 1,2i l =.记()12,,,n =A a a a , 即有1122(1,2)i i i ni n i i l λλλ=+++==Ax a a a b .对矩阵11(,)(,,,,,)n l =A B a a b b 作初等列变换11(1,2)n i i ni nc c c i l λλ+---=,便把(,)A B 的第1n +列第n l +列都变为零, 即(,)~(,)cA B A 0, 因此(,)()R R =A B A . 证毕定理8 设=AB C , 则{}()min (),()R R R ≤C A B 或{}()min (),()R R R ≤AB A B . 证 由=AB C 知矩阵方程=AX C 有解=X B , 于是根据定理7 有()(,)R R =A A C ,而()(,)R R =C A C , 所以()()R R =C A . 又因为T T T =B A C ,由上段证明知有()()TTR R ≤C B , 即()()R R ≤C B . 综合便得{}()min (),()R R R ≤C A B . 证毕 定理7和定理8的应用, 在下一章讨论, 定理6 也可以推广为: 定理9 矩阵方程m n n l ⨯⨯=A X 0只有零解()R n ⇔=A .。
方程转矩阵摘要:一、矩阵与方程的关系1.方程的基本概念2.矩阵的定义及性质3.方程与矩阵的关系二、方程转矩阵的方法1.线性方程组与矩阵的关系2.方程转矩阵的步骤3.方程转矩阵的实例三、矩阵在方程求解中的应用1.高斯消元法2.克拉默法则3.矩阵在实际问题中的应用正文:矩阵是数学中的一个重要概念,它具有丰富的内涵和广泛的应用。
在解决线性方程组问题时,矩阵起到了至关重要的作用。
本文将探讨方程与矩阵的关系,以及如何将方程转换为矩阵,并介绍矩阵在方程求解中的应用。
首先,我们需要了解方程与矩阵的基本概念。
方程是指一个等式,其中包含一个或多个未知数。
线性方程是方程的一种特殊形式,它表示未知数与常数之间的线性关系。
矩阵是一个由数值排列成的矩形阵列,具有加法、数乘和乘法等运算性质。
方程与矩阵之间存在着密切的联系。
线性方程组可以表示为矩阵形式,即系数矩阵与增广矩阵。
通过这种方式,我们可以将方程组的问题转化为矩阵运算问题,从而更方便地进行求解。
接下来,我们来探讨如何将方程转换为矩阵。
线性方程组可以表示为如下形式:ax + ay + az = bax + ay + az = bax + ay + az = b将方程组写成矩阵形式,我们可以得到:| a a a | | x | | b || a a a | x | y | = | b || a a a | | z | | b |通过矩阵形式,我们可以发现方程组的解可以表示为矩阵的逆乘以增广矩阵的右零空间向量。
这一性质为我们求解方程组提供了理论依据。
矩阵在方程求解中具有广泛的应用。
高斯消元法是一种常用的求解线性方程组的方法,它通过初等行变换将系数矩阵变为阶梯形矩阵或行最简矩阵,从而求得方程组的解。
此外,克拉默法则也是一种求解线性方程组的方法,它适用于具有特定条件的三对角方程组。
总之,矩阵与方程之间存在着紧密的联系。
通过将方程转换为矩阵形式,我们可以利用矩阵的运算性质求解线性方程组。