2008年金华市中考数学试卷
- 格式:doc
- 大小:1.35 MB
- 文档页数:5
数学卷Ⅰ说明:本卷共有1大题,10小题.一、选择题(本题有10小题)1.在12,2-中,是无理数的是( )A. 2-B. 12C. D. 2 【答案】C【解析】【分析】根据无理数定义判断即可;【详解】解:∵-2,12,2故选: C .【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.2. 计算32a a ⋅的结果是( )A. aB. 6aC. 6aD. 5a 【答案】D【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵ 32a a ⋅=5a ,故选D .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键. 3. 体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为( )A. 4163210⨯B. 71.63210⨯C. 61.63210⨯D. 516.3210⨯【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,10n a ⨯的形式中a 的取值范围必须是110,a ≤<10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为71.63210.⨯的故选:B .【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1. 4. 已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A. 2cmB. 3cmC. 6cmD. 13cm【答案】C【解析】【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x ,∵ 角形的两边长分别为5cm 和8cm ,∴3cm <x <13cm ,故选C .【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键. 5. 观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为( )A. 5B. 6C. 7D. 8【答案】D【解析】【分析】用总人数减去其他三组的人数即为所求频数.【详解】解:20-3-5-4=8,故组界为99.5~124.5这一组频数为8,故选:D .【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.的6. 如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A. SSSB. SASC. AASD. HL【答案】B【解析】【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案. 【详解】解:∵在△ABO 和△DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO DCO ≌△△,故B 正确.故选:B . 【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.7. 如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A. 超市B. 医院C. 体育场D. 学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,=,=,=,=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8. 如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A. B.C. D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB 为底面直径,∴将圆柱侧面沿AC “剪开”后, B 点在长方形上面那条边的中间,∵两点之间线段最短,故选: C .【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.9. 一配电房示意图如图所示,它是一个轴对称图形,已知6m BC =,ABC α∠=,则房顶A 离地面EF 的高度为( )A. (43sin )m α+B. (43tan )m α+C. 34m sin α⎛⎫+ ⎪⎝⎭ D. 34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【解析】【分析】过点A 作AD ⊥BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案.【详解】解:过点A 作AD ⊥BC 于D ,如图所示:∵它是一个轴对称图形, ∴132BD DC BC ===m , tan 3AD AD BD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查了解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.10. 如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A. C. 207 D. 83【答案】A【解析】【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F '=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=x ,最后求出ADAB 的值.【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =,∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x y A G -'=,由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CGA GCF B F '=', 则53232x yxx y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=x , EH=-(舍),∴AB=,∴AD AB ==.故选:A .【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,勾股定理求边长等知识,借助于相似三角形找到y =3x 的关系式是解决问题的关键.卷Ⅱ说明:本卷共有2大题,14小题二、填空题(本题有6小题)11. 因式分解:29x -=______.【答案】()()33x x +-【解析】【分析】根据平方差公式()()22a b a b a b -=+-直接进行因式分解即可. 【详解】解:29x -223x =-()()33x x =+-,故答案为:()()33x x +-.【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键. 12. 若分式23x -的值为2,则x 的值是_______. 【答案】4【解析】【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =-去括号:226x =-移项,合并同类项:28x =系数化为1:4x =经检验,x =4是原方程的解,故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键.13. 一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是______. 【答案】710【解析】【分析】先确定所有等可能性的数量,再确定红球事件的可能性数量,根据公式计算即可.【详解】∵ 所有等可能性有10种,红球事件的可能性有7种, ∴摸到红球的概率是710, 故答案:710. 【点睛】本题考查了简单的概率计算,熟练掌握概率计算公式是解题的关键. 14. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C '''V ,连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴==∵把ABC 沿AB 方向平移1cm ,得到A B C '''V ,∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+为故答案为:8+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.15. 如图,木工用角尺的短边紧靠⊙O 于点A ,长边与⊙O 相切于点B ,角尺的直角顶点为C ,已知6cm,8cm AC CB ==,则⊙O 的半径为_____cm .【答案】253##183【解析】 【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,利用勾股定理,在Rt △AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+, 即r 2=(r −6)2+82, 解得:253r =, 即O 的半径为253cm .故答案为:253. 【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r 的方程,是解题的关键.16. 图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m . (2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】 ①. 9②.7.5αβ-=︒【解析】【分析】(1)过点A 作AG ⊥EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG (2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ⊥EF ,垂足为G . ∵∠ABE =∠BEG =∠EGA =90°,∴四边形ABEG 是矩形,∴EG =AB =1m ,AG =EB =8m , ∵∠AFG =45°, ∴FG =AG =EB =8m , ∴EF =FG +EG =9(m ). 故答案为:9;(2)7.5αβ-=︒.理由如下: ∵∠A 'B 'E =∠B 'EG =∠EG A '=90°, ∴四边形A 'B 'EG 是矩形,∴EG =A 'B '=1m ,A 'G =E B '=,∴tan ∠A 'FG =A G FG '= ∴∠A 'FG =60°,∠F A 'G =30°,根据光的反射原理,不妨设∠FAN =2m ,∠F A 'M =2n , ∵ 光线是平行的, ∴AN ∥A 'M , ∴∠GAN =∠G A 'M , ∴45°+2m =30°+2n , 解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'' , ∴9090m n n m αβ-=--+=- , 故7.5αβ-=︒,故答案为:7.5αβ-=︒ .【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.三、解答题(本题有8小题,各小题都必须写出解答过程)17. 计算:0(2022)2tan 45|2|--︒+-. 【答案】4 【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=-⨯++1223=-++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键. 18. 解不等式:2(32)1x x ->+. 【答案】1x > 【解析】【分析】按照解不等式的基本步骤解答即可. 【详解】解:2(32)1x x ->+,641x x ->+,641x x ->+, 55x >,∴1x >.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式解法的基本步骤是解题的关键.19. 如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长. (2)当3a =时,该小正方形的面积是多少? 【答案】(1)3a +(2)36 【解析】【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可. 【小问1详解】解:∵直角三角形较短的直角边122a a =⨯=, 较长的直角边23a =+,∴小正方形的边长233a a a =+-=+;【小问2详解】解:22(3)69S a a a =+=++小正方形, 当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.20. 如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)ky x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围. 【答案】(1)4k =,(4,1);(2)24x ≤≤; 【解析】【分析】(1)由C 点坐标可得k ,再由D 点纵坐标可得D 点横坐标; (2)由C 、D 两点的横坐标即可求得P 点横坐标取值范围; 【小问1详解】解:把C (2,2)代入k y x=,得22k=,4k =,∴反比例函数函数为4y x=(x >0), ∵AB ⊥x 轴,BD =1, ∴D 点纵坐标为1,把1y =代入4y x=,得4x =, ∴点D 坐标为(4,1); 【小问2详解】解:∵P 点在点C (2,2)和点D (4,1)之间, ∴点P 的横坐标:24x ≤≤;【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.21. 学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题: 演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表: 内容 表达 风度 印象 总评成绩 小明 8 7 8 8 m 小亮 7 8 8 9 785小田 79777.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m 的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整? 【答案】(1)108︒;(2)7.6,三人成绩从高到低的排名顺序为:小亮,小田,小明;.(3)班级制定的各部分所占比例不合理,见解析;【解析】【分析】(1)由“内容”所占比例×360°计算求值即可;(2)根据各部分成绩所占的比例计算加权平均数即可;(3)根据 “内容”所占比例要高于“表达”比例,将“内容”所占比例设为40%即可;【小问1详解】---=,解:∵“内容”所占比例为115%15%40%30%=︒⨯=︒;∴“内容”的扇形的圆心角36030%108【小问2详解】m=⨯+⨯+⨯+⨯=,解:830%740%815%815%7.6>>,∵7.857.87.6∴三人成绩从高到低的排名顺序为:小亮,小田,小明;【小问3详解】解:各部分所占比例不合理,“内容”比“表达”重要,那么“内容”所占比例应大于“表达”所占比例,∴“内容”所占百分比应为40%,“表达”所占百分比为30%,其它不变;【点睛】本题考查了扇形圆心角的计算,加权平均数的计算,掌握相关概念的计算方法是解题关键.22. 如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF;②以F为圆心,FO为半径作圆弧,与⊙O交于点M,N;③连AM MN NA.接,,∠的度数.(1)求ABC是正三角形吗?请说明理由.(2)AMN(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.【答案】(1)108︒(2)是正三角形,理由见解析(3)15n = 【解析】【分析】(1)根据正五边形的性质以及圆的性质可得 BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论. 【小问1详解】解:∵正五边形ABCDE .∴ BC CD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵ 3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; 【小问2详解】解:AMN 是正三角形,理由如下: 连接,ON FN ,由作图知:FN FO =, ∵ON OF =, ∴ON OF FN ==, ∴OFN △是正三角形, ∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒, 同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠, ∴AMN 是正三角形;【小问3详解】 ∵AMN 是正三角形, ∴2120A N A N M O =∠=︒∠. ∵ 2AD AE =,∴272144AOD ∠=⨯︒=︒,∵ DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==. 【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.23. “八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2(吨)关于售价x (元/千克)的函数表达式为2,函数图象见图1.③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【答案】(1)1,95a c=-=(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元【解析】【分析】(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w 元,根据w x x =-售价成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x 的值,再求出总利润即可. 【小问1详解】 把3,7.2x y =⎧⎨=⎩,4,5.8x y =⎧⎨=⎩代入2y ax c =+需求可得97.2,16 5.8.a c a c +=⎧⎨+=⎩①② ②-①,得7 1.4a =-, 解得15a =-, 把15a =-代入①,得9c =, ∴1,95a c =-=. 【小问2详解】设这种蔬菜每千克获利w 元,根据题意, 有211323242w x x t t t ⎛⎫=-=+--+ ⎪⎝⎭售价成本, 化简,得221121(4)344w t t t =-+-=--+, ∵10,44t -<=在17t ≤≤的范围内, ∴当4t =时,w 有最大值.答:在4月份出售这种蔬菜每千克获利最大. 【小问3详解】由y y =需求供给,得21195x x -=-+, 化简,得25500x x +-=,解得125,10x x ==-(舍去), ∴售价为5元/千克.此时,14y y x ==-=需求供给(吨)4000=(千克), 把5x =代入122x t =+售价,得6t =,把6t =代入21214w t t =-+-,得13626124w =-⨯+⨯-=, ∴总利润240008000w y =⋅=⨯=(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.【点睛】此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.24. 如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?【答案】(1)见解析(2)7AG =或5 (3)1s =或3225s =或327s =或1012s ≤≤ 【解析】【分析】(1)证明△AFG 是等腰三角形即可得到答案;(2)记AC 中点为点O .分点E 在BC 上和点E 在CD 上两种情况进行求解即可;(3)过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .分点E 在线段BM 上时,点E 在线段MC 上时,点E 在线段CN 上,点E 在线段ND 上,共四钟情况分别求解即可.【小问1详解】证明:如图1,∵四边形ABCD 是菱形,∴BA BC =,∴BAC BCA ∠=∠.∵FG BC ,∴FGA BCA ∠=∠,∴BAC FGA ∠=∠,∴△AFG 是等腰三角形,∴FA FG =.【小问2详解】解:记AC 中点为点O .①当点E 在BC 上时,如图2,过点A 作AM BC ⊥于点M ,∵Rt ABM 中,365AM AB ==,∴8BM ===.∴6,2FG EF AM CM BC BM ====-=,∵,OA OC OE AM =∥, ∴112122CE ME CM ===⨯=, ∴1AF ME ==,∴167AG AF FG =+=+=.②当点E 在CD 上时,如图3,在过点A 作AN CD ⊥于点N .同理,6,2FG EF AN CN ====,112AF NE CN ===, ∴615AG FG AF =-=-=.∴7AG =或5.【小问3详解】解:过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .①当点E 在线段BM 上时,08s <≤.设3EF x =,则4,3BE x GH EF x ===, ⅰ)若点H 在点C 的左侧,810s +≤,即02s <≤,如图4,10(48)24CH BC BH x x =-=-+=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33244x x =-,解得14x =, 经检验,14x =是方程的根, ∴41s x ==.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴34243x x =-, 解得825x =, 经检验,825x =是方程的根, ∴32425s x ==. ⅱ)若点H 在点C 的右侧,810s +>,即28s <≤,如图5,(48)1042CH BH BC x x =-=+-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33424x x =-, 此方程无解.∵GHC BEF △∽△,∴GH CH BE EF=, ∴GH BE CH EF=, ∴34423x x =-, 解得87x =, 经检验,87x =是方程的根, ∴3247s x ==. ②当点E 在线段MC 上时,810s <≤,如图6,6,8,EF EH BE s ===.∴8,2BH BE EH s CH BH BC s =+=+=-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴662s s =-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴626s s =-,解得1s =±经检验,1s =±∵810s <≤,∴1s =±③当点E 在线段CN 上时,1012s ≤≤,如图7,过点C 作⊥CJ AB 于点J ,在Rt BJC △中,10,6,8BC CJ BJ ===.8,EH BJ JF CE ===,∴BJ JF EH CE +=+,∴CH BF =,∵,90GH EF GHC EFB =∠=∠=︒,∴GHC EFB △≌△,符合题意,此时,1012s ≤≤.④当点E 在线段ND 上时,1220s <<,∵90EFB ∠>︒,∴GHC 与BEF 不相似.综上所述,s 满足的条件为:1s =或3225s =或327s =或1012s ≤≤. 【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键。
B A CD甲 A B CD金华市2008年课改实验区初中学业考试调研测试卷数 学考生须知:1.本试卷三大题,24小题,满分为120分.考试时间为100分钟,本次考试采用开卷形式.2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分.答案都必须做在“答题卷”的相应位置上.3.用蓝、黑颜色钢笔或圆珠笔在“答题卷”密封区内填写县(市、区)、学校、姓名和学号.试 卷 Ⅰ一、选择题(本题共10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1. 计算:-3+2的结果是 ( ▲ )A .-5 B.-1 C.-6 D.12. 据统计:2006年中国GDP 比上一年增长10.7%.达到209407亿元.用科学记数法表示209407应记为( ▲ )A .209.407×103 B. 20.9407×104 C. 2.09407×105 D. 0.209407×106 3. 小明从正面观察下图所示的两个物体,看到的是( ▲ )4. 下列各点在反比例函数6y x的图象上的是( ▲ )A .(3,-2)B .(3,2)C .(1,5 )D .(-2,3) 5. 如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1 =55 º, 则∠2 的度数为( ▲ )A .35 ºB .45 ºC .55 ºD .125 º 6. 将图形甲通过旋转可以得到的图形是( ▲ )(第10题图)7. 小明要制作一个圆锥模型,要求圆锥的母线长为5cm ,底面圆的直径为8cm ,那么小明要制作的这个圆锥的侧面积是( ▲ )A .5πcm 2B .10πcm 2C .20πcm 2D .40πcm 2 8. 一次函数y=kx+b(k ≠0)的图象与x 轴、y 轴分别交于A (-3,0),B (0,2),当函数图象在第二象限时,自变量x 的取值范围是( ▲ )A .30x -<< B.0x < C.32x -<< D.3x >- 9. 一个矩形窗框被太阳光照射后,留在地面上的影子不可能的是( ▲ ) A. 矩形 B.正方形 C.平行四边形 D.梯形 10.如图,有两条相同对称轴的抛物线20.5()y x h k =-+与 22()y x m n =-+,则下列结论:①h=m ;②k=n ;③ k >n ; ④h >0, 其中正确的个数是( ▲ ) A.1 B.2 C.3 D.4试 卷 Ⅱ二、填空题 (本题有6小题,每题4分,共24分) 11.写出一个比1大的无理数是 ▲ . 12.分解因式:24x -=_ __▲ .13.空气污染指数(API )是用一级,二级,…,五 级来描述空气质量的.如图是我国大陆地区40个城市某天空气质量的城市个数的统计图.那么空气质量级数的众数是_____▲_____级. 14.生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的13时,则梯子比较稳定.现在有一长为3米的梯子AB,当梯子稳定摆放时,它的顶端达到的高度AC 是__▲____米.15.如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个(第15题图)(第14题图)(第13题图)(第16题交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为 ▲ cm. 16.如图,经过点A (-4,5)的抛物线25y x bx =-++与y 轴交于 点B.点M 在抛物线的对称轴上,点N 在抛物线上,且以A ,B , M ,N 为顶点的四边形是平行四边形. 则点N 的坐标为 _▲_.三、解答题 (本题有8小题,共56分,各小题都必须写出解答过程) 17.(本题6分)(1)计算:024cos60(51)--+ (2)解方程:5311x x =-+18.(本题6分)如图,在△ABC 中,D 为BC 边的中点,过D 点分别作DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F. (1)证明:△BDF ≌△DCE ;(2)请你给△ABC 增加一个条件________,使四边形AFDE 成为菱形.(不添加其他辅助线,写出一个即可,不必证明).ABDFEC(第18题图)(第20题图)19.(本题6分)“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则. 小明每天步行上学校要经过三个安装有红灯和绿灯的路口,假如每个路口的红灯和绿灯亮的时间一样,当他从家随机出发时.(1)请利用树状图(或列表)的方法,表示小明遇到红绿灯所有可能的情况; (2)求出他遇到全是绿灯的概率和两次红灯的概率.20.(本题8分)在直角坐标系中,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使得点A 移至图中的点A ′的位置.(1)在直角坐标系中,画出平移后所得△A ′B ′C ′(其中B ′、C ′分别是B 、C 的对应点).(2)如果把A 点的横坐标记为A x ,根据你的作图,计算: A A x x '-= ,B B x x '-= ,C C x x '-= .(3)从(2)的计算中,你发现了什么规律?根据上述规律,若将△ABC 平移使得点A 移至A ″(-2,2),那么相应的点B ″、C ″(其中B ″、C ″分别是B 、C 的对应点)的坐标分别是____________、__________.(第22题图) 购票时间21.(本题8分)如图,直线AB与O相切于点B,过点O的直线交O于点C,D. 在O上取一点E,连结BE和DE,BE与直径CD的交点为F. 已知∠A=30°,(1)求O的半径;(2)求∠E的度数;(3)求阴影部分的面积.(结果保留三个有效数字)22.(本题10分)06年底春运不加价,某火车站为了改进服务,随机抽查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(简称为购票时间,单位:分).下图是这次调查得到的统计图. 请你根据图中的信息回答下列问题:(1)购票时间在18分钟的人数为_________,并补全条形统计图;(2)请求出旅客购票时间的平均数;(3)如果每增加一个购票窗口可以使购票时间的平均数降低5分,要使平均购票时间不超过10分钟,那么请你计算出最少需要增加多少个窗口?23.(本题10分)九年级甲班数学兴趣小组组织社会实践活动,目的是测量一山坡的护坡石坝高度及石坝与地面的倾角α∠.(1)如图1,小明所在的小组用一根木条EF 斜靠在护坡石坝上,使得BF 与BE 的长度相等,如果测量得到∠EFB=36O ,那么α∠的度数是__________;(2)如图2,小亮所在的小组把一根长为5米的竹竿AG 斜靠在石坝旁,量出竿长1米时离地面的高度为0.6米, 请你求出护坡石坝的垂直高度AH ;(3)全班总结了各组的方法后,设计了如图3方案:在护坡石坝顶部的影子处立一根长为a 米的杆子PD ,杆子与地面垂直,测得杆子的影子长为b 米,点P 到护坡石坝底部B 的距离为c 米,如果利用(1)得到的结论,请你用a 、b 、c 表示出护坡石坝的垂直高度AH.(sin 720.95≈,cos720.30≈,tan 723≈)图1 图2 图324. (本题12分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为4,点A、C分别在y轴的正半轴和x轴的正半轴上. 点P由点A开始,以每秒2个单位长度的速度在线段AB上来回运动. 点Q由点B开始沿B C 0 方向,以每秒1个单位长度的速度向点O运动.已知点P、点Q同时开始运动,当点Q到达点O时,P、Q两点都停止运动.设运动时间为t,△OPQ的面积为S.(1)当t=1时,求△OPQ的面积S;(2)当02t≤≤时,何时△BPQ的面积达到最大,并求出此时直线PQ的解析式;(3)在P、Q的运动过程中,是否存在某个时刻,使得△OPQ的面积为6.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(第24题图)。
2008年初中毕业生学业水平考试(金华卷)第二部分笔试部分二单项填空(20分)从每题所给的A.B.C.D四个选项中,选出可以填入空白处的最佳选项。
16.-What do you think of the cartoon? -Oh, it is really ____ fantastic one.A. aB. anC. theD. /17.-Cindy, is tit OK to leave you at home by_____? -Of course, Mum.A. myselfB. herselfC. yourselfD. yourselves18.-Jack, do you have anything else to say about the trip? -No,____.A. anythingB. nothingC. somethingD. everything19. A terrible earthquake hit Wenchuan at 2:28 p.m.____ May 12th.A. onB. inC. toD. at20. –What makes her so___? – Her wish to be a singer has come true.A. sadB. angryC. happyD. afraid21. –I want to go to the West Lake, but I don’t know the way. –A___ willhelp you, I think. A. map B. book C. diary D.dictionary22.-Look! What’s on the hill? --Wow! ____sheep?A. Thousand ofB. Thousands ofC. Three thousandsD. Three thousand of23. -_____ you play basketball? --Y es, and I’m a good player.A. MayB. CanC. MustD. Should24. -Have you ever seen “ Home With Kids”?–Yes, I like it a lot. It’s one of _____TV plays I’ve ever seen.A. interestingB. more interestingC. the least interestingD. the most interesting25.-Shall we go to the beach, Amy? –Um, it ____ great.A. feelsB. looksC. turnsD. sounds26. –Did you give me a phone call? -Yes, I did. But nobody ___the phone.A. answerB. answeredC. will answerD. had answered27. Jim is away on holiday. He____ Paris.A. went toB. has been toC. has gone toD. had been to28. –You like pop music,___ you? –Yes, very much.A. aren’tB. don’tC. didn’tD. haven’t29. –How is the man ___ lives next door? Oh, he is very strange.A. whoB. whichC. whoseD. whom30.---Betty, have a look at it.–--Oh,___ nice Mp4 player! I like it.A. howB. whatC. what aD. how a31. –--Who is the girl in the picture?–--Haha! It’s me! The picture ____ ten years ago.A. tookB. is takenC. was takenD. has taken32. –I don’t k now __ now. –Her mother says she is much better.A. what is sheB. where is sheC. who she isD. howshe is33. –You look worried. ___? –My new car hit a tree yesterday.A. What’s upB. What do you beckonC. Can I do a favourD. How do you do34.—Are you coming to the concert? -___. Hearinga concert is my favourite.A. You betB. It’s a pityC. Don’t ask meD. It doesn’t matter35. –Tom, look at he label of you new sweater. What does it say? - It says____.A. the sweater is made of silkB. the sweater can be dry-cleanedC. the sweater is made in the USAD. the sweater can be washed in a washingmachine三.完形填空(15)Robert De Vincenzo, the great golfer(高尔夫球员), once___36 a competition.After receiving the check(支票), he went to the club and prepared to leave. He walkedalone to his car and __37 a young woman.The young woman stopped him and said congratulations on his __38. then shetold him that her child was badly __39 and she was dying. But her family was poor.She did not know __40 she could pay the hospital bill(帐单).De Vincenzo was moved by her __41, and gave his winning check to the woman.“ Make some good days for the __42,” h e said as he put the check into her hand.The next week, he was having lunch in country club when a ___43 came to histable. “Last week, some of the boys told me that you met a young woman after youwon that competition.”De Vincenzo said, “___44.”“Well,” said the policeman, “I have news ___45 you. She does not have asick baby. She’s not even married. She cheated(欺骗) you, my friend.”“You __46 there is no baby who is dying? Said De Vincenzo.“Yes, that’s __47,” said the policeman.“That’s the ____48 news I’ve heard all week,” De Vincenzo said happily. “Life is more important.”Good news or bad news? It depends on how you __49 things. You can be sad after being cheated. __50 you can choose to go on with your life bravely.36. A. lost B. won C. fell D. missed37. A. hit B. got C. met D. saved38. A dream B. money C. check D. success39. A. ill B. well C. strong D. healthy40. A. who B. how C. why D. what41. A. lesson B. story C. idea D. advice42. A. doctor B. nurse C. baby D. mother43. A boy B. coach C. woman D. policeman44.A. Yes B. No C. Sorry D. Thanks45. A. at B. in C. for D. over46. A. help B. show C. mean D. ask47. A. good B. right C. wrong D. great48. A. best B. worst C. saddest D. poorest49. A put B. see C. take D. guess50. A Or B. So C. And D. But四阅读理解(30)A51. the passage is most probably ____.A. a letterB. postcardC. an instructionD. an advertisement52. When will the Sports Day start?A. At 11:15B. At 3:30C. At noonD. After 3:3053. From the passage we know____.A. boys leave school at 3:30 p.m. every dayB. boys won’t have any lessons that dayC. boys will go to King’s Park by busD. only boys’ fathers are welcome to the Sports DayBDo you want to get pocket money or do you want to learn the value of money? Starting your own business is an excellent way to learn skills that will last all your life.If you are more business minded, choose what you want to do to make money and then ask your parents for support(支持 ). Here are some ways for kids to make money with their own business.Housing Cleaning: This is a good job for older children. Practice on your own house first. Then you’ll have some experience.Mother’s Helper: If you are too young to baby-sit(做保姆), thinking about being a mother’s helper. This means that you look after the kids while their mother gets some work done in another place.Plant Watering: If you know of someone going on a trip soon, offer to watertheir plants for a little money. You should learn which plants need to be watered every day and which prefer to stay drier.Pet sitting: Someone leaving on a trip might also need you to look after their animals. They should show you where the food is and how much to feed the pets each day. For dogs, you will need to walk them and spend some time playing with them. And don’t forget to let them out or go to the bathroom!Toy renting: Do you have lots of old toys that you don’t need any more? Rent(出租) them out to families with children who are tired of their own toys, or to grandparents who have children visiting.These are just a few ideas to get you started. Remember to be friendly with the customers(顾客 ). Good luck!54.Which of the following is not mentioned for kids to do?A. Toy RentingB. Housing CleaningC. Pet SittingD. Newspaper spending55. If someone will leave on a trip, which of the following can’t you offer to do?A. Planting wateringB. TV watchingC. Pet walkingD. Pet feeding56. If you have lots of toys that you don’t need any more, you can ____ to make money.A. throw them outB. rent them outC. sell them to a toy shopD. lend them to your friends57. According to the passage, you should be____ with the customers.A. pleasedB. strictC. friendlyD. carefulCYears ago, a college teacher gave a group of graduate(毕业) students this job: Go to a poor place. Take 200 boys, between the ages of 12 and 16, and find out their living environment. The predict their chances for the future.After doing some research, the students found that 90% of the boys would spend some time in jail(监狱 ).Twenty-five years later, another group of students was given the job: Go totest what the first group of students had predicted. They went back to the same place. These 200 boys had then become men. Some of them were still there, a few had died and some had moved away. The students found that only four of them had ever been sent tot jail.These men had lived in a place full of crime(犯罪,罪行 )for many years. Why did the have such a good record? When the students asked the reason, the men said, “ Well, there was a teacher…?The students found the teacher. What did she do to these boys? Could she give the students any reason why these boys should have remembered her?“No,” she said, “no, I really couldn’t give any reason.” And then, thinking back over the years, she said happily, “I loved those boys…?58. The first group of the students took _____ boys to help them to do their job.A. 12B. 16C. 90D. 20059. The underlined word “predict” in the passage most probably means “_____” in Chinese.A. 证明B. 预测C.提供D. 证明60. Which of the following is not true?A. Four of the boys had been sent to jail.B. The 200 boys were between 12 and 16C. The woman teacher could not give any reason at last.D. The children lived I a place which was full of crime61. What’s the main idea of this passage?A. Predicting never worksB. Teacher’s love can change children’s lifeC. Two hundred boys were tested by studentsD. The two groups of students could predict the boys’ futureD“Everything happens for the best,” my mother said whenever things weren’t going my way. “Don’t worry, one day your luck will change.”Mother was right, as I discovered after I had finished my college education.I had decided to try for aq job in radio. One day, I wanted to host(主持) a sports programme. I went to Chicago and knocked on the door of every station. But I got turned down every time.In one station, a kind lady said my problem was that I hadn’t got enough experience. “ Get some work with a small station and work your way up,” she said.I went back home. I couldn’t ge t a job there, either. Then my dad told me a businessman had opened a store and needed someone to help him. But again, I didn’t get the job.I felt really down. “ Your luck will change,” Mom said to me. Dad lent me the car to help me to look for my job. I tried another radio station in Iowa. But the owner, a nice man, told me he had already had someone.As I left his office, I asked, “How can someone be a sports announcer(播音员) if he can’t get a job in a radio station?”I was waiting for the lift when I hear d the man call. “ What did you mean? Do you know anything about football?” He put me in front of a microphone and asked me to try to imagine that I was giving my opinion on a football game, I succeeded.On my way home, Mom’s words came back to me, “One day your luck will change, Son. And when it happens, it’ll feel doubly(加倍的) good because of all the hard work you’ve had.” At that moment I knew what just what she ment.62. What’s the writer’s ideal(理想的) job?A. A sportsmanB. A shop assistantC. A sports announcerD. A businessman63. Why didn’t the writer get the job in Chicago?A. because he was too youngB. Because he didn’t get college educationC. Because he’s got a good-looking personD. Bec ause he hadn’t got enough experience64.The sentence “But I got turned down every time.”Means “______”A. But I was refused every timeB. But I was successful every timeC. But I lost my way every timeD. But the door of every station was always closed65. What’s the best title of this passage?A. Mother’s wordsB. Everything Happens For The BestC. No One Is Always LuckyD. To Find A Job In Radio Is Difficult卷二五.词汇运用(10) 阅读下面短文,请根据所给中文正确拼写单词,使短文完整.每空限填一词Don’t be a couch potato. Make _____66(肯定) that you take plenty of exercise. ______67(人们) aren’t as active now as they were in the ______(68)(过去). It’s important to eat a healthy diet. Eat fresh vegetables and don’t eat fast ____69(食物) . Stay safe in the town by crossing the road _____70(小心地). Stay safe in the countryside. When you go out walking, go _______71(和……一起)someone, or tell someone where you are _____72(计划)to go and when you will return. ______73(说) “no” to cigarettes and drugs: Sm oking and taking drugs are ______74(坏的,不利的) for your health. If you follow these, you will live a ______75(长的) and a healthy life.六任务型阅读5)英语中有许多俚语在日常生活中被广泛使用。
2008年某某地区数学中考模拟试卷一、选择题(每小题3分,共30分)1、下列计算中,正确的是 ( ) A 、623x x x=⋅B 、x x x =-23C 、32)()(x x x -=-⋅-D 、326x x x=÷2、现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形②相似三角形的面积比等于它们的相似比 ③菱形的面积等于两条对角线的积④三角形的三个内角中至少有一内角不小于600其中不正确的命题的个数是 ( ) A 、1个 B 、2个C 、3个D 、4个3、下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是( )4、将一X 矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 ( )A 、矩形B 、三角形C 、梯形D 、菱形5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲x =82分,乙x =82分,甲2S =245,乙2S =190,那么成绩较为整齐的是 ( ) A 、甲班 B 、乙班 C 、两班一样整齐 D 、无法确定6、某商场的营业额1999年比1998年上升10%,2000年比1999年上升10%,而2001年和2002年连续两年平均每年比上一年降低10%,那么2002年的营业额比1998年的营业额 ( ) A 、降低了2% B 、没有变化 C 、上升了2% D 、降低了1.99%7、下列各图中,每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积为25的是)(C )8、某村办工厂今年前5个月生产某种产品的总量c (件)关于时间t 数图象如图所示,则该厂对这种产品来( )A 、1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B 、1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月份持平C 、1月至3月每月生产总量逐月增加,4、5两月均停止生产D 、1月至3月每月生产总量不变, 4、5两均停止生产9、某游泳池分为深水区和浅水区,每次消毒后要重新将水注满泳池,假定进水管的水速是均匀的,那么泳池内水的高度h 随时间t 变化的图象是 ( )10、某某地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,得到一组数据:34,35,36,34,36,37,37,36,37,37(单位℃).则这组数的中位数和众数分别是 ( )二、填空题(每小题3分,共18分) 11、分解因式:=++a ax ax22; 12.函数函数12-+=x x y 中自变量x 的取值X 围是;13.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其中使用寿命跟踪调查.结果如下:(单位:年) 甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,(A ) (B )(D )月)ABCD10,11,12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲,乙,丙; 14.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小;15.两个长、宽各为a 米、b 米的矩形花圃,都修建了形状不同的一条宽为c 米的小路,问:这两条小路的面积是否相等?(填相等或不相等),若相等,面积是;16.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为; 三、解答题(共72分)17、(6分)计算:092π⎛⎫--+ ⎪3⎝⎭.18.(6分)先化简再求值:,其中a 满足20aa -=.19、(5分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法).20.(6分)某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的A BC信息解答下列问题:(1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图.21、(6分)将正面分别标有数字6,7,8,背面花色相同的三X 卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一X ,求P (偶数);(2)随机地抽取一X 作为个位上的数字(不放回),再抽取一X 作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少? 22、(10分)在下图中,每个正方形有边长为1 的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n正方形边长 1 3 5 7 … n (奇数)黑色小正方形个数…正方形边长 2 4 6 8 … n (偶数)黑色小正方形个数…(1≥n )的正方形中,设黑色小正方形的个数为1P ,白色小正方形的个数为2P ,问是否存在偶数..n ,使125P P =?若存在,请写出n 的值;若不存在,请说明理由。
金华市2008年初中毕业生学业水平考试数学试卷参考答案一、选择题1.A 2.C 3.B 4.D 5.A 6.B 7.D 8.B 9.C 10.D二、填空题11. -1;12. 略;13. -32;14. 26;15.27;16. 30,199。
17. 解:(1)原式=131122-+=(2)5x+3x<1+38x<4 x<21 18. (1)证明:在ΔABC 和ΔDCB 中AB DC BC CB AC BD =⎧⎪=⎨⎪=⎩∴ΔABC ≌ΔDCB(SSS)(2)等腰三角形。
19. 解:(1)'(4,1)B -,'(1,1)C --.(2)'(5,2)P a b --20. 解:(1) ∵AB ⊥OD∴AB=2EB,在Rt EOB ∆中,EB=OB ·sin ∠COD=10×54=8, ∴AB=16 (2)由(1)中得6=∵CD 是⊙O 的切线,∴CD OD ⊥∴BE ∥DC ∴OBE ∆∽OCD ∆∴OE BE OD DC =,得DC=403 (3) sin ∠COD=54,所以∠COD ≈53.13o ∴ 253.1310180AB π⨯⨯⨯=≈18.608。
21. 解:(1)小丽头顶处E 点的坐标为E (1,1.4),B 的坐标为(6,0.9),代入解析式得:0.9 1.43660.90.9a b a b ++=⎧⎨++=⎩解得:0.10.6a b =-⎧⎨=⎩ (2)由 y=-0.1x 2+0.6x+0.9配方得20.1(3) 1.8y x =--+,所以小华的身高为1.8米。
(3)1<t<522. 解:(1)a=2,b=0.125(3)设一等奖x 人,二等奖y 人,依题意得291510335x y x y +=⎧⎨+=⎩解得920x y =⎧⎨=⎩所以他们共获奖金=50×9+30×20=1050元。
2006年浙江省金华市初中毕业生学业水平考试数学试卷考生须知:1.全卷共三大题,24小题,满分为150分。
考试时间为100分钟。
本次考试采用开卷形式。
2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分。
试卷Ⅰ的答案必须填涂在“答题卡”上;试卷Ⅱ的答案必须做在“试卷Ⅱ答题卷”的相应位置上。
3.请用钢笔或圆珠笔在“答题卡”上先填写姓名和准考证号,再用2B铅笔将准考证号和考试科目对应的方框涂黑、涂满。
4.用钢笔或圆珠笔在“试卷Ⅱ答题卷”密封区内填写县(市、区)、学校、姓名和准考证号。
试卷I说明:本卷共有一大题,10小题。
一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1.当x=1时,代数式2x+5的值为()A.3 B.5 C.7 D.-22.直角坐标系中,点P(1,4)在()A.第一象限B.第二象限C.第三象限D.第四象限3.我省各级人民政府非常关注“三农问题”。
截止到2005年底,我省农村居民人均纯收入已连续二十一年位居全国各省区首位,据省统计局公布的数据,2005年底我省农村居民人均收入约6600元,用科学记数法表示应记为()A.0.66×104B.6.6×103C.66×102D.6.6×1044.下图所示的几何体的主视图是()5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是()6.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是()A .相离B .外切C .内切D .相交7.不等式组⎨⎧≤≥+4235x x 的解是( ) A .-2≤x ≤2 B .x ≤2 C .x ≥-2 D .x <2 8.将叶片图案旋转180°后,得到的图形是( )9.下图能说明∠1>∠2的是( )10.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论:①a >0; ②c >0; ③b 2-4a c >0,其中正确的个数是( ) A .0个 B .1个 C .2个 D .3个试卷II说明:本卷共有两大题,14小题,共110分。
浙江省金华市中考数学试卷带答案(含答案解析版)浙江省金华市中考数学试卷带答案(含答案解析版)第一部分:选择题(共40小题,每小题2分,共计80分)1. 根据题意计算下列各式的值:(1)A. 5B. -5C. 6D. -62. 某裙子原价800元,现降价25%,现价是多少元?A. 600B. 700C. 750D. 8503. 一个边长为a的正方形的面积是多少?A. aB. a²C. 2aD. 2a²4. 若正整数a的个位数是2,十位数是3,百位数是4,则a/64的值是多少?A. 0.0143B. 0.2437C. 0.0375D. 0.018755. 已知直线L与平面α垂直,而直线L⊥x轴,交点为A(3,0,0),则直线L的方程是:A. x=3B. y=3C. z=3D. x-y+z-3=06. 扔了7次硬币,下图是正面朝上的情况。
如果扔第8次硬币,它正面朝上的可能性与反面朝上的可能性相等,那么第7次正面朝上的概率是多少?A. 1/8B. 2/8C. 3/8D. 4/87. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},则A∩(A∩B')'的值为:A. {1,2,3,4,5}B. {1,2}C. {1,2,3}D. {4,5}8. a、b都是正数,且a+b=10,则a²+b²的最小值是多少?A. 20B. 25C. 48D. 509. 已知点A(1,2)和点B(-2,3),则线段AB的中点坐标为:A. (-2,1/2)B. (-1/2,5/2)C. (-1/2,5/4)D. (1/2,5/2)10. 如图,在△ABC中,有AD//BC,AD=4,BD=6,CD=8,则AB的长度是多少?A. 8B. 10C. 12D. 1411. 在平面直角坐标系中,抛物线y=ax²+bx+c(a≠0)的对称轴方程为x=2,则参数a的值为:A. -2B. -1C. 1D. 2……(省略部分内容)第四部分:填空题(共6小题,每小题3分,共计18分)26. 如果m∩n={∅},那么m- (m- n)等于_________。
2008年浙江金华市初中毕业升学统一考试、数学试题及答案考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为100分钟,本次考试采用开卷形式.2.全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔答在答题纸的相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.如果+3吨表示运入仓库的大米吨数, 那么运出5吨大米表示为( ▲ )A .-5吨B .+5吨C .-3吨D .+3吨 2.化简()a b a b ++-的最后结果是( ▲ )A.2a +2b B.2b C.2a D.03.在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小.小亮在观察左边的热水瓶时,得到的左视图是( ▲ )4.2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是( ▲ )A .北纬31oB .东经103.5oC .金华的西北方向上D .北纬31o,A B C 主视方向东经103.5o5.金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( ▲ )A .甲B .乙C .丙D .不能确定6.如图是小明设计用手电来测量某古城墙高度的示意图.放一水平的平面镜, 光线从点A 古城墙CD 的顶端C 处,已知 AB ⊥BD ,CD ⊥BD , AB =1.2米,BP =1.8米,PD =12米,A . 6米 B . 8米 C . 18米 D .24米 7.如图, 已知CD 为⊙O 的直径,过点D 的弦DE 平行于半径若∠D 的度数是50o ,则∠C 的度数是( ▲ )A .50oB . 40oC . 30oD .25o8.在a 2□4a □4的空格□中,任意填上“+”或“-”,的代数式中,能构成完全平方式的概率是( ▲ )A .1B .12C .13D .149.某抗震蓬的顶部是圆锥形,这个圆锥的底面直径为10米,母线长为6米, 为了防雨,需要在它的顶部铺上油毡,所需油毡的面积至少是( ▲ )A .30米2B .60米2C .30π米2D .60π米210.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( ▲ )A .1B .2C .3D .4卷 Ⅱ(第7题图) (第6题图)说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答(第14题图)案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分)11.已知分式11x x +-的值为0,那么x 的值为 ▲ .12.相交两圆的半径分别为6cm 和8cm ,请你写出一个符合 条件的圆心距为 ▲ cm .13.如果x +y =-4,x -y =8,那么代数式x 2-y 2的值是 ▲ . 14.如图是我市某景点6月份1~10日每天的最高温度折线 统计图.由图中信息可知该景点这10天最高温度的中位数是 ▲ ℃.15.把两块含有30o 的相同的直角三角尺按如图所示摆放,使点C 、B 、E 在同一直线上,连结CD ,若AC =6cm ,则△BCD 的 面积是 ▲ cm 2.16.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,…,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (n ≥3).则5a 的值是 ▲ ,当3451111na a a a +++⋅⋅⋅+的结果是197600时,n的值 ▲ .三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)(1)计算:102(2008)π---+ (2)解不等式:5x -3<1-3x18.(本题6分)如图,在△ABC 和△DCB 中,AC 与BD 相交于点O ,AB =DC ,AC =BD . (1)求证: △ABC≌△DCB ; (2)△OBC 的形状是 ▲ (直接写出结论,不需证明).19.(本题6分)在平面直角坐标系中, △ABC 的三个顶点的位置如图所示,点A'的坐标是(-2,2), 现将△ABC 平移,使点 A 变换为点A', 点B ′、C ′分别是B 、C 的对应点.(1)请画出平移后的像△A'B'C'(不写画法) ,并直接写出点B ′、C ′的坐标: B ′ (▲) 、C ′ (▲) ; (2)若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P ′的坐标是 (▲) .(1) (2) (3) (4) … …(第15题图)A BC DO(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)20.(本题8分)如图, CD 切⊙O 于点D ,连结OC , 交⊙O 于点B,过点B 作弦A B ⊥OD ,点E为垂足,已知⊙O 的半径为10,sin ∠COD =45.求:(1)弦A B 的长; (2)CD 的长;(3)劣弧AB 的长(结果保留三个有效数字, sin53.13o≈0.8, π≈3.142).21.(本题8分)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y =ax 2+bx +0.9.(1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD点O 的距离为t 米, 她的头顶,请结合图像,写出t 的取值范围 ▲ .22.(本题10分)九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表 = ▲ ,= ▲ ; (2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖, 一等奖奖励作业本15本及奖金50元, 二等奖奖励作业本10本及奖金30元,已知这部分学生共获得作业本335本,他们共获得的奖金.23.(本题10分) 如图1,已知双曲线(0)ky k x=>与直线y k x '=交于·A OB D F 九(3)班“绿色奥运”知识竞赛成绩 (分)A ,B两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2),则点B 的坐标为 ▲ ;若点A 的横坐标为m , 则点B 的坐标可表示为 ▲ ;(2)如图2,过原点O 作另一条直线l ,交双曲线(ky k x=>P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A ,P 的横坐标分别为m ,n , 四边形APBQ 可能是正方形吗?若可能, 直接写出m ,n 可能,请说明理由. 24.(本题12分) 如图,在平面直角坐标系中,已知△AOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把△AOP 绕着点A 按逆时针方向旋转,使边AO 与AB 重合,得到△ABD . (1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P,使△OPD的面积等于若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.浙江省2008年初中毕业生学业水平考试(金华卷)数学试卷参考答案及评分标准11.-1 12. 答案不唯一,只要填一个大于2且小于14的实数均可13. -32 14. 2615. 27 16. 30,199(各2分)三、解答题(本题有8小题,共66分)17.(本题6分)解:(1)原式=12-12……(2分)=1 ……(1分)(2)移项得5x+3x<1+3,……(1分)合并同类项得8x<4,……(1分)两边同除以8得x<12……(1分)18.(本题6分)(1)证明:在△ABC和△DCB中,AB DCAC DBBC CB=⎧⎪=⎨⎪=⎩……(3分)∴△ABC≌△DCB(SSS)……(1分)(2)等腰三角形……(2分)19.(本题6分)解:(1)如图,△A'B'C'就是所求的像……(3(-4, 1) 、(-1,-1)……(2分)(2) (a-5,b-2) ……(1分)20.(本题8分)解:(1)∵AB⊥OD,∴∠OEB=900在Rt△OEB中,BE=OB×sin∠COD=10×45=8由垂径定理得AB=2BE=16所以弦AB的长是16 ……(2分)(2)方法(一)在Rt△OEB中,==6.∵CD切⊙O于点D, ∴∠ODC=900, ∴∠OEB=∠ODC.∵∠BOE=∠COD, ∴△BOE∽△COD,∴CD ODBE OE=, ∴1086CD=, ∴CD=403.所以CD的长是403……(3分)方法(二)由sin∠COD=45可得tan∠COD=43,在Rt△ODC中,tan∠COD=CDOD,∴CD=OD•tan∠COD=10×43=403……(3分)(3)连结OA. 在Rt△ODC中,∵sin53.13o ≈0.8 ∴∠DOC=53.13o∴∠AOB=106.26o ,∴劣弧AB的长度106.26 3.14210180180n Rlπ⨯⨯==≈18.5 ……(3分)21.(本题8分)解:(1)由题意得点E(1,1.4), B(6,0.9), 代入y=ax2+bx+0.9得0.9 1.43660.90.9a ba b++=⎧⎨++=⎩……(2分)解得0.10.6ab=-⎧⎨=⎩……(1分)∴所求的抛物线的解析式是y=-0.1x2+0.6x+0.9. ……(1分)(2)把x=3代入y=-0.1x2+0.6x+0.9得y=-0.1×32+0.6×3+0.9=1.8∴小华的身高是1.8米……(2分)(3)1<t<5 ……(2分)22.(本题10分)解:(1)2 ,0.125 ; ……(各2分)(2)图略; ……(2分)(3)由表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖, 则有(29-x)名同学获得二等奖,根据题意得15102933x x+-=()……(2分)解得x=9 ……(1分)∴50x+30(29-x)=1050所以他们得到的奖金是1050元……(1分)23.(本题10分)解:(1)(-4,-2)……(2分)(-m,-k'm)或(-m,km-)……(只要写出一种表示方法就得2分)(2)①由勾股定理OA=OB= =∴OA=OB同理可得OP=OQ,所以四边形APBQ一定是平行四边形. ……(2分)②四边形APBQ可能是矩形……(1分)m,n应满足的条件是mn=k ……(1分)四边形APBQ不可能是正方形……(1分)理由:点A,P不可能达到坐标轴,即∠POA≠900. ……(1分)24.(本题12分)(1)如图,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得BF=OE=2, OF=∴点B 的坐标是(,2) ……(1分)设直线AB 的解析式是y=kx+b ,则有42bb =⎧⎪⎨=+⎪⎩ 解得4k b ⎧=⎪⎨⎪=⎩ ……(2分)∴直线AB 的解析式是y= -+4 ……(1分)(2) 如图,∵△ABD 由△AOP 旋转得到,∴△ABD ≌△AOP , ∴AP=AD , ∠DAB=∠PAO ,∴∠DAP=∠BAO=600, ∴△ADP 是等边三角形,∴=. ……(2分)如图,过点D 作DH ⊥x 轴于点H ,延长EB 交DH 于点G , 则BG ⊥DH. 方法(一) 在Rt △BDG 中,∠BGD=900, ∠DBG=600. ∴BG=BD •cos600×12. DG=BD •sin600×2=32. ∴72∴点D 的坐标为(, 72) ……(方法(二)易得∠AEB=∠BGD=900,∠ABE=∠BDG , ∴△ABE ∽△BDG ,∴ BG DG BD AE BE AB==而, 则有 2BG ==,解得BG=2 ,DG=32 ∴, DH=72∴点D 的坐标为(72) ……(2分)(3)假设存在点P, 在它的运动过程中,使△OPD 的面积等于4.设点P 为(t ,0),下面分三种情况讨论: ①当t >0时,如图,BD=OP=t, DG=2t,∴DH=2+2t. ∵△OPD的面积等于4, ∴1(2)2t +=,解得1t =, 23t = ( 舍去) .∴点P 1的坐标为(3, 0 )②当t ≤0时,如图,BD=OP=-t, BG=t,∴DH=GF=2-(-2t )=2+2t. ∵△OPD∴1(2)2t -+=, 解得13t =-, 2t =∴点P 2的坐标为(-,点P 3的坐标为(③当t ≤ 时,如图,BD=OP=-t, DG=t,∴DH=-2t -2.∵△OPD ,∴1(2)2t += ,解得13t =(舍去), 23t =∴点P 4的坐标为, 0)综上所述,点P 的坐标分别为P 1、P 2 (, 0)、P 3 (, 0) 、P 4 , 0) ……(4分)。
2008年浙江省金华市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨2.(3分)化简a+b+(a﹣b)的最后结果是()A.2a+2b B.2b C.2a D.03.(3分)在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小.小亮在观察左边的热水瓶时,得到的左视图是()A.B.C.D.4.(3分)2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°5.(3分)金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A.甲B.乙C.丙D.不能确定6.(3分)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米7.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°8.(3分)在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1B.C.D.9.(3分)某抗震蓬的顶部是圆锥形,这个圆锥的底面直径为10米,母线长为6米,为了防晒,需要在它的顶部铺上油毡,所需油毡的面积至少是()A.30米2B.60米2C.30π米2D.60π米2 10.(3分)三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.4二、填空题(共6小题,每小题4分,满分24分)11.(4分)已知分式的值为0,那么x的值为.12.(4分)相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为cm.13.(4分)如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是.14.(4分)如图是我市某景点6月份内1﹣10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是℃.15.(4分)把两块含有30°的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连接CD,若AC=6cm,则△BCD的面积是cm2.16.(4分)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3),当的结果是时,n的值.三、解答题(共8小题,满分66分)17.(6分)(1)计算:2﹣1﹣(2008﹣π)0十cos30°;(2)解不等式:5x﹣3<1﹣3x.18.(6分)如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.(1)求证:△ABC≌△DCB;(2)△OBC的形状是.(直接写出结论,不需证明)19.(6分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′、C′;(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是.20.(8分)如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦,点E为垂足,已知⊙O的半径为10,sin∠COD.(1)求弦AB的长;(2)CD的长;(3)劣弧AB的长(结果保留三个有效数字,sin53.13°≈0.8,π≈3.142).21.(8分)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围.22.(10分)九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表:(1)频数分布表中a=,b=;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元,已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.23.(10分)如图1,已知双曲线>与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2),则点B的坐标为;若点A的横坐标为m,则点B 的坐标可表示为;(2)如图2,过原点O作另一条直线l,交双曲线>于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.24.(12分)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2008年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨【解答】解:“正”和“负”相对,如果+3吨表示运入仓库的大米吨数,即正数表示运入仓库,负数应表示运出仓库,故运出5吨大米表示为﹣5吨.故选:A.2.(3分)化简a+b+(a﹣b)的最后结果是()A.2a+2b B.2b C.2a D.0【解答】解:原式=a+b+(a﹣b)=a+b+a﹣b=2a故选:C.3.(3分)在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小.小亮在观察左边的热水瓶时,得到的左视图是()A.B.C.D.【解答】解:从左面看是上下各一个矩形,中间一个等腰梯形,壶柄是一条线段,故选B.4.(3分)2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【解答】解:根据地理上表示某个点的位的方法可知选项D符合条件.故选:D.5.(3分)金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A.甲B.乙C.丙D.不能确定【解答】解:∵S2甲<S2乙<S2丙,∴质量最稳定的切割包装机是甲.故选:A.6.(3分)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD8(米).故选:B.7.(3分)如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.50°B.40°C.30°D.25°【解答】解:∵OA∥DE,∴∠D=∠AOD=50°,∵OA=OC,∴∠ACO=∠OAC∠AOD=25°.故选:D.8.(3分)在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A.1B.C.D.【解答】解:能够凑成完全平方公式,则4a前可是“﹣”,也可以是“+”,但4前面的符号一定是:“+”,此题总共有(﹣,﹣)、(+,+)、(+,﹣)、(﹣,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:B.9.(3分)某抗震蓬的顶部是圆锥形,这个圆锥的底面直径为10米,母线长为6米,为了防晒,需要在它的顶部铺上油毡,所需油毡的面积至少是()A.30米2B.60米2C.30π米2D.60π米2【解答】解:底面直径为10米,则底面周长为10πm,侧面面积10π×6=30π米2,故选C.10.(3分)三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.4【解答】解:由图可知:甲、乙的起始时间分别为0h和2h;因此甲比乙早出发2小时;在3h﹣4h这一小时内,甲的函数图象与x轴平行,因此在行进过程中,甲队停顿了一小时;两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)已知分式的值为0,那么x的值为﹣1.【解答】解:已知分式的值为0,即0(x≠1),解得x=﹣1,当x=﹣1时,分母不为0.故x=﹣1.故答案为:﹣1.12.(4分)相交两圆的半径分别是为6cm和8cm,请你写出一个符合条件的圆心距为3(答案不唯一)cm.【解答】解:两圆相交时,圆心距的范围是:大于2,而小于14,均可.13.(4分)如果x+y=﹣4,x﹣y=8,那么代数式x2﹣y2的值是﹣32.【解答】解:∵x+y=﹣4,x﹣y=8,∴x2﹣y2=(x+y)(x﹣y)=(﹣4)×8=﹣32.故答案为:﹣32.14.(4分)如图是我市某景点6月份内1﹣10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是26℃.【解答】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30.由于有偶数个数,取最中间两个数的平均数,其中位数为26,故其中位数为26.故填26.15.(4分)把两块含有30°的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连接CD,若AC=6cm,则△BCD的面积是27cm2.【解答】解:∵两块三角尺是有30°的相同的直角三角尺,∠ABC=∠EBD=30°,∴,cos∠ABC=cos30°,∴AB=BE=2AC=2DE=2×6=12,BC AB12=6,∴BD=6,过D作DF⊥BE,在Rt△BDF中,∠DBE=30°,∴,DF=3,∴S△BCD BC•DF6327cm2.故答案为:27.16.(4分)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3),当的结果是时,n的值199.【解答】解:观察图形可得:a n=n(n+1);当,有,解得n=199.故答案为:199.三、解答题(共8小题,满分66分)17.(6分)(1)计算:2﹣1﹣(2008﹣π)0十cos30°;(2)解不等式:5x﹣3<1﹣3x.【解答】解:(1)原式11;(2)移项得5x+3x<1+3,合并同类项得8x<4,两边同除以8得x<.18.(6分)如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.(1)求证:△ABC≌△DCB;(2)△OBC的形状是等腰三角形.(直接写出结论,不需证明)【解答】(1)证明:在△ABC和△DCB中,∴△ABC≌△DCB(SSS).(2)解:∵△ABC≌△DCB,∴∠OBC=∠OCB.∴OB=OC.∴△OBC为等腰三角形.故填等腰三角形.19.(6分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′(﹣4,1)、C′(﹣1,﹣1);(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是(a﹣5,b ﹣2).【解答】解:如图:△A′B′C′就是所作的三角形.(1)B′(﹣4,1),C′(﹣1,﹣1);(2)P′的坐标是(a﹣5,b﹣2).20.(8分)如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦,点E为垂足,已知⊙O的半径为10,sin∠COD.(1)求弦AB的长;(2)CD的长;(3)劣弧AB的长(结果保留三个有效数字,sin53.13°≈0.8,π≈3.142).【解答】解:(1)∵AB⊥OD,∴∠OEB=90°在Rt△OEB中,BE=OB×sin∠COD=108由垂径定理得AB=2BE=16所以弦AB的长是16;(2分)(2)方法(一)在Rt△OEB中,OE6.∵CD切⊙O于点D,∴∠ODC=90°,∴∠OEB=∠ODC.∵∠BOE=∠COD,∴△BOE∽△COD,∴,∴,∴CD.所以CD的长是.(3分)方法(二)由sin∠COD可得tan∠COD,在Rt△ODC中,tan∠COD,∴CD=OD•tan∠COD=10;(3分)(3)连接OA,在Rt△ODC中,∵sin53.13°≈0.8∴∠DOC=53.13°,∴∠AOB=106.26°,∴劣弧AB的长度18.5.(3分)21.(8分)跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围.【解答】解:(1)由题意得点E(1,1.4),B(6,0.9),代入y=ax2+bx+0.9得,解得,∴所求的抛物线的解析式是y=﹣0.1x2+0.6x+0.9;(2)把x=3代入y=﹣0.1x2+0.6x+0.9得y=﹣0.1×32+0.6×3+0.9=1.8∴小华的身高是1.8米;(3)当y=1.4时,﹣0.1x2+0.6x+0.9=1.4,解得x1=1,x2=5,∴1<t<5.22.(10分)九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表:(1)频数分布表中a=2,b=12.5%;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元,已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.【解答】解:(1)由频数分布表可知总数为:40人则a=40×0.05=2人,b=100%﹣5%﹣22.5%﹣25%﹣35%=12.5%;(2)如图所示:(3)由表得,有29名同学获得一等奖或二等奖,设有x名同学获得一等奖,则有(29﹣x)名同学获得二等奖,根据题意得:15x+10(29﹣x)=335,解得x=9,∴50x+30(29﹣x)=1050.所以他们得到的奖金是1050元.23.(10分)如图1,已知双曲线>与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2),则点B的坐标为(﹣4,﹣2);若点A的横坐标为m,则点B的坐标可表示为(﹣m,﹣k′m)或(﹣m,);(2)如图2,过原点O作另一条直线l,交双曲线>于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.【解答】解:(1)∵双曲线和直线y=k'x都是关于原点的中心对称图形,它们交于A,B 两点,∴B的坐标为(﹣4,﹣2),(﹣m,﹣k'm)或(﹣m,);(2)①由勾股定理OA,OB,∴OA=OB.同理可得OP=OQ,所以四边形APBQ一定是平行四边形;②四边形APBQ可能是矩形,此时m,n应满足的条件是mn=k;四边形APBQ不可能是正方形(1分)理由:点A,P不可能达到坐标轴,即∠POA≠90°.24.(12分)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得:BF=OE=2,OF,∴点B的坐标是(,2)设直线AB的解析式是y=kx+b(k≠0),则有.解得.∴直线AB的解析式是y x+4;(2)如图2,∵△ABD由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠P AO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP.如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.方法(一)在Rt△BDG中,∠BGD=90°,∠DBG=60°.∴BG=BD•cos60°.DG=BD•sin60°.∴OH=EG,DH∴点D的坐标为(,)方法(二)易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,∴;而AE=2,BD=OP,BE=2,AB=4,则有,解得BG,DG;∴OH,DH;∴点D的坐标为(,).(3)假设存在点P,在它的运动过程中,使△OPD的面积等于.设点P为(t,0),下面分三种情况讨论:①当t>0时,如图,BD=OP=t,DG t,∴DH=2t.∵△OPD的面积等于,∴,解得,(舍去)∴点P1的坐标为(,0).②∵当D在x轴上时,根据勾股定理求出BD OP,∴当<t≤0时,如图,BD=OP=﹣t,DG t,∴GH=BF=2﹣(t)=2t.∵△OPD的面积等于,∴,解得,,∴点P2的坐标为(,0),点P3的坐标为(,0).③当t时,如图3,BD=OP=﹣t,DG t,∴DH t﹣2.∵△OPD的面积等于,∴(﹣t)[﹣(2t)],解得(舍去),∴点P4的坐标为(,0),综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、P4(,0).第21页(共21页)。
2008年中考数学试题汇编(解直角三角形)5.(庆阳市试题)正方形网格中,AOB ∠如图2放置,则sin AOB ∠=( B )(A )5 (B )5(C )12(D )216.(2008年山西省)王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知水平距离BD =10m ,楼高AB =24 m ,则树高CD 为( )A(A )()31024-m (B )⎪⎪⎭⎫ ⎝⎛-331024m (C )()3524-m(D )9m7.(2008年浙江温州)如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinB 的值是( )C(A ) 23(B ) 3 2(C ) 3 4(D ) 4 35.(内江市2008年)如图,在Rt ABC △中,90C =∠,三边分别为a b c ,,,则cos A 等于( )D (A )a c (B )a b (C )b a(D b c 4、(2008年烟台市)如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A(A )右转80° (B )左传80° (C )右转100° (D )左传100° 8.(2008年湖南省益阳市)如图2,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )D(A )︒526sin 米 (B )︒526tan 米 (C )6·cos 52°米 (D )︒526cos 米ABO图2CABD (第7题图) A C B acb(5题图)A┐8. ( 2008年武汉市) 如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A (A )250m(B)(Cm (D )8.(威海市2008年)在△ABC 中,∠C =90°,tanA =31,则sinB =( (A )1010 (B )32 (C )43 (D )1010317.(庆阳市试题)如图5,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB =________米.10.(浙江省湖州市2008年)如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( B ) (A )sin 40m(B )cos 40m(C )tan 40m(D )tan 40m1、(2007山东淄博)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )350m (B )100 m(C )150m(D )3100m解:作出如图所示图形,则∠BAD =90°-60°=30°,AB =100,所以BD =50,cos 30°=ADAB,所以,AD =ABC 图5CD =200-50=150,在Rt △ADC 中, AC===(D ).2、(2007浙江杭州)如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )AA .82米B .163米C .52米(D )70米3、(2007南充)一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).B (A )30海里 (B )40海里 (C )50海里 (D )60海里 4、(2007江苏盐城)利用计算器求sin 30°时,依次按键则计算器上显示的结果是( )A(A )0.5 (B )0.707(C )0.866(D )15、(2007山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )150m(B )350m(C )100 m(D )3100m6、(2007浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) (A )68米 (B )70米 (C )121米 (D )123米1.732≈1.414≈供计算时选用)图1B 5.(永州市2008年)一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米,∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为__________米(答案可保留根号). 12.(江西省2008年)计算:1sin 60cos302-= _________41__________.11.(2008年江苏省连云港市)在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A =___________.14.(2008年江苏省连云港市)如图,一落地晾衣架两撑杆的公共点为O ,75OA =cm ,50OD =cm .若撑杆下端点A B ,所在直线平行于上端点C D ,所在直线,且90AB =cm ,则CD =_____60_____cm .15.(2008年江苏省连云港市)如图,扇形彩色纸的半径为45cm ,圆心角为40,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为____44.7______cm.(结果精确到0.1cm1.414≈1.732≈2.236≈,π3.142≈)16.分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙1O、⊙2O ,若两圆的圆心距等于(第14题图)40(第15题图)SBA45cm这个梯形的中位线长,则这两个圆的位置关系是_____相外切(如写相切不给分). 15.(2008年湖北省襄樊市)如图8,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30,旗杆底部B 点的俯角为45.若旗杆底部B 点到建筑物的水平距离9BE =米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为__10+米(结果保留根号).16.(2008年怀化市)已知△ABC 中,90=∠C ,3cosB =2,AC =52,则AB =____6_____.19.(2008年怀化市)某厂接到为汶川地震灾区赶制无底帐篷的任务,帐篷表面由防水隔热的环保面料制成.样式如图7所示,则赶制这样的帐篷3000顶,大约需要用防水隔热的环保面料(拼接处面料不计)_____203670_______m 2.2.2π3.1≈≈,)20.(7分)(湖北省十堰市2008年)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.20.解:有触礁危险.………………………………1分 理由: 过点P 作PD ⊥AC 于D .…………………2分设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°. ∴BD =PD =x . ………………………………3分西 东 第20题图在Rt △P AD 中,∵∠P AD =90°-60°=30°,∴x .xAD 330tan =︒= ………………………………4分 ∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .………6分∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险. ………………7分 说明:开头“有触礁危险”没写,但最后解答正确不扣分.22.(鄂州市2008年)如图9,教室窗户的高度AF 为2.5,遮阳蓬外端一点D 到窗户上椽的距离为AD ,某一时刻太阳光从教室窗户射入室内,与地面的夹角BPC ∠为30,PE 为窗户AD 的长度.(结果带根号)22.解:过点E 作EG AC ∥交于PD 于G 点 ········ 1分tan 3031EG EP ==⨯= ······················· 3分 1BF EG ∴== ·························································· 4分 即 2.51 1.5AB AF BF =-=-= ·························································································· 5分在Rt ABD △中,tan 303AB AD === ······················································· 7分 AD ∴ ············································································································· 8分 20.(9分)(2008年河南省)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一图9二楼 一楼4mA 4m4mB28°C图9直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412 ,sin 37°≈0.60,cos 37°≈0.80)22.(庆阳市试题7分)如图9,某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行,请你根据图中数据计算回答:小敏身高1.85米,他乘电梯会有碰头危险吗?(sin 28o ≈0.47,tan 28o ≈0.53)21. (本题满分10分) (山东省2008年)如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.(1)求B ,D 之间的距离;(2)求C ,D 之间的距离.ABC 中山路文化路D和平路45° 15°30°EF21.(本题满分10分) 解:(1)如图,由题意得,∠EAD =45°,∠FBD =∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD ,∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°. …………………………2分 又∵ ∠DBC =∠DAB +∠ADB ,∴ ∠ADB =15°. ∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km .… ………………………5分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°.∴ DO =2×sin 60°=2×323=,BO =2×cos 60°=1.………………8分 在Rt △CBO 中,∠CBO =30°,CO =BOtan 30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332k m . ………………………10分 23.(本题满分8分)(盐城市2008年)某工厂接受一批支援四川省汶川灾区抗震救灾帐蓬的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE 的底角∠AEB =θ,且tan θ=34,矩形BCDE 的边CD =2BC ,这个横截面框架(包括BE )所用的钢管总长为15m .求帐篷的篷顶A 到底部CD 的距离.(结果精确到0.1m )18.(浙江省2008年义乌市) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)和θABCDE第23题图19.(本题满分10分)(贵阳市2008年)如图7,某拦河坝截面的原设计方案为:AH BC ∥,坡角74ABC ∠=,坝顶到坝脚的距离6m AB =.为了提高拦河坝的安全性,现将坡角改为55,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1m ).21、(本题8分) (金华市2008年) 跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地 面的距离AO 和BD 均为O . 9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y =ax 2+bx +0.9. (1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD 之间,且离点O 的距离为t 米,绳子甩到最高处时超过她的头顶,请结合图像,写 出t 自由取值范围_____.21.(广安市2008年)如图8,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01)(图7)ABCDH55(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由2.449=== )23.(2008年永春县8分)小王站在D仰角∠AEC=33°,小王与旗杆的水平距离 BD =10m ,眼睛与地面的高度ED =1.6m , 求旗杆AB 的高度(精确到0.1米).23. 正确利用三角函数写出关系式 3分 AC ≈6.5米 6分AB = 8.1米 8分(没按要求得精确值扣1分)20、(本题满分7分)(2008年陕西省中考)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: ; (2)请在下图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .20、解:(1)皮尺、标杆. ………………………………(1分) (2)测量示意图如图所示.………………………………(3分)ACDC(第20题(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c……………………(5分)∵△DEF∽△BAC∴DE FE BA CA=∴a c x b =∴abxc=……………………………………(7分)25、(本题满分12分)(2008年陕西省中考)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?25、解:方案一:由题意可得:MB ⊥OB ,∴点M 到甲村的最短距离为MB .…………………(1分)∵点M 到乙村的最短距离为MD ,∴将供水站建在点M 处时,管道沿MD 、MB 线路铺设的长度之和最小, 即最小值为MB +MD =3+(km )…………………(3分)方案二:如图①,作点M 关于射线OE 的对称点M ′,则MM ′=2ME ,图①图②连接AM ′交OE 于点P ,PE ∥AM ,PE =1AM2.∵AM =2BM =6,∴PE =3 …………………(4分) 在Rt △DME 中,∵DE =DM ·sin 60°==3,ME =1DM2=12×=,∴PE =DE ,∴ P 点与E 点重合,即AM ′过D 点.…………(6分) 在线段CD 上任取一点P ′,连接P ′A ,P ′M ,P ′M ′, 则P ′M =P ′M ′. ∵A P ′+P ′M ′>AM ′,∴把供水站建在乙村的D 点处,管道沿DA 、DM 线路铺设的长度之和最小,即最小值为AD +DM =AM7分)方案三:作点M 关于射线OF 的对称点M ′,作M ′N ⊥OE 于N 点,交OF 于点G ,交AM 于点H ,连接GM ,则GM =GM ′∴M ′N 为点M ′到OE 的最短距离,即M ′N =GM +GN 在Rt △M ′HM 中,∠MM ′N =30°,MM ′=6, ∴MH =3,∴NE =MH =3∵DE =3,∴N 、D 两点重合,即M ′N 过D 点.北东在Rt△M′DM中,DM=M′D=在线段AB上任取一点G′,过G′作G′N′⊥OE于N连接G′M′,G′M,显然G′M+G′N′=G′M′+G′N′>M′D∴把供水站建在甲村的G处,管道沿GM、GD线路铺设的长度之和最小,即最小值为GM+GD=M′D=…………(11分)综上,∵3+∴供水站建在M处,所需铺设的管道长度最短.…………(12分)17. (成都市二00八年)如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)22.(2008年辽宁省大连市)为了测得学校旗杆的高度,小明先站在地面的A点测得旗杆最高点C的仰角为27°(点A距旗杆的距离大于50m),然后他向旗杆的方向向前进了50m,此时测得点C的仰角为40度.又已知小明的眼睛离地面1.6m,请你画出小明测量的示意图,并帮小明计算学校旗杆的高度.(精确到0.1m).22、(滨州市2008年)如图,AC是某市坏城路的一段,AE、BF、CD都是南北方向的街道,其与环城路AC的交叉路口分别是A、B、C经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠ADB的大小;(2)求B、D之间的距离;(3)求C、D之间的距离.图②300150450环城路和平路文化路中山路FBEDCA22.解(1)如图,由题得,0045,30EAD FBD ∠=∠=000451560EAC EAD DAC ∴∠=∠+∠=+=00603015.AE BF CD FBC EAC DBC DBC DAB ADB ADB ∴∠=∠=∴∠=∠=∠+∠∴∠=又 (2)由(1)知,2DAB ADB BD AB ∠=∠∴== 即B 、D 之间的距离为2km .(3)过B 作BO DC ⊥,交其延长线于点O , 在Rt DBO 中,02,60.BD DBO =∠=002sin 6022cos60 1.2DO BO ∴=⨯=⨯==⨯=00,30,tan 30)..3Rt CBO CBO CO BO CD DO CO km C D ∠===∴=-==在中即、之间的距离为20、(本题满分8分)(2008年烟台市)某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B相距3 米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深≈≈)度.(结果精确到0.1 1.41 1.7324.(本小题满分8分)(湖北省荆门市2008年)如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米)(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)24.解:延长CD交PB于F,则DF⊥PB.∴DF =BD ·sin 15°≈50×0.26=13.0. …………2分 (写13不扣分)∴CE =BF =BD ·cos 15°≈50×0.97=48.5. …………4分 ∴AE =CE ·tan 10°≈48.5×0.18=8.73. …………6分∴AB =AE +CD +DF =8.73+1.5+13 =23.2.答:树高约为23.2米. ………………………8分20. ( 徐州巿2008年)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m1.4141.73224.如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tan α)为1︰1.2,坝高为5米.现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1︰1.4.已知堤坝总长度为4000米. (1)求完成该工程需要多少土方?(4分)(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率.甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?(5分) 24、(1)作DG ⊥AB 于G ,作EH ⊥AB 于H . ∵CD ∥AB ,∴EH =DG =5米,∵2.11=AG DG ,∴AG =6米,……………………………………………………1分 ∵4.11=FH EH ,∴FH =7米,............................................................2分 ∴F A =FH +GH -AG =7+1-6=2(米) (3)分FB(第20题图)∴S ADEF =21(ED +AF )·EH =21(1+2)×5=7.5(平方米) V =7.5×4000=30000 (立方米)……………………………………………………4分(2)设甲队原计划每天完成x 立方米土方,乙队原计划每天完成y 立方米土方. 根据题意,得⎩⎨⎧=+++=+.30000]%)401(%)301[15,3000)(20y x y x ………………………6分 化简,得⎩⎨⎧=+=+.20004.13.1,1500y x y x ………………………………………………7分解之,得⎩⎨⎧==.5001000y x ………………………………………………………………8分答:甲队原计划每天完成1000立方米土方,乙队原计划每天完成500立方米土方. ……………………………………9分26.(本小题满分8分)(常州市2008年) 如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O .同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C ,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.(1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C24、(12伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东600的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处就人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东300的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔北跑的速度为4米/秒,试问哪组救援队先到A 1.732) 24解:过A 作AD ⊥BC 交BC 的延长线于点D , A 在B 北偏东600方向上,∴ ∠ABD =300,又A 在C 北偏东300方向上,所以∠ACD =600又因为∠ABC =300所以∠BAC =300,所以∠ABD = ∠BAC 所以AC =BC 因为BC =120所以AC =120在Rt △ACD 中,∠ACD =600,AC =120,所以CD = 60 ,AD =在Rt △ABD 中因为∠ABD =300,所以AB =第一组时间:207.841≈ 第二组时间:12012015041+= 因为207.84 〉150所以第二组先到达A 处,答(略)23.(本题 6分)(哈尔滨市2008 年)如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处.求此时轮船所在的B 处与灯塔P 的距离(结果保留根号).16. (2008年安徽省)小明站在A 处放风筝,风筝飞到C 处时的线长为20米,这时测得∠CBD =60°,若牵引底端B 离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1 1.732≈)【解】16、解:在Rt △BCD 中,CD =BC ×sin 60=20×26分 又DE =AB =1.5∴CE =CD +DE =CD +AB=(米) 答:此时风筝离地面的高度约是18.8米.………8分21.(本题满分9分)(2008年广东省汕头市)如图5,梯形ABCD 是拦水坝的横断面图,(图中i =DE 与水平宽度CE 的比),60B ∠=,6AB =,4AD =,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字,参考数据: 1.732=,1.414=)22.(本小题满分7分)(黄石市2008年)如图,甲船在港口P 的北偏西60方向,距港口80海里的A 处,沿AP 方向以12海里/时的速度驶向港口P .乙船从港口P 出发,沿北偏东45方向匀速驶离港口P ,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(精确到0.1海里/时,1.41,1.73)22.依题意,设乙船速度为x 海里/时,2小时后甲船在点B 处,乙船在点C 处,作PQ BC ⊥于Q ,则8021256BP =-⨯=海里,2PC x =海里.在Rt PQB △中,60BPQ ∠=,图5AP东北45 60东第 21 页 共 23 页1cos 6056282PQ BP ∴==⨯=. ············································································ (2分) 在Rt PQC △中,45QPC ∠=,2cos 4522PQ PC x x ∴===. ······································································ (4分)28=, x =19.7x ∴≈.答:乙船的航行速度约为19.7海里/时. ······································································ (7分)22.(郴州市2008年)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B村的俯角为60︒(.如图7).求A 、B 两个村庄间的距离. 1.414 1.732==)22.解:根据题意得: 30A ∠=︒ , 60PBC ∠=︒ 所以6030APB ∠=︒-︒,所以APB A ∠=∠ , 所以AB =PB ···························································································································· 3分 在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB =450sin 60==︒·················································································· 5分所以520AB PB ==≈(米) 答:略.6分26. (本题满分7分) (2008年怀化市)QB CP A45060︒30︒图7第 22 页某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图12所示,AD BC //,斜坡AB 长m 10625,坡度5:9=i .为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,地质人员勘测,当坡角不超过45时,可确保山体不滑坡.(1)求改造前坡B 到地面的垂直距离BE 的长;(2)为确保安全,学校计划改造时保持坡脚A 不动,坡顶B 沿BC 削进到F 处,问BF 至少是多少米?23.(荆州市2008年本题8分)载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递,途经A 、B 、C 、D 四地.如图,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,参考数据:1.7≈≈)()()()()()222222926.:195590.....................................25595922.5.2222.5....................BE i BE k AE k k AE Rt ABE BEA AB AB BE AE k k k BE m BE ==∴==∆∠===+=+=∴=⨯=解,设,为正数,则在中,,,分即,解得,故改造前坡顶与地面的距离的长为米()()................................................42112.5,,,tan ,22.5tan 45,10.12.510,...........................................................FH AE BF xm FH AD H FAH AH x x B BC m ==⊥=∠≤≥+∴分由得设作于则由题意得即坡顶沿至少削进才能确保安全..............7分第 23 页 共 23 页19.(泸州市2008年)如图6,在气象站台A 的正西方向240km 的B 处有一台风中心,该台风中心以每小时20km 的速度沿北偏东o60的BD 方向移动,在距离台风中心130km 内的地方都要受到其影响.⑴台风中心在移动过程中,与气象台A长?23.(南京市2008年6塔底C 的仰角为20,塔顶D 的仰角为23,求此人距CD 的水平距离AB .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)(第23题)ABCD 2023。
----------------------------精品word 文档 值得下载 值得拥有----------------------------------------------二00八年浙江省义乌市中考数学试卷考生须知:1. 全卷共4页,有3大题,24小题. 满分为150分,考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.3. 请考生将姓名、准考证号填写在答题纸的对应位置上.并认真核对答题纸上粘贴的条形码的“姓名、准考证号”与考生本人姓名、准考证号是否一致.4. 作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2a b ac a b --. 试 卷 Ⅰ说明:本卷共有1大题,10小题,每小题4分,共40分.请用2B 铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 计算-2+3的结果是A .1B .-1C .-5D .-62.据统计,2007年义乌中国小商品城市场全年成交额约为348.4亿元,连续第17次蝉联全国批发市场榜首.近似数348.4亿元的有效数字的个数是A.3个 B. 4个 C.5个 D .6个3.国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是A .6969元B .7735元C .8810元D .10255元4.下列四个几何体中,主视图、左视图、俯视图都是圆的几何体是A.正方体 B.圆锥 C.球 D .圆柱5.不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为6A .180,30x y x y +=⎧⎨=-⎩B . 180,30x y x y +=⎧⎨=+⎩C .90,30x y x y +=⎧⎨=+⎩D .90,30x y x y +=⎧⎨=-⎩ 7.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是A .B .C .D .----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 8.下列命题中,真命题是A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形9.圆锥的底面半径为3cm ,母线为9cm ,则圆锥的侧面积为A .6π2cmB .9π2cmC .12 π2cmD .27π2cm10.已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为A .-1B . 1C . -3D . -4试 卷 Ⅱ说明:本卷共有2大题,14小题,共110分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:24xy x -= ▲ .12.近年来,义乌市对外贸易快速增长.右图是根据我市2004年至2007年出口总额绘制的条形统计图,观察统计图可得在这期间我市年出口总额的极差是 ▲ 亿美元. 13.函数1y x a=-,当2x =时没有意义,则a 的值为 ▲ . 14.如图,若//AB CD ,EF 与AB CD 、分别相交于点E F 、, EP 与EFD ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则 ▲ 度.15.李老师给出了一个函数,甲、乙、丙三位学生分别指出这个函数的一个特征.甲:它的图像经过第一象限;乙:它的图像也经过第二象限;丙:在第一象限内函数值y 随x 增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式 ▲ .16.如图,直角梯形纸片ABCD ,AD ⊥AB ,AB =8,AD =CD =4,点E 、F 分别在线段AB 、AD 上,将△AEF 沿EF 翻折,点A 的落点记为P .(1)当AE =5,P 落在线段CD 上时,PD = ▲ ;(2)当P 落在直角梯形ABCD 内部时,PD 的最小值等于 ▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(1)计算:3602cos 458-+;(2)解方程:1321x x =+ 18. 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)19. “一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A 的概率.(12题图)----------------------------精品word 文档 值得下载 值得拥有----------------------------------------------20.已知:如图△ABC 内接于⊙O ,OH AC ⊥于H ,过A 30B ∠=0,OH =请求出:(1)AOC ∠的度数;(2)劣弧AC 的长(结果保留π); (3)线段AD 的长(结果保留根号).21.义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为114508辆.己知2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位)22.已知:等腰三角形OAB 在直角坐标系中的位置如图,点A 的坐标为(-),点B 的坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B'',请直接写出A 、B 的对称点A 'B '、的坐标;(2)若将三角形OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数y =的图像上,求a 的值; (3)若三角形OAB 绕点O 按逆时针方向旋转α度(090α<<). ①当α=30时点B 恰好落在反比例函数k y x=的图像上,求k 的值. ②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α 的值;若不能,请说明理由.23.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG 、BE ,且a =3,b =2,k =12,求22BE DG +的值. 24.如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.浙江省2008年初中毕业生学业考试(义乌市卷)----------------------------精品word 文档值得下载 值得拥有---------------------------------------------- 数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.(2)(2)x y y +- 12. 8.04 13. 214.060 15. 形如2(0,0),(0,0)y kx b k b y ax bx c a b =+>>=++>> (2)8 16.(1)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17. 解:(1)3602cos458-+=2-(每项算对各给1分)3分 =2.5……………………………………………………………………………… 1分(2.)321x x =+ ………………………………………………………………………1分1x = ……………………………………………………………………………2分经检验:1x =是原方程的解 …………………………………………………1分18. 解: 0tan 30=4CD ……………………………………………………………………3分 CD =…………2分 CE 1.68 4.0+≈ ……2分 ∴ 这棵树的高大约有4.0米高. ……………………………………………………1分 19. 解:(1)用列表法或树状图表示所有可能结果如下:……………………………………4分(1)列表法: (2)树状图:(2)P (恰好选中医生甲和护士A )=16 ………………………………………3分 ∴恰好选中医生甲和护士A 的概率是16 ……………………………………1分 20.解:(1)060AOC ∠= ………………………………2分 (2)在三角形AOC 中,OH AC ⊥ ∴ 01030OH AO COS == ……………………1分 ∴AC 的长= 6010101801803n r πππ⨯⨯==……1分 ∴AC 的长是103π……………………………………………………………………1分 (3) ∵AD 是切线 ∴AD OA ⊥ ……………………………………………………1分 ∵060AOC ∠= ∴AD = …………………………………………………1分----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- ∴线段AD 的长是……………………………………………………………1分21.解:(1)设年平均增长率为x ,根据题意得:272893(1)114508x +=…………………3分解得1x ≈0.2526,2x ≈ 2.2526- (不合题意,舍去) …………………………1分∴所求的年平均增长率约为25.3%. ……………………………………………1分(2)设每年新增汽车为x 辆,根据题意得: []114508(14%)(14%)158000x x -+-+≤……………………………………3分解得26770.12x ≤ …………………………………………………………………1分∴每年新增汽车最多不超过26770辆……………………………………………1分22.解:(1)(6,0)A B '' ………(每个点坐标写对各得2分)………………………4分(2) ∵3y = ∴3=1分 ∴x =…………………1分∴a = …………………2分(3) ① ∵30α=∴相应B 点的坐标是 (3)--…………………………………………………1分∴.k = …………………………………………………………………………1分② 能 ………………………………………………………………………………1分当060α=时,相应A ,B 点的坐标分别是(3),(3,----, 经经验:它们都在y x =的图像上 ∴060α= ………………………………………………………………………1分23.解:(1)①,BG DE BG DE =⊥ ………………………………………………………………2分②,BG DE BG DE =⊥仍然成立 ……………………………………………………1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形∴ BC CD =,CG CE =, 090BCD ECG ∠=∠=----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- ∴…………………………………………………………………1分∴BCG DCE ∆≅∆ (SAS )………………………………………………………1分∴BG DE = CBG CDE ∠=∠又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ …………………………………………………………………………1分(2)BG DE ⊥成立,BG DE =不成立 …………………………………………………2分简要说明如下∵四边形ABCD 、四边形CEFG 都是矩形,且AB a =,BC b =,CG kb =,CE ka =(a b ≠,0k >) ∴BC CG b DC CE a==,090BCD ECG ∠=∠= ∴BCG DCE ∠=∠∴BCG DCE ∆∆………………………………………………………………………1分∴CBG CDE ∠=∠ 又∵BHC DHO ∠=∠ 090CBG BHC ∠+∠=∴090CDE DHO ∠+∠= ∴090DOH ∠=∴BG DE ⊥ ……………………………………………………………………………1分(3)∵BG DE ⊥ ∴22222222BE DG OB OE OG OD BD GE +=+++=+又∵3a =,2b =,k =12 ∴ 222222365231()24BD GE +=+++=………………………………………………1分 ∴22654BE DG += ………………………………………………………………………1分 24.解:(1)①2AB = ……………………………………………………………………………2分842OA ==,4OC =,S 梯形OABC =12 ……………………………………………2分 ②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………………………4分 (2) 存在 ……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P --- …(每个点对各得1分)……5分 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二:① 以点D 为直角顶点,作1PP x ⊥轴----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- Rt ODE ∆在中,2OE OD =∴,设2OD b OE b ==,.1Rt ODE Rt PPD ∆≈∆,(图示阴影) 4b ∴=,28b =,在上面二图中分别可得到P 点的生标为P (-12,4)、P (-4,4) E 点在0点与A 点之间不可能;② 以点E 为直角顶点同理在②二图中分别可得P 点的生标为P (-83,4)、P (8,4)E 点在0点下方不可能. ③ 以点P 为直角顶点同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4),E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类):第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) 的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22b y b x -=-+,令4y =得3(8,4)2b P -.由已知可得DE ==2332640b b -+=解得 121883b b P P ==∴=3b ,将之代入(-8,4)(4,4)、22(4,4)P -; 第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE =即=22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b) ,直线PD 的方程:1()2y x b =-+,令4y =得(8,4)Pb --.由已知可得PD DE =得12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、 P (8,4)、P (4,4).----------------------------精品word 文档 值得下载 值得拥有---------------------------------------------- 事实上,我们可以得到更一般的结论:如果得出AB a OC b ==、、OA h =、设b a k-=,则P 点的情形如下 ; 2008年义乌市数学学业考试命题组2008-6-1。
金华市2008年初中毕业生学业水平考试数学试卷一、选择题(本题有10个小题,每小题3分共30分)1、如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A 、-5吨 B 、+5吨 C 、-3吨 D 、+3吨2、化简a+b+(a-b )的最后结果是( ) A 、2a+2b B 、2b C 、2a D 、03、在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小。
小亮在观察左边的热水瓶时,得到的左视图是( )4、2000年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是( )A 、北纬31oB 、东径103.5oC 、金华的西北方 向上D 、北纬31o,东径103.5o5、金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( )A 、甲 B 、乙 C 、丙 D 、不能确定6、如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )A 、6米 B 、8米 C 、18米 D 、24米7、如图,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o,则∠C 的度数是( )A 、50oB 、40oC 、30oD 、25o8、在a 2□4a □4空格□中,任意填上“+”或“—”,在所得到的这代数式中,以构成完全平方式的概率是( )A 、1 B 、1/2 C 、1/3 D 、1/49、某抗震蓬的顶部是圆锥形,这个圆锥的底面直径为10米,母线长为6米,为了防晒,需要在它的顶部铺上油毡,所需油毡的面积至少是( )A 、30米2B 、 60米2C 、30Л米2D 、60米Л210、三军受命,我解放军各部队奋力抗战地救灾一线。
2008年浙江各地中考数学压轴题精选24.(08金华卷本题12分)如图,在平面直角坐标系中,已知△AOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把△AOP 绕着点A 按逆时针方向旋转,使边AO 与AB 重合,得到△ABD . (1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标; (3)是否存在点P ,使△OPD,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.08金华24题解答:(1)如图,过点B 作BE ⊥y 轴于点E ,作BF ⊥x 轴于点F.由已知得BF=OE=2, OF=∴点B 的坐标是(,2) ……(1分)设直线AB 的解析式是y=kx+b,则有42bb=⎧⎪⎨=+⎪⎩ 解得4k b ⎧=⎪⎨⎪=⎩……(2分) ∴直线AB 的解析式是y= x +4 ……(1分) (2) 如图,∵△ABD 由△AOP 旋转得到,∴△ABD ≌△AOP , ∴AP=AD , ∠DAB=∠PAO ,∴∠DAP=∠BAO=600, ∴△ADP 是等边三角形,∴=. ……(2分)如图,过点D 作DH ⊥x 轴于点H ,延长EB 交DH则BG ⊥DH.方法(一)在Rt △BDG 中,∠BGD=900, ∠DBG=600.∴BG=BD •cos600×12. DG=BD •sin600=32.∴72∴点D 的坐标为, 72) ……(2分)方法(二)易得∠AEB=∠BGD=900,∠ABE=∠BDG , ∴△ABE ∽△BDG , ∴BG DG BDAE BE AB ==而,, AB=4,则有24BG == ,解得BG=2 ,DG=32 ∴, DH=72∴点D 的坐标为72) ……(2分) (3)假设存在点P, 在它的运动过程中,使△OPD.设点P 为(t ,0),下面分三种情况讨论:①当t >0时,如图,BD=OP=t, DG=2t,∴DH=2+2t. ∵△OPD的面积等于4 ,∴1(2)224t +=,解得13t =, 23t = ( 舍去) .∴点P 1的坐标为 (3, 0 )②当3-<t ≤0时,如图,BD=OP=-t, BG=-2t,∴DH=GF=2-(-2t )=2+2t.∵△OPD 的面积等于4,∴ 1(2)224t t -+=,解得 13t =-, 2t =∴点P 2的坐标为(, 0),点P 3的坐标为(③当t≤3- 时,如图,BD=OP=-t, DG=-2t,∴DH=t -2.∵△OPD,∴1(2)224t += ,解得1t =(舍去), 2t =∴点P 4的坐标为, 0)综上所述,点P 的坐标分别为P 1、P 2(, 0)、P 3(, 0) 、 P 4, 0) ……(4分)24、(衢州卷本题14分)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由。
专题11:圆一、选择题1. (2001年浙江金华、衢州5分)圆柱形油桶的底面半径为0.8m,高为1m,那么这个油桶的侧面积为【】A.1.6πm2 B.1.2πm2 C.0.64πm2 D.0.8πm22.(2001年浙江金华、衢州5分)如图,⊙O的弦CD交弦AB于P,A P=4,PB=3,CP=2,那么PD的长为【】A.8 B.6 C.4 D.33. (2002年浙江金华、衢州4分)如图,⊙O的弦CD交弦AB于点P,PA=8,PB=6,PC =4,则PD的长为【】(A)8 (B)6 (C)16 (D)124. (2002年浙江金华、衢州4分)两圆的半径分别为3和5,圆心距为8,那么两圆的位置关系是【】(A)外切(B)内切(C)相交(D)相离5. (2003年浙江金华、衢州4分)已知直线l与⊙O相离,如果⊙O半径为R,O到直线l 的距离为d,那么【】A.d>R B.d<R C.d=R D.d≤R6.(2003年浙江金华、衢州4分)如图,⊙O是△ABC的外接圆,直线EF切⊙O于点A,点F与点B在同侧,若∠BAF=40°,则∠C等于【】A.20°B.40°C.50°D.80°7. (2004年浙江金华4分)已知两圆的半径分别为7和3,圆心距为10,那么这两圆的位置关系是【】A、外切B、内切C、相交D、内含8. (2004年浙江金华4分)如图,⊙O的弦AB、CD交于点P,已知P是AB的中点,AB=8cm,PC=2cm,那么PD的长是【】A、32㎝ B、8㎝ C、6 ㎝ D、2㎝【答案】B。
【考点】相交弦定理。
9. (2005年浙江金华4分)如图,△ABC 内接于⊙O,DE 是⊙O的切线,切点为A,如果∠ABC=50°,那么∠CAE 等于【 】A、40° B、50° C、60° D、130°10. (2005年浙江金华4分)如图,矩形ABCD 中,E,F分别是AB ,CD 的中点,点O1,O2在线段EF 上,与矩形ABCD 的边DA ,AB ,BC 都相切,⊙O 2与⊙O 2外切,且与DC 边相切于点F,如果⊙O 1,⊙O 2的半径分别是4cm ,2cm ,那么矩形ABCD 的面积为【 】A、202cm B、242cm C、402cm D、962cm11. (2006年浙江金华4分)如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是【 】A. 相离B. 外切C. 内切D.相交12. (2007年浙江金华4分)如图,点A、B、C都在⊙O上,若∠C=340,则∠AOB的度数为【】A.340B.560 C.600 D.68013. (2008年浙江金华3分)如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50o,则∠C的度数是【】A、50oB、40oC、30oD、25o【答案】D。
金华市2008年初中毕业生学业水平考试数学试卷
一、选择题(本题有10个小题,每小题3分共30分)
1、如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A 、-5吨 B 、+5吨 C 、-3吨 D 、+3吨
2、化简a+b+(a-b )的最后结果是( ) A 、2a+2b B 、2b C 、2a D 、0
3、在生活和生产实践中,我们经常需要运用三视图来描述物体的形状和大小。
小亮在观察左边的热水瓶时,得到的左视图是( )
4、2000年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点
位置的是( )A 、北纬31o B 、东径103.5o C 、金华的西北方 向上 D 、北纬31o
,
东径103.5o
5、金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三
台切割包装机,同时分别装质量为500克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,
经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( )A 、甲 B 、乙 C 、丙 D 、不能确定
6、如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( )A 、6米 B 、8米 C 、18米 D 、24米
7、如图,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o
,则∠
C 的度数是( )A 、50o B 、40o C 、30o
D 、25o
8、在a 2
□4a □4空格□中,任意填上“+”或“—”,在所得到的这代数式中,以构成完全平方式的概率是( )A 、1 B 、1/2 C 、1/3 D 、1/4
9、某抗震蓬的顶部是圆锥形,这个圆锥的底面直径为10米,母线长为6米,为了防阴,需
要在它的顶部铺上油毡,所需油毡的面积至少是( )A 、30米2 B 、 60米2
C 、30Л米2
D 、60米Л2
10、三军受命,我解放军各部队奋力抗战地救灾一线。
现有甲、乙两支解放军小分队将救灾物资送
往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A 、1 B 、2 C 、3 D 、4
二、填空题(本题有6个小题,每小题4分共24分)
11、已知分式
1
1
-+x x 的值为0,那么X 的值为 。
12、相交两圆的半径分别是为6cm 和8cm ,请你写出一个符合条件的圆心距为 cm 。
13、如果x+y=-4,x-y=8,那么代数式x2-y2的值是 cm 。
14、如图是我市某景点6月份内1∽10日每天的最高温度折线统计图,由图信息可知该景点这10天的最高气温度的中位数是 。
15、把两块含有300
的相同的直角尺按如图所示摆放,使点C 、B 、E 在
同一条直线上,连结CD ,若AC=6cm ,则ΔBCD 的面积是 。
16、如图,第(1)个多边形由正三角形"扩展"而来,边数记为α3, .第(2)个多边形由正方形"扩展"而来,边数记为a 4,…,依此类推,由正n 边形"扩展"而来的多边形的边数记为a n (n ≥3).则a 5的值是 ;当n
a a a a 1
111543++++ 的结果是600197时,n 的值
为 。
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程〉
17、(本题6分〉(1)计算: 2-1
一(2008 - Л)0
十3cos30o。
(2)解不等式:5x- 3 < 1- 3x
18、(本题6分)如图,在ΔABC 和ΔDCB 中,AC 与BD 相交于点。
, AB = DC ,AC = BD. (1)求证:
ΔABC ≌ΔDCB ;(2) Δ0BC 的形状是 。
(直接写出结论,不需证明) 。
19、(本题6分) 在平面直角坐标系中,ΔABC 的三个顶点的位置如
图所示, 点A ‵的坐标是(一2,2) ,现将,6.ABC 平移。
使点A 变换为点A ‵, 点B ‵、C ‵分别是B 、C 的对应点. (1)请画出平移后的像Δ A ‵ B ‵C ‵(不写画法) ,并直接写出点B ‵、 C ‵的坐标: B ‵ ( )、C ‵( );(2)若ΔABC 内部一点P 的坐标为(a ,b ) ,则点P 的对应点p ‵的 坐标是( )。
20、(本题8分)如图,CD 切⊙O 于点D ,连结OC ,交⊙O 于点B ,过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,sin ∠COD=
5
4。
(1)求弦AB 的长;(2)CD 的长;(3)
劣弧AB 的长(结果保留三个有效数字,sin53.13o
≈0.8,Л≈3.142)
21、(本题8分) 跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳
的手间距AB 为6米,到地 面的距离AO 和BD 均为O. 9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E 。
以点O 为原点建立如
图所示的平面直角坐标系,设此抛物线的解析式为y=ax 2
+bx+0.9. (1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,
当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD 之间,且离点O 的距离为t 米,绳子甩到最高处时超过她的头顶,请结合图像,写 出t 自由取值范围 。
22、(本题10分)九(3)班学生参加学校组织的"绿色奥运"知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图. (1)频数分布表中a= ,b= ;(2)把频数分布直方图补充完整; (3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元。
已知这部分学生共获得作业本335本,请你求出他们共获得的奖金。
23. (本题10分) 如图1,已知双曲线y=
x
k
(k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=
x
k
(k>0)
于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行囚边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是短形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.
24. (本题12分) 如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐
标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD 。
(1)求直线AB 的解析式;
(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存
在点P ,使ΔOPD 的面积等于4
3
,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由。