《解三角形》的教学设计
- 格式:doc
- 大小:134.00 KB
- 文档页数:4
《解直角三角形》教学设计一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题中的数量关系转化为解直角三角形的数学问题,并能正确选用适当的锐角三角函数关系式解决问题。
2、过程与方法目标(1)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,培养学生分析问题和解决问题的能力。
(2)通过将实际问题转化为数学问题,体会数学建模的思想。
3、情感态度与价值观目标(1)通过数学学习,让学生体验数学与生活的密切联系,激发学生学习数学的兴趣。
(2)培养学生严谨的科学态度和合作交流的意识。
二、教学重难点1、教学重点(2)将实际问题转化为解直角三角形的数学问题。
2、教学难点将实际问题中的数量关系转化为直角三角形中元素之间的关系。
三、教学方法讲授法、讨论法、练习法四、教学过程1、复习引入(1)提问:直角三角形的三边有什么关系?锐角之间有什么关系?边角之间有什么关系?(2)在直角三角形 ABC 中,∠C = 90°,∠A、∠B、∠C 所对的边分别为 a、b、c。
已知 a = 3,b = 4,求 c 的长度。
(3)已知∠A = 30°,斜边 c = 6,求∠A 的对边 a 的长度。
通过复习,为学习解直角三角形做好知识铺垫。
2、讲授新课(1)解直角三角形的概念在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形。
直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。
只要知道其中的两个元素(至少有一个是边),就可以求出其余的三个元素。
(3)解直角三角形的方法①已知两条直角边 a、b,求斜边 c 及锐角 A、B。
由勾股定理\(c =\sqrt{a^2 + b^2}\),\(\tan A =\frac{a}{b}\),则\(A =\arctan\frac{a}{b}\),\(B = 90° A\)。
高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。
《解直角三角形》教学设计一、教学目标1、知识与技能目标理解直角三角形中五个元素(三条边和两个锐角)之间的关系。
掌握解直角三角形的概念,能够运用勾股定理、锐角三角函数解直角三角形。
2、过程与方法目标通过对解直角三角形的学习,培养学生的逻辑推理能力和数学运算能力。
经历将实际问题转化为数学问题的过程,提高学生分析问题和解决问题的能力。
3、情感态度与价值观目标让学生在解决实际问题的过程中,感受数学与生活的紧密联系,激发学生学习数学的兴趣。
通过小组合作学习,培养学生的合作交流意识和团队精神。
二、教学重难点1、教学重点解直角三角形的概念及解法。
运用直角三角形的边角关系解决实际问题。
2、教学难点如何将实际问题中的数量关系转化为直角三角形中的元素关系。
正确选择合适的边角关系解直角三角形。
三、教学方法讲授法、讨论法、练习法、多媒体辅助教学法四、教学过程1、导入新课通过展示实际生活中的建筑、测量等场景,如高楼大厦的高度测量、山坡的坡度计算等,引出直角三角形在实际生活中的广泛应用,从而激发学生的学习兴趣,引入本节课的主题——解直角三角形。
2、复习回顾(1)复习直角三角形的性质:直角三角形两直角边的平方和等于斜边的平方(勾股定理);直角三角形的两个锐角互余。
(2)复习锐角三角函数的定义:正弦(sin)、余弦(cos)和正切(tan)。
3、讲授新课(1)解直角三角形的概念引导学生思考:如果已知直角三角形的除直角外的两个元素(至少有一个是边),那么这个直角三角形是否可以确定?从而引出解直角三角形的概念:由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
(2)解直角三角形的依据①三边之间的关系:a²+ b²= c²(其中 a、b 为直角边,c 为斜边)②锐角之间的关系:∠A +∠B = 90°③边角之间的关系:sin A = a/c,cos A = b/c,tan A = a/b(3)例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。
解三角形是高中数学中的重要内容之一,它涉及到三角函数、三角比例以及三角恒等式等知识点的应用和推导。
针对这一内容,本文将从教学设计和教材分析两个方面进行探讨,目的是帮助教师合理安排解三角形的教学过程,提高学生的学习效果。
一、教学设计1. 教学目标通过本节课的学习,学生应能够:- 掌握解三角形的基本思想和方法;- 理解三角函数、三角比例和三角恒等式在解三角形中的应用;- 能够正确运用解三角形的方法解决实际问题。
2. 教学内容分析解三角形的内容主要包括以下几个方面:- 三角函数的定义和性质;- 根据给定的已知条件,求解三角形的内角;- 根据给定的已知条件,求解三角形的边长;- 根据给定的已知条件,判断是否能够构成三角形。
3. 教学过程安排(1)引入阶段:通过展示一道简单的解三角形的题目或情景,引发学生的学习兴趣并激活他们已有的数学知识。
(2)知识讲解阶段:通过讲解三角函数的定义和性质,以及解三角形的基本思想和方法,帮助学生建立解题的框架和逻辑。
(3)示例演练阶段:以典型例题为载体,进行解题过程的演示,让学生参与其中,并逐步引导学生运用解三角形的方法解决问题。
(4)巩固练习阶段:提供一些练习题,让学生独立解题,并及时进行讲解和指导,帮助他们巩固所学的知识和方法。
(5)拓展应用阶段:通过一些拓展性的应用问题,培养学生运用所学知识解决实际问题的能力,激发他们的数学兴趣。
(6)归纳总结阶段:对本节课所学内容进行归纳总结,帮助学生理清思路和知识点之间的联系。
4. 教学评价方法- 教师可以根据学生的表现进行口头评价,例如对他们的解题思路和解题步骤进行点评和肯定;- 教师还可以布置一些作业或小测验,检查学生对解三角形知识的理解和掌握程度;- 如果条件允许,可以进行小组合作学习或讨论,以评价学生合作与实践的能力。
二、教材分析教材在解三角形的教学中起到了重要的作用,合理选择和利用教材可以提高教学效果。
以下是对教材的分析与评价。
解三角形一、教学目标运用正余弦定理解三角形及相关问题。
二、教学重、难点正余弦定理的熟练运用。
三角形中的诱导公式和恒等变换。
三、 教学过程(一)基础知识归纳总结1、三角形中的边角关系(1)三角形的内角和定理A B C π++=(2)三角形中的诱导公式sin(A+B)=sinC, cos(A+B)=-cosC, tan(A+B)=-tanCsin 2A B +=cosC , cos sin 22A B C +=,tan cot 22A B C += (3)三角形中的边角关系:等角对等边;大角对大边,小角对小边;,,a b A B a b A B a b c b c a a c b=⇔=⇔>⇔>+>+>+> 2、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 3、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-. 余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-= 余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角)4、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ;②若222a b c +>,则90C < ;③若222a b c +<,则90C >5、解三角形的常见类型和解法在三角形的六个元素中,若知道三个,其中至少一个元素为边,即可求解该三角形,按已知条件可分为以下几种情况:已知条件所用定理 一般步骤 一边和两角(a ,B ,C ) 正弦定理 (1)由内角和定理求出角A ;(2)由正弦定理求出b 和c 。
高三(15)班《解三角形》的教学设计高三数学备课组姜友粮【教学目标】:知识与技能目标:掌握正弦定理、余弦定理,能够运用正弦定理、余弦定理等知识和方法解决一些简单的三角形度量问题.过程与方法目标:通过例题的分析和学生的自主探究,使学生掌握解决解三角形有关问题的通性通法和学会寻找解决问题的切入口。
情感、态度与价值观目标:培养学生在方程思想指导下处理解三角形问题的运算能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一,通过三角形中的边长与角度之间的数量关系,来解决一些与测量和几何计算等有关的实际问题,从而加深学生对数学与现实世界和实际生活的联系的认识,培养和发展学生的数学应用意识。
〖教学重点〗边角的转化,正确运用数学语言。
〖教学难点〗应用解三角形知识解决实际问题,灵活运用正弦定理、余弦定理。
【教学设计】:一、复习建构本课题知识结构:1、知识框架与知识点帮助学生回顾公式,为具体运用公式做好必要的知识铺垫,对知识网络进行梳理,从整体上把握本课题的知识结构。
正弦定理、余弦定理在解三角形中的运用:解三角形主要有两种类型:一是解三角形中的边角互化;二是会利用正弦定理和余弦定理等知识和方法解决一些测量和几何计算有关的实际问题。
“熟记”两个定理的变形及推论(1)正弦定理变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(2)余弦定理推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b22ac,cos C =a 2+b 2-c22ab .变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .类型一:正弦定理和余弦定理是解斜三角形的工具,正弦定理和余弦定理是解斜三角形的工具,而解斜三角形是高考的一个热点问题.而解斜三角形是高考的一个热点问题.而解斜三角形是高考的一个热点问题.高考对该内容的考查可高考对该内容的考查可以是选择题或填空题,直接利用正弦定理和余弦定理的公式去求解三角形问题,多属于中档题;也可以是解答题,多是交汇性问题,常常是与三角函数或平面向量结合.例1:(1)若ΔABC 的三个内角所对边的长分别为,向量,,若,则∠等于等于 。
《解三角形》教学设计崇明中学汤杰【教学目标】1、掌握正弦、余弦定理的内容,灵活运用正、余弦定理解三角形问题。
2、学会分析问题,合理选用定理解决三角形问题,提升合情推理探索数学规律的数学思维能力。
3、在学习过程中激发学生学习兴趣,激发学生的探索精神。
【教学重点】正、余弦定理的灵活运用、解三角形中边角互化问题。
【教学难点】解三角形中的综合问题。
【教学过程】120,运用,学生课前完成,教师边角互化多向思维应用研究综合提升考点3、解三角形的实际问题研究例题2、如图,游客从某旅游景区的景点A处下山至C处有两种路径。
一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C。
现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为min/50m。
在甲出发min2后,乙从A乘缆车到B,再从B匀速步行到C。
假设缆车匀速直线运动的速度为min/130m,山路AC长为m1260,经测量:1312cos=A,53cos=C。
1)求索道AB的长;2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?考点3例题教师引导学生审清题意,要求学生先独立思考,然后请学生讲解自己的想法与做法。
教师板书解答过程。
旨在通过本例题让学生学会建立数学模型解决实际问题,让学生在解决问题过程中体验学习数学的乐趣,与此同时也提升了学生的分析解题的能力。
课堂小结通过本节课的学习,你有哪些收获?请让学生思考和总结,然后派代表回答。
及时进行总结,同时检查学生本节课的【教学设计说明】1、教材内容分析:解三角形是高考考察的重点考察内容,由近几年高考可以看出,解三角形是高考必考内容,选择、填空、解答题都有出现,所以本节课的重点就是如何解三角形,而正弦定理和余弦定理又是解三角形的工具。
所以通过本章学习,学生应该能够通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形,能够运用正弦定理、余弦定理及变形等知识解答有关三角形的综合问题。
45,C∠.求边长能够很好地激发学生的求知欲望。
在新的问题产生时这个时候也正是产生知识缺陷, 急需新知识的时候教师活动2探究一: 直角三角形边角关系如图:在中, 是最大的角, 所对的斜边是最大的边, 探究边角关系。
探究二: 斜三角形边角关系实验1: 如图, 在等边中, ,对应边的边长, 验证是否成立?实验2: 如图, 在等腰中, , , 对应边的边长, 验证是否成立?实验3:借助多媒体演示, 发现随着三角形的任意变换, 的值相等。
通过这样的一些实验, 我们可以猜想。
学生活动2探究一: 在中, 设, 根据正弦函数定义可得:cbBcaA==∴sin;sincBbAa==∴sinsin又1sin=CCcBbAasinsinsin==∴探究二: 学生通过计算验证结论是否正确探究二:学生通过计算验证结论是否正确活动意图说明从已有的知识结构出发, 不让学生在思维上出现跳跃, 逐层递进, 通过已经熟悉的直角三角形的边角关系的探究作为切入点, 再对特殊的斜三角形进行验证, 过渡到一般的斜三角形边角关系的探究。
让学亲自体验数学实验探究的过程, 逐层递进, 激发学生的求知欲和好奇心, 体会到数学实验的归纳和演绎推理两个侧面。
多媒体技术的引入演示, 让学生更加直观感受到变换, 加深理解。
环节三:教的活动3证明猜想, 得到定理学的活动3分组讨论证明方法并展示活动意图说明经历猜想到证明的过程, 让学生体会到数学新知识得获得仅仅靠猜想和演绎推理是不够的,必须经过严密的数学推导进行证明才可以。
在这个过程中, 也进一步促进学生数学思维思维品质的提升。
7.板书设计(板书完整呈现教与学活动的过程, 最好能呈现建构知识结构与思维发展的路径与关键点。
使用PPT应注意呈现学生学习过程的完整性)课题一、正弦定理定理: 例题练习。
解三角形(一)教学目标1.知识与技能:(1) 掌握正、余弦定理、重要不等式、基本不等式、函数值域等相关的知识。
(2) 掌握解决三角形问题中最值问题的常规方法:不等式法和函数法。
2.过程与方法:进一步体会函数,不等式,平面几何等知识的交汇融合;通过周长、面积最值得求解培养学生分析、归纳能力及知识迁移的能力。
3.情感、态度与价值观:(1) 学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题。
(2) 培养学生数学素养和逻辑思维能力。
(二)教学重点与难点重点:理解并掌握正弦定理、余弦定理、重要不等式、基本不等式及平面几何知识等的应用。
难点:三角形最值问题中通法通解的形成及贯彻;数形结合思想,函数思想的培养。
(三)教学过程设计一、知识回顾、归纳总结:三角形性质:1.角的关系:A B C π++=,外角等于不相邻两个内角和。
2.边的关系:两边之和大于第三边,两边之差小于第三边。
3.角与边的关系:①大角对大边,等角对等边 ②正弦定理及变形: 变形:③余项定理及变形: 2()sin sin sin a b c R R ABC A B C===∆为外接圆半径2sin 2sin 2sin a R A b R B c R C=== sin sin sin 222a b c A B C R R R=== ::sin :sin :sin a b c A B C =2222cos a b c bc A=+-222cos 2b c a A bc+-=ABC C a b c ∆=++4.周长与面积:重要不等式、均值不等式:重要不等式: 均值不等式: 变形:二、例题讲解、规范解答:注意:分析周长或面积取到最大值的条件。
12ABC S ∆=⨯底高111sin sin sin 222ABC S ab C ac B bc A ∆===时取等)当且仅当b a R b a ab b a =∈≥+,,(222时取等)当且仅当b a b a abb a =>>≥+,0,0(22()2a b ab +≤cos _______ABC A B C a b c a b c B ∆的内角、、所对的边分别为、例1:(2014陕西、;若、、成等比数列求的最小值)2cos(),cos a b A C ABC A B C a b c c C C c ABC c ABC ++∆==∆=∆的内角、、所对的边分别为、、;若(1)求的大小(2)若求面积的最大值(例2:(2016吉林白山一模改编)3)若求周长的最大值12c a b =+变式:(1)求若求的最大值a b c 解:、、称等比数列2b ac ∴=222cos 2a c b B ac +-=222a c ac ac+-=22ac ac ac -≥12=a c ==当且仅当,""成立小结:小结:“知二求最值”知二:角及其所对的边,求三角形周长、面积最值,一般在等腰时候取到最值,如是“类周长面积”不一定是在等腰的时候取到最值。
数学5 第一章 解三角形第1课时课题: §1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
解直角三角形教学设计作为一位无私奉献的人民教师,很有必要精心设计一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
教学设计应该怎么写呢?以下是店铺收集整理的解直角三角形教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
解直角三角形教学设计1教学目标:理解直角三角形中五个元素的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形;通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高分析问题、解决问题的能力。
教学重点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。
教学难点:能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形,提高分析问题、解决问题的能力。
教学过程:一、课前专训根据条件,解下列直角三角形在Rt△ABC中,∠C=90°(1)已知∠A=30°,BC=2;(2)已知∠B=45°,AB=6;(3)已知AB=10,BC=5;(4)已知AC=6,BC=8。
二、复习什么叫解直角三角形?三、实践探究解直角三角形问题分类:1、已知一边一角(锐角和直角边、锐角和斜边)2、已知两边(直角边和斜边、两直角边)四、例题讲解例1、在△ABC中,AC=8,∠B=45°,∠A=30°.求AB.例2、⊙O的半径为10,求⊙O的内接正五边形ABCDE的边长(精确到0.1).五、练一练1.在平行四边形ABCD中,∠A=60°,AB=8,AD=6,求平行四边形的面积.2.求半径为12的圆的内接正八边形的边长(精确到0.1).六、总结通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家.七、课堂练习1.等腰三角形的周长为,腰长为1,则底角等于_________.2.Rt△ABC中,∠C=90°,∠A=60°,a+b=+3,解这个直角三角形.3.求半径为20的圆的内接正三角形的边长和面积.八、课后作业1.在菱形钢架ABCD中,AB=2 m,∠BAD=72,焊接这个钢架约需多少钢材(精确到0.1m)2.思考题(选做):CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin ∠COD =,求:(1)弦AB的长;(2)CD的长.解直角三角形教学设计2一、教学目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。
二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。
三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。
2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。
3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。
4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。
五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。
六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。
七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。
普通高中课程标准实验教科书·数学(A版)必修5《解三角形》简介在本章中,学生应该在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。
一、内容与课程学习目标本章的中心内容是解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.二、内容安排本章教学约需8课时,具体分配如下(仅供参考):1.1正弦定理和余弦定理约3课时1.2 应用举例约4课时1.3 实习作业约1课时本章的知识结构如下图所示1.正弦定理和余弦定理揭示了关于一般三角形中的重要边角关系,它们是解三角形的两个重要定理.对于正弦定理,教科书首先引导学生回忆任意三角形中有大边对大角,小边对小角的边角关系,引导学生思考是否能得到这个边、角关系准确量化表示的问题.由于涉及边角之间的数量关系,就比较自然地引导到三角函数.在直角三角形中,边之间的比就是锐角的三角函数.研究特殊的直角三角形中的正弦,就很快证明了直角三角形中的正弦定理.分析直角三角形中的正弦定理,考察结论是否适用于锐角三角形,可以发现a sin B和b sin A实际上表示了锐角三角形边AB上的高.这样,利用高的两个不同表示,就容易证明锐角三角形中的正弦定理.钝角三角形中定理的证明要应用正弦函数的诱导公式,教科书要求学生自己通过探究来加以证明.如果∠A<∠B,由三角形的性质,.当∠A,∠B都是锐角,由正弦函数在区间(0,π/2)上的单调性可知,sin A<sin B.正弦定理指出了三角形中边与对应角的正弦之间的一个关系式,它描述了三角形中大边与大角的一种准确的数量关系。
解三角形教案解三角形教案导言:三角形是初中数学中的基础概念之一,也是几何学的重要内容之一。
在初中数学教学中,解三角形是一个重要的教学内容,对学生的几何直观能力和逻辑思维能力的培养具有重要意义。
本文将针对解三角形的教学进行一份教案设计,旨在帮助教师更好地组织教学,提高学生的学习效果。
一、教学目标1. 知识目标:掌握解三角形的基本概念和方法。
2. 能力目标:培养学生观察、分析和解决问题的能力。
3. 情感目标:培养学生对几何学的兴趣和学习动力。
二、教学重难点1. 重点:掌握解三角形的基本概念和方法。
2. 难点:运用解三角形的方法解决实际问题。
三、教学过程1. 导入:通过一个生活实例引入解三角形的概念,如测量房间的角度。
2. 概念讲解:介绍三角形的定义和基本性质,引导学生理解三角形的概念。
3. 解决简单问题:给出一些简单的三角形问题,如已知两边和夹角,求第三边的长度。
通过让学生观察、分析和解决问题,引导他们掌握解三角形的基本方法。
4. 引入解决实际问题:通过一个实际问题引入解决实际问题的方法,如求高楼上的观察角度。
5. 解决实际问题:给出一些实际问题,如求高楼上的观察角度、求航空飞行器的航线等。
通过让学生运用解三角形的方法解决实际问题,培养他们的观察、分析和解决问题的能力。
6. 拓展:引入解决复杂问题的方法,如解决不等腰三角形的问题。
7. 解决复杂问题:给出一些复杂的三角形问题,如求不等腰三角形的高、求不等腰三角形的面积等。
通过让学生运用解三角形的方法解决复杂问题,提高他们的解决问题的能力。
8. 总结归纳:对解三角形的基本概念和方法进行总结归纳,梳理学生的学习成果。
9. 课堂练习:布置一些课堂练习题,让学生巩固所学知识。
10. 作业布置:布置一些作业题,让学生在课后进一步巩固所学知识。
四、教学评价1. 教师评价:通过观察学生的学习情况、听取学生的回答和解决问题的过程,评价学生的学习情况和解题能力。
2. 自评互评:学生之间互相评价和自我评价,促进学生之间的交流和学习。
高三(15)班《解三角形》的教学设计
高三数学备课组 姜友粮
【教学目标】:
知识与技能目标:
掌握正弦定理、余弦定理,能够运用正弦定理、余弦定理等知识和方法解决一些简单的三角形度量问题. 过程与方法目标:
通过例题的分析和学生的自主探究,使学生掌握解决解三角形有关问题的通性通法和学会寻找解决问题的切入口。
情感、态度与价值观目标:
培养学生在方程思想指导下处理解三角形问题的运算能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一,通过三角形中的边长与角度之间的数量关系,来解决一些与测量和几何计算等有关的实际问题,从而加深学生对数学与现实世界和实际生活的联系的认识,培养和发展学生的数学应用意识。
〖教学重点〗边角的转化,正确运用数学语言。
〖教学难点〗应用解三角形知识解决实际问题,灵活运用正弦定理、余弦定理。
【教学设计】:
一、 复习建构本课题知识结构: 1、知识框架与知识点
帮助学生回顾公式,为具体运用公式做好必要的知识铺垫,对知识网络进行梳理,从整体上把握本课题的知识结构。
正弦定理、余弦定理在解三角形中的运用:
解三角形主要有两种类型:一是解三角形中的边角互化;二是会利用正弦定理和余弦定理等知识和方法解决一些测量和几何计算有关的实际问题。
“熟记”两个定理的变形及推论 (1) 正弦定理变形:
a =2R sin A ,
b =2R sin B ,
c =2R sin C ; sin A =
a 2R ,sin B =
b 2R ,sin C =c
2R
; (2)余弦定理
推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 2
2ac
,
cos C =a 2+b 2-c 2
2ab .
变形:b 2+c 2-a 2=2bc cos A ,
a 2+c 2-
b 2=2a
c cos B , a 2+b 2-c 2=2ab cos C .
类型一:
正弦定理和余弦定理是解斜三角形的工具,而解斜三角形是高考的一个热点问题.高考对该内容的考查可以是选择题或填空题,直接利用正弦定理和余弦定理的公式去求解三角形问题,多属于中档题;也可以是解答题,多是交汇性问题,常常是与三角函数或平面向量结合.
例1:(1)若ΔABC 的三个内角
所对边的长分别为
,向量,
,若
,则∠
等于 。
[审题导引] 利用向量垂直,求出数量积为0时的关系式,利用余弦定理求解即可.
(2)(2010·广东)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =
2B ,则sinC =________.
[审题导引]
(3)已知两边和其中一边的对角,应先用正弦定理求A ,要注意解题时出现多解时利用“大
边对大角”可以排除解三角形中的增解问题等;
解析 在△ABC 中,A +B +C =π,又A +C =2B ,故B =π
3.由正弦定理知sin A =a sin B b =12
.
又a <b ,因此A =π
6
所以。
活动过程:学生去黑板板书,全班同学进行点评,指出不足和优点。
【例2】在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且(2a -c )cos B =b cos C . (1)、求角B 的大小; (2)、若cos A =
2
2
,a =2,求△ABC 的面积. (1) [审题导引] 把条件式中的边利用正弦定理转化为角后进行三角恒等变换可求B ;再进行边角互化时,有两种思路:全化边,或者全化角。
活动过程:在具体的操作过程中,可以引导学生从这两个角度切入解题,可以把全班分成2-3组,大家分头解答,然后以小组为单位进行探讨和交流,优化解法和算法,接着各小组推荐学生代表去黑板规范板书解题过程,师生共同分享劳动成果,最后,由我带领学生们进行点评、打分、总结、升华,让学生在解题中感悟知识,发现数学美,在探讨和分享中意识到合作学习的乐趣和意义。
[规范解答] (1)因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C . ∴2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A . ∵0<A <π,∴sin A ≠0,∴cos B =1
2.
又∵0<B <π,∴B =π
3
.
(2) [审题导引] 利用(1)的结果求b 及c ,利用公式求面积.
活动过程:同学们兴致高涨,乘胜追击,对于计算的优化,让同学们各抒己见。
[规范解答] (2)由正弦定理
a sin A =
b sin B ,得b =6,由cos A =22可得A =π4,由B =π
3,可得sin C =6+24
, ∴S =12ab sin C =1
2×2×6×6+24=3+32
【题后反思小结】解三角形的一般方法:
(1)已知两角和一边,如已知A 、B 和c ,由A +B +C =π求C ,由正弦定理求a 、b .
(2)已知两边和这两边的夹角,如已知a 、b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π求另一角.
(3)已知两边和其中一边的对角,如已知a 、b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解题时可能有多种情况. (4)已知三边a 、b 、c ,可应用余弦定理求A 、B 、C .
类型二 正、余弦定理的实际应用
[考情分析] 由于正、余弦定理是解斜三角形的工具,而解斜三角形应用问题中的测量问题、航海问题等常常是高考的热点,其主要要求是:会利用正弦定理和余弦定理等知识和方法解决一些测量和几何计算有关的实际问题.
【例2】已知甲船正在大海上航行.当它位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C 处的乙船,乙船当即也决定匀速前往救援,并且与甲船同时到达.试问乙船航行速度的大小. [审题导引] 据题意作出示意图,把实际问题转化为解三角形,利用正、余弦定理求解.
活动过程:如何引导学生通过读题画出方位图,如何准确画图是本题要突破的关键点,可以在认真审题和启发后让全班学生动起来,最后通过投影进行展示,全班分享劳动成果。
[规范解答] 设乙船运动到B 处的距离为x 海里.则由余弦定理得: x 2=AC 2+AB 2-2AB ·AC cos 120°=102+202+2×10×20×1
2=700,
∴x =107,
∴乙船航行速度为57海里/小时.
【规律总结】应用解三角形知识解决实际问题需要下列四步:
(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;
(2)根据题意画出示意图,并将已知条件在图形中标出;
(3)将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解; (4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案
五、课堂小结:
先给学生3-5分钟时间梳理本节课的知识点,然后小组讨论,由学生代表进行课堂小结。
小结从如下几个角度展开:本节课我们主要复习了哪些知识点?通过这节课掌握了哪些重要的数学思想?在解题时要注意哪些问题?
六、布置作业:完成学案作业题。