解三角形练习题(含答案)
- 格式:doc
- 大小:769.50 KB
- 文档页数:4
第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( )A .A >B >C B .B >A >C C .C >B >AD .C >A >B解析 由正弦定理a sin A =b sin B ,∴sin B =b sin A a =32.∵B 为锐角,∴B =60°,则C =90°,故C >B >A . 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .43C .4 6 D.323解析 A =45°,由正弦定理,得b =a sin B sin A 答案 C4.在△ABC 中,A =60°,a =3,则a +b +c sin A +sin B +sin C等于( ) A.833 B.2393 C.2633 D .2 3解析 利用正弦定理及比例性质,得a +b +c sin A +sin B +sin C =a sin A =3sin60°=332=2 3. 答案 D 5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1: 3 :2C .1: 2 : 3 D. 2 : 3 :2 解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cos A =a 2+(3a )2-(2a )22·a ·3a=0, ∴A =90°. 设最小角为B ,则cos B =(2a )2+(3a )2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sin B =a sin A ,得sin B =b sin A a =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R (sin 2A -sin 2C )=(2a -b )sin B (其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90°解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b )·b 2R ,∴a 2-c 2=(2a -b )b ,∴a 2+b 2-c 2=2ab ,∴cos C =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析 由a sin A =b sin B =c sin C =2R ,又sin 2A +sin 2B -sin A sin B =sin 2C ,可得a 2+b 2-ab =c 2 ∴cos C =a 2+b 2-c 22ab =12,∴C =60°,sin C =32.∴S △ABC =12ab sin C = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sin B sin C 的值为( )A.85B.58C.53D.35解析 由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sin B sin C =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32 km解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b 为( )A .2B .4+23C .4-2 3 D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A ,∵a =c ,∴0=b 2-2bc cos A =b 2-2b (6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22(32-12)=14(6-2),∴b 2-2b (6+2)cos75°=b 2-2b (6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =b sin C sin B =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sin B =sin(A +60°)=12sin A +32cos A .又由b =2a ,知sin B =2sin A .∴2sin A =12sin A +32cos A 即32sin A =32cos A .∵cos A ≠0,∴tan A =33.∵0°<A <180°,∴A =30°. 答案 30°15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =________,AB =________.解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sin B ∴10 3=12AB ×5×sin60°,∴AB =8.答案60° 816.在△ABC 中,已知(b +c ) : (c +a ) : (a +b )=8:9:10,则sin A :sin B :sin C=________.解析 设⎩⎪⎨⎪⎧ b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sin A :sin B :sin C =11:9:7. 答案 11:9:717.(10分)在△ABC 中,若a 2b 2=sin A cos B cos A sin B ,判断△ABC 的形状.解 依据正弦定理,得a 2b 2=a b ·cos B cos A ,所以a cos A =b cos B .再由正弦定理,得sin A cos A=sin B cos B ,即sin2A =sin2B ,因为2A,2B ∈(0,2π),故2A =2B ,或2A +2B =π.从而A =B ,或A +B =π2,即△ABC 为等腰三角形,或直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B )-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B )-3=0,得sin(A +B )=32.∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C=(a +b )2-3ab =12-6=6.∴c = 6.S △ABC =12ab sin C =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.分析 (1)要求AD 的长,在△ABD 中,AB =126,B =45°,可由正弦定理求解;(2)要求CD 的长,在△ACD 中,可由余弦定理求解.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =12 6,由正弦定理,得AD =AB sin B sin ∠ADB =126×2232=24(nmile). (2)在△ADC 中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC ·cos30°.解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积;(2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,sin A =45.又由AB →·AC→=3,得bc cos A =3,∴bc =5. 因此S △ABC =12bc sin A =2.(2)由(1)知,bc =5,又b +c =6,∴b =5,c =1,或b =1,c =5.由余弦定理,得a 2=b 2+c 2-2bc cos A =20.∴a =2 5.21.(12分)在△ABC 中,已知内角A =π3,边BC =23,设内角B =x ,周长为y .(1)求函数y =f (x )的解析式和定义域;(2)求y 的最大值.解 (1)△ABC 的内角和A +B +C =π,由A =π3,B >0,C >0,得0<B <2π3.应用正弦定理,得AC =BC sin A ·sin B =23sin π3·sin x =4sin x .AB =BC sin A sin C =4sin ⎝ ⎛⎭⎪⎫2π3-x . ∵y =AB +BC +CA ,∴y =4sin x +4sin ⎝ ⎛⎭⎪⎫2π3-x +23⎝ ⎛⎭⎪⎫0<x <2π3. (2)y =4(sin x +32cos x +12sin x )+2 3 =43sin(x +π6)+2 3. ∵π6<x +π6<5π6,∴当x +π6=π2,即x =π3时,y 取得最大值6 3.22.(12分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin B cos A +cos B,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c .解 (1)因为tan C =sin A +sin B cos A +cos B, 即sin C cos C =sin A +sin B cos A +cos B, 所以sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).所以C -A =B -C ,或C -A =π-(B -C )(不成立),即2C =A +B ,得C =π3,所以B +A =2π3.又因为sin(B -A )=cos C =12,则B -A =π6,或B -A =5π6(舍去).得A =π4,B =5π12. 所以A =π4,C =π3.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32. 得a =22,c =2 3.。
一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A .B . C. D .3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A . B. C .或 D .或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B . C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A .B . C. D .10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A .B .C .或D .或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A .B .C . D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) (A .B .C . D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B . C. D .18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B . C . D .19、()A. B.C.D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C 、D 、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D .或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A =a cos C,则sin A+sin B的最大值是( )A.1B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c ,若,则A= 。
解三角形练习题及答案1.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形2.△ABC中,若sin2A+sin2B>sin2C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=ccosB,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.在△ABC中,若•=•=•,则该三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.在△ABC中,acosA=bcosB,则三角形的形状为()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰三角形6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.在△ABC中,角A、B、C所对的边分别是a、b、c,若==则△ABC的形状是()A.等边三角形B.等腰直角三角形C.直角非等腰三角形D.等腰非直角三角形8.在△ABC中,P是BC边中点,若,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形但不一定是等边三角形9.在△ABC中,若(b﹣bcosB)sinA=a(sinB﹣sinCcosC),则这个三角形是()A.等腰直角三角形B.底角不等于45°的等腰三角形C.等腰三角形或直角三角形D.锐角不等于45°的直角三角形10.在△ABC中,sinA•sinB<cosA•cosB,则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.△ABC的三个内角A、B、C成等差数列,,则△ABC一定是()A.直角三角形B.等边三角形C.非等边锐角三角形D.钝角三角形12.若O是△ABC所在平面内的一点,且满足,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形13.设△ABC的内角A,B,C的对边分别为a,b,c,若a=(b+c)cosC,则△ABC的形状是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形14.在△ABC中,∠ABC=30°,AB=,BC边上的中线AD=1,则AC的长度为()A.1或B.C.D.1或15.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10m到位置D,测得∠BDC=45°,则塔AB的高是()(单位:m)A.10B.10C.10D.1016.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为()A.15米B.15米C.15(+1)米D.15米17.在△ABC中,已知AB=4,cosB=,AC边上的中线BD=,则sinA=()A. B.C. D.18.在△ABC中,AB=AC,AC边上的中线长为9,当△ABC的面积最大时,AB的长为()A.9 B.9C.6D.619.在△ABC中,如果cos(B+A)+2sinAsinB=1,那么△ABC的形状是.20.给出下列命题:①在△ABC中,若,则△ABC是钝角三角形;②在△ABC中,若cosA•tanB•cotC<0,则△ABC是钝角三角形;③在△ABC中,若sinA•sinB<cosA•cosB,则△ABC是钝角三角形;④在△ABC中,若acosA=bcosB,则△ABC是等腰三角形.其中正确的命题序号是.21.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2,则△ABC的面积为.22.在三角形ABC中,已知AB=4,AC=3,BC=6,P为BC中点,则三角形ABP的周长为.23.在△ABC中,已知=,且cos(A﹣B)+cosC=1﹣cos2C.(1)试确定△ABC的形状;(2)求的范围.24.设△ABC中的内角A,B,C所对的边分别为a,b,c,已知a=2,(a+b)(sinA﹣sinB)=(c﹣b)sinC.(Ⅰ)若b=2,求c边的长;(Ⅱ)求△ABC面积的最大值,并指明此时三角形的形状.25.设△ABC的内角A,B,C所对的边a,b,c,=,=若,共线,请按以下要求作答:(1)求角A的大小;(2)当BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.26.如图,某炮兵阵地位于A点,两观察所分别位于C,D两点.已知△ACD为正三角形,且DC=km,当目标出现在B点时,测得∠BCD=75°,∠CDB=45°,求炮兵阵地与目标的距离.27.在数学研究性学习活动中,某小组要测量河对面C和D两个建筑物的距离,作图如下,所测得的数据为AB=50米,∠DAC=75°,∠CAB=45°,∠DBA=30°,∠CBD=75°,请你帮他们计算一下,河对岸建筑物C、D的距离?28.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上.(l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积;(2)若AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值.【答案】1-5BDCDB 6-10CBACB 11-15BDAAB 16-18DAD 19.等腰三角形20.①②③21.222.7+23.解:(1)由=,可得cos2C+cosC=1﹣cos(A﹣B)得cosC+cos(A﹣B)=1﹣cos2C,cos(A﹣B)﹣cos(A+B)=2sin2C,即sinAsinB=sin2C,根据正弦定理,ab=c2,①,又由正弦定理及(b+a)(sinB﹣sinA)=asinB可知b2﹣a2=ab,②,由①②得b2=a2+c2,所以△ABC是直角三角形,且B=90°;(2)由正弦定理化简==sinA+sinC=sinA+cosA=sin(A+45°),∵≤sin(A+45°)≤1,A∈(0,)即1<sin(A+45°),则的取值范围是(1,].24.解:(I)由正弦定理得:(a+b)(a﹣b)=(c﹣b)c,即a2﹣b2=c2﹣bc因为a=2且b=2,所以解得:c=2.(II)由(I)知,则A=60°因为a=2,∴b2+c2﹣bc=4≥2bc﹣bc=bc,∴,此时三角形是正三角形25.解:(1)∵∥,∴sinA•(sinA+cosA)﹣=0.∴+sin2A﹣=0,即sin2A﹣cos2A=1,即sin(2A﹣)=1,∵A∈(0,π),∴2A﹣∈(﹣,),∴2A﹣=,A=.(2)由余弦定理得:4=b2+c2﹣bc,又S△ABC=bcsinA=bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时取等号)∴S△ABC=bcsinA=bc≤×4=.当△ABC的面积取最大值时,b=c,又A=,∴此时△ABC为等边三角形.26.解:∠CBD=180°﹣∠CDB﹣∠BCD=180°﹣45°﹣75°=60°,在△BCD中,由正弦定理,得:BD==.在△ABD中,∠ADB=45°+60°=105°,由余弦定理,得AB2=AD2+BD2﹣2AD•BDcos105°=3+()2﹣2×××=5+2.∴AB=.27.解:在ABD中,∴,∵A+B+C=π,∴,所以a2=b2+c2﹣2bc•cosA,△ABD为为等腰三角形,即在中,∴bc=4,∴,由于∠ACB=30°,由正弦定理可得,计算得;在△ACD中,∠DAC=75°,,AD=50,根据余弦定理可得=28.解:(1)在△CDE中,CD==,解得CD=1,在直角三角形ABD中,∠ADB=60°,AD=2,AE=1,S△ACE===;(2)设CD=a,在△ACE中,=,CE==()a,在△CED中,=,sin∠CDE===﹣1,则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1.。
一、选择题1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()A、正三角形B、直角三角形C、等腰三角形或直角三角形D、等腰直角三角形2、已知中,,,则角等于A. B. C. D.3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞) B.(0,2)C.(2,) D.()4、,则△ABC的面积等于A. B. C.或 D.或5、在中,,则角C的大小为A.300B.450C.600D.12006、的三个内角、、所对边长分别为、、,设向量,,若,则角的大小为()A. B. C. D.7、若ΔABC的内角A、B、C所对的边a、b、c满足,则ab的值为()A. B. C.1 D.8、在中,若,且,则是( )A.等边三角形B.等腰三角形,但不是等边三角形C.等腰直角三角形D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则=A. B. C. D.10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).A.等边三角形 B.直角三角形C.锐角三角形 D.钝角三角形11、在△中,,,,则此三角形的最大边长为()A. B. C. D.12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c2b2)tanB=ac,则角B=()A. B. C.或 D.或13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则()A. B. C. D.14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()A、1B、2C、3D、015、在钝角中,a,b,c分别是角A,B,C的对边,若,则最大边c的取值范围是( ) ( A. B. C. D.16、(2012年高考(上海理))在中,若,则的形状是()A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.17、在△ABC中,a=15,b=10, ∠A=,则()A. B. C. D.18、在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则角A= ()A. B. C. D.19、()A. B. C. D.20、给出以下四个命题:(1)在中,若,则;(2)将函数的图象向右平移个单位,得到函数的图象;(3)在中,若,,,则为锐角三角形;(4)在同一坐标系中,函数与函数的图象有三个交点;其中正确命题的个数是() A.1 B.2 C.3 D.421、若△ABC的对边分别为、、C且,,,则b=()A、5B、25C、 D、22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定24、在中,若,则此三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C.或16 D.或26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A=a cos C,则sin A+sin B的最大值是( )A.1 B. C. D.3二、填空题27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .28、已知△ABC的面积 .29、在△ABC中,角A、B、C所对的对边分别为a、b、c,若,则A= 。
解三角形练习(提升)(含答案)一、选择题1、在△ABC 中,a, b, c 分别是内角 A , B , C 所对的边,若 c cos A b ,则△ABC 形状为 CA.一定是锐角三角形 B . 一定是钝角三角形C . 一定是直角三角形D . 可能是锐角三角形, 也可能是钝角三角形2、在△ABC 中,角A、B、C 的对边分别为a、b、c,若(a2+c2-b2)tanB= 3ac , 则角 B 的值为(D )A. B. C.或6 3 6 56D.3或233、在△ABC中,AB 3 ,A 45 ,C 75 ,则BC (A)A.3 3 B. 2 C.2D.3 34、在ABC 中,02 xA 60 ,且最大边长和最小边长是方程x 7 11 0的两个根,则第三边的长为( C )A.2 B.3 C.4 D.55、在△ABC中,根据下列条件解三角形,则其中有二个解的是 DA、b 10, A 45 ,C70B、a 60, c 48, B 60C、a 7,b 5,A 80D、a 14, b 16, A 456、长为5、7、8 的三角形的最大角与最小角之和为( B )A 90°B 120°C 135°D 150°二、填空题:7、如图,在△ABC 中,D 是边AC 上的点,且AB AD ,2 A B 3BD ,BC 2BD ,则s in C 的值为___________。
6 68、如图,△ABC 中,AB=AC=2 ,BC= 2 3 ,点D 在BC 边上,∠ADC=4°5,则AD 的长度等于______。
解析:在△ABC 中,AB=AC=2 ,BC= 2 3 中,ACB ABC 30 ,而∠ADC=4°5,AC ADsin 45 sin 30, AD 2 ,答案应填 2 。
9、在△ABC中,若tan1A ,C 150 ,BC 1,则AB .3110答案210、在锐角△ABC 中,BC=1,B=2A,则AC的值等于________,AC 的取值范围为________.cos A解析:由正弦定理BC=sin AAC,则sin BAC=cos ABC s in B=sin Acos A2BCsin Bsin 2A=2.由A+B+C=π得3A+C=π,即C=π-3A.π0< A<2由已知条件:π0<2 A<2,解得ππ<A< .由AC=2cos A 知2<AC< 3.6 4π 0<π-3A<2答案:2 ( 2,3)三、解答题:11、在△ABC 中,内角A,B,C 对边的边长分别是a,b,c ,已知c 2,C .3 (Ⅰ)若△ABC的面积等于 3 ,求a,b ;(Ⅱ)若sin B 2sin A,求△ABC的面积.解:(Ⅰ)由余弦定理得, 2 2 4a b ab ,又因为△ABC的面积等于 3 ,所以12ab sin C 3 ,得ab 4.联立方程组2 2 4a b ab,解得a 2,b 2.ab 4,(Ⅱ)由正弦定理,已知条件化为 b 2a,联立方程组2 2 4a b ab,解得b 2a,2 3a ,34 3b .3所以△ABC的面积 1 sin 2 3S ab C .2 312、在ABC中,若c osB b cosC 2a c(1)求角B的大小(2)若b 13 ,a c 4,求ABC的面积2 a2c2b解:(1)由余弦定理得2a 2ac2b2cb2a c2 2 2化简得: a c b ac2ab2∴2 2 2a cb ac 1cos B∴B=120°2ac 2ac 22 2 2(2)b a c 2ac cos B 2 ac ac1∴13 (a c) 2 2 ( )2∴ac=3 ∴S ABC 12ac sin B3 3413、某市电力部门某项重建工程中,需要在A、B 两地之间架设高压电线,因地理条件限制,不能直接测量A、B两地距离. 现测量人员在相距 3 km的C 、D 两地(假设A、B 、C 、D 在同一平面上),测得∠A CB 75 ,BCD 45 ,ADC 30 ,ADB 45 (如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A、B 距离的43倍,问施工单位至少应该准备多长的电线?A解:在ACD 中,由已知可得,CAD 30B 所以,AC 3km⋯⋯⋯754545在BCD 中,由已知可得,CBD 6030CDsin 75 sin(45 30 ) 6 2 4由正弦定理,BC 3 sin 75 6 2 sin 60 2cos 75 cos(45 30 ) 6 2 4在ABC中,由余弦定理 2 2 2 cosAB AC BC AC BC BCA2 6 2 2 6 23 ( ) 2 3 cos75 52 2所以,AB 5 施工单位应该准备电线长4 53.答:施工单位应该准备电线长435 km.3。
解三角形练习题及答案解三角形练习题及答案解三角形,是指已知三角形的几个元素求其他元素的过程。
一般地,把三角形的.三个角A,B,C和它们的对边a,b,c叫做三角形的元素。
一起看看下面的解三角形练习题及答案吧!1.有关正弦定理的叙述:①正弦定理仅适用于锐角三角形;②正弦定理不适用于直角三角形;③正弦定理仅适用于钝角三角形;④在给定三角形中,各边与它的对角的正弦的比为定值;⑤在△ABC中,sinAsinBsinC=abc。
其中正确的个数是()A.1 B.2C.3 D.4解析①②③不正确,④⑤正确.答案 B2.在△ABC中,若A=60°,B=45°,BC=32,则AC=()A.43 B.23C.3 D.32解析由正弦定理,得ACsinB=BCsinA,即AC=BCsinBsinA=32×sin45°sin60°=23。
答案 B3.在△ABC中,已知b=2,c=1,B=45°,则a等于()A.6-22 B.6+22C.2+1 D.3-2解析由正弦定理,得sinC=csinBb=sin45°2=12,又b>c,∴C=30°,从而A=180°-(B+C)=105°,∴a=bsinAsinB,得a=6+22。
答案 B4.在△ABC中,已知3b=23asinB,cosB=cosC,则△ABC的形状是()A.直角三角形 B.等腰三角形C.等边三角形 D.等腰直角三角形解析利用正弦定理及第一个等式,可得sinA=32,A=π3,或2π3,但由第二个等式及B与C的范围,知B=C,故△ABC必为等腰三角形.答案 B5.在△ABC中,若3a=2bsinA,则B等于()A.30° B.60°C.30°或150° D.60°或120°解析∵3a=2bsinA,∴3sinA=2sinBsinA。
解三角形习题及答案一、选择题(每题5分,共40分)1、己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ). A .90° B .120° C .135° D .150°2、在△ABC 中,下列等式正确的是( ).A .a ∶b =∠A ∶∠B B .a ∶b =sin A ∶sin BC .a ∶b =sin B ∶sin AD .a sin A =b sin B3、若三角形的三个内角之比为1∶2∶3,则它们所对的边长之比为( ). A .1∶2∶3 B .1∶3∶2C .1∶4∶9D .1∶2∶34、在△ABC 中,a =5,b =15,∠A =30°,则c 等于( ).A .25B .5C .25或5D .10或55、已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形 6、在△ABC 中,若a 2+b 2-c 2<0,则△ABC 是( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .形状不能确定 7、)( 37sin 83sin 37cos 7sin 的值为︒︒-︒︒A.23- B 。
21- C 。
21D 。
238、化简1tan151tan15+-等于 ( )AB.2C .3D .1二、填空题(每题5分,共20分)9、已知cos α-cos β=21,sin α-sin β=31,则cos (α-β)=_______.10、在△ABC 中,∠A =105°,∠B =45°,c =2,则b = .11、在△ABC 中,∠A =60°,a =3,则C B A cb a sin sin sin ++++= . 12、在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则最大角的余弦值等于 .班别: 姓名: 序号: 得分:9、10、11、12、 三、解答题13、(12分)已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形.14、(14分)已知21)tan(=-βα,71tan -=β,求)2tan(βα-的值15、(16分)已知x x x x f cos sin 32cos 2)(2-=,(1)求函数)(x f 的取最小值时x 的集合; (2)求函数单调增区间及周期。
解三角形基础练习题(含答案)解三角形基础练题(含答案)一、选择题:1.在△ABC中,已知a=8,B=60°,C=75°,则b的值为(C)32/32.在△ABC中,a=15,b=10,A=60°,则cosB=(B)43/463.在△ABC中,a-c+b=ab,则C=(A)60°4.在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=(B)235.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c。
若a=c=6+2且∠A=75°,则b=(D)6-26.若△ABC的内角A,B,C满足6sinA=4sinB=3sinC,则cosB=(D)11/167.在△ABC中,若sinA+sinB<sinC,则△ABC的形状是(A)钝角三角形二、填空题:8.在△ABC中,若a=3,b=3,∠A=π/3,则∠C的大小为90°。
9.在△ABC中,已知∠BAC=60°,∠ABC=45°,BC=3,则AC=2.10.设△ABC的内角A=π/4,B、C的对边分别为a、b、c,且a=1,b=2,则sinB=15/4.11.在三角形ABC中,角A,B,C所对应的长分别为a,b,c,若a=2,B=2,则c=3π/4(或135°)。
12.在△ABC中,三边a、b、c所对的角分别为A、B、C,若a+b-c+2ab=3π/4,则角C的大小为π/4(或45°)。
13.△ABC的三个内角A、B、C所对边的长分别为a、b、c,已知a=2,b=3,则sinA/2=sin(A+C)/3.14.若△ABC的面积为3,BC=2,C=60°,则边AB的长度等于2.解析:根据海伦公式,s=(a+b+c)/2,代入已知条件可得s=3.再根据面积公式,S=1/2×b×c×sinA,代入已知条件可得1/2×2×c×sin60°=3,解得c=4.由此可得边AB的长度为2.Ⅰ)将2sinBcosA sinAcosC cosAsinC化为sin2B=sinA(sinC+cosC),再利用正弦定理和余弦定理,得到:a/sinA=b/sinB=c/sinC=2R(R为△ABC的外接圆半径)代入sin2B=sinA(sinC+cosC)中,化简得cosA=1/2,即A=π/3.Ⅱ)由余弦定理可得cosA=(b²+c²-a²)/(2bc)=1/2,代入b=2,c=1中得a=√3.因为D为BC的中点,所以AD平分∠A,即AD垂直于BC,且AD=√3/2.。
解三角形练习题一、选择题1、在△ABC 中,a =3,b =7,c =2,那么B 等于()A . 30°B .45°C .60°D .120° 2、在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( )A .310+B .()1310-C .13+D .3103、在△ABC 中,a =32,b =22,B =45°,则A 等于()A .30°B .60°C .60°或120°D . 30°或150° 4、在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是( )A .无解B .一解C . 二解D .不能确定 5、在△ABC 中,已知bc c b a ++=222,则角A 为()A .3π B .6πC .32πD . 3π或32π 6、在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是()A .()10,8B .()10,8C .()10,8D .()8,108、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形9、在△ABC 中,已知===B b x a ,2, 60°,如果△ABC 两组解,则x 的取值范围是()A .2>xB .2<xC .3342<<x D . 3342≤<x 10、在△ABC 中,周长为7.5cm ,且sinA :sinB :sinC =4:5:6,下列结论:①6:5:4::=c b a ②6:5:2::=c b a ③cm c cm b cm a 3,5.2,2=== ④6:5:4::=C B A 其中成立的个数是 ( ) A .0个 B .1个 C .2个 D .3个 11、在△ABC 中,3=AB ,1=AC ,∠A =30°,则△ABC 面积为 ( )A .23B .43C .23或3 D .43 或23 12、已知△ABC 的面积为23,且3,2==c b ,则∠A 等于 ( )A .30°B .30°或150°C .60°D .60°或120°13、已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )A . 14B .142C .15D .15214、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( )A . 450a 元B .225 a 元C . 150a 元D . 300a 元15、甲船在岛B 的正南方A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是( )A .7150分钟 B .715分钟 C .21.5分钟 D .2.15分钟16、飞机沿水平方向飞行,在A 处测得正前下方地面目标C 得俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为( ) A . 5000米B .50002 米C .4000米D .24000 米17、在△ABC 中,10sin =a °,50sin =b °,∠C =70°,那么△ABC 的面积为( )A .641B .321 C .161 D .81 18、若△ABC 的周长等于20,面积是310,A =60°,则BC 边的长是( ) A . 5 B .6 C .7 D .819、已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ) A .51<<x B .135<<x C .50<<x D .513<<x20、在△ABC 中,若cCb B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形 二、填空题21、在△ABC 中,若∠A:∠B:∠C=1:2:3,则=c b a :: 22、在△ABC 中,===B c a ,2,33150°,则b =23、在△ABC 中,A =60°,B =45°,12=+b a ,则a = ;b = 24、已知△ABC 中,===A b a ,209,181121°,则此三角形解的情况是25、已知三角形两边长分别为1和3,第三边上的中线长为1,则三角形的外接圆半径为 26、在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是20米30米150°三、解答题27、在△ABC 中,已知210=AB ,A =45°,在BC 边的长分别为20,3320,5的情况下,求相应角C 。
解三角形单元测试题一、选择题:1、在△ABC 中,a=3,b=7 ,c=2,那么 B 等于()A .30°B.45°C.60° D .120°)2、在△ABC 中,a=10,B=60 °,C= 45°, 则c 等于(A .10 3B.10 31C. 3 1 D .10 33、在△ABC 中,a=2 3,b=2 2 ,B=45°,则 A 等于()A .30°4、在△ABCA .无解B.60°C.30°或120° D .30°或150°中,a=12,b=13,C=60°,此三角形的解的情况是()B.一解C.二解 D .不能确定a 2b 2 c2 bc ,则角为()A5、在△ABC 中,已知2 323或A .B.C. D .363)中,若a cos A bcosB ,则△ABC6、在△ABC 的形状是(A .等腰三角形B.直角三角形C.等腰直角三角形 D .等腰或直角三角形)7、已知锐角三角形的边长分别为1,3,a,则a 的范围是(8 ,10 8 ,10 10 ,8A .8,10 B.C. D .2sin AcosB B.等腰三角形sin C ,那么△ABC8、在△ ABC 中,已知A .直角三角形一定是() C.等腰直角三角形 D .正三角形9、△ ABC 中,已知a x, b 2, B 60°,如果△ABC 两组解,则x 的取值范围( )4 34 3A .x 2B.x 2C.2 x 32x 3D .sinA:sinB:sinC=4:5:6,下列结论:①a : b : c 4 : 5 : 610、在△ABC 中,周长为7.5cm,且a :b :c 2 : 5 : 6a2cm, b 2.5cm,c 3cm A : B : C 4 : 5 : 6②③④其中成立的个数是A .0 个() B.1 个C.2 个 D .3 个AB 3 , AC 1, ∠A=30°,则△11、在△中,ABC 面积为()ABC3 2343234323或 D .A .B.C.或3 2,且 b 2,c 3 ,则∠ A 等于 ()12、已知△ ABC 的面积为A . 30°B . 30°或 150°C . 60°D . 60°或 120°13、已知△ ABC 的三边长 a3,b 5, c 6 ,则△ ABC 的面积为 ()A . 14B . 2 14C . 15D . 2 15A14、某市在“旧城改造”中计划内一块如图所示的三角形空 15020 米30 米地上种植草皮以美化环境,已知这种草皮每平方米 a 元, 则 购买这种草皮至少要()C . A . 450a 元 15、甲船在岛 B . 225a 元 B 的正南方 150a 元D . 300a 元 BCA 处,AB = 10 千米,甲船以每小 B 出发以每小时 时 4 千米的速度向正北航行,同时乙船自6 千米的速度向北偏东 )60°的方向驶去,当甲,乙两船相距最近时,它们所航行的时间是(150 715 7分钟 B .分钟 C . 21.5 分钟D . 2.15 分钟A .16、飞机沿水平方向飞行,在 A 处测得正前下方地面目标C 得俯角为 30°,向前飞行10000 米,到达 B 处,此时测得目标 C 的俯角为 75°,这时飞机与地面目标的水平距离为()B . 5000 2 sin10 °,b D . 4000 2 A . 5000 米 米C . 4000 米 米中,asin 50 °,∠ C = 70°,那么△ 17、在△ ABC ABC 的面积为(1 8)1 64132116A .B .C .D .10 3 , A =60°,则 BC 边的长是( 18、若△ 的周长等于 20,面积是 )ABC A . B . 6 C . 7 2、 3、 x ,则 D . 8 x 的取值范围是(5 19、已知锐角三角形的边长分别为)A . 1x 5 B . 5x 13 C . 0 x 5 13 x 5D . cos A acos B bsin C c20、在△ ABC 中,若,则△ ABC 是( )A .有一内角为 C .有一内角为 30°的直角三角形 30°的等腰三角形B .等腰直角三角形 D .等边三角形二、填空题a: b : c 21、在△ 中,若∠ A: ∠ B: ∠C=1:2:3, 则 ABC 中, a3 3 , c 2, B 22、在△ 150°,则 b =ABC 中, A = 60°, B = 45°, a b 12 ,则 a =23、在△ ;b =ABC24、已知△ ABC 中,a181,b 209, A 121°,则此三角形解的情况是1 和 3 ,第三边上的中线长为25、已知三角形两边长分别为1,则三角形的外接圆半径为.ABC 中, b c : c a : a b 4 : 5 : 6 ,则△26、在△ABC 的最大内角的度数是三、解答题20 3,5 的27、在△ ABC 中,已知AB 10 2 ,A =45°,在BC边的长分别为3 20,情况下,求相应角C。
解三角形练习题【1】1.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对边,若C b a cos 2=,则此三角形一定是()A.等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形2.在△ABC 中,角,,A B C 的对边边长分别为3,5,6a b c ===,则cos cos cos bc A ca B ab C ++的值为A .38B .37C .36D .353.有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -=4p : sin cos 2x y x y π=⇒+= 其中假命题的是 (A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p4.已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,若31sin =A ,B b sin 3=,则a 等于.5.在△ABC 中,已知边10c =, cos 4cos 3A bB a ==,求边a 、b 的长。
6.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若21sin sin cos cos =-C B C B . (Ⅰ)求A ;(Ⅱ)若4,32=+=c b a ,求ABC ∆的面积.7.已知△ABC 的内角C B A ,,的对边分别为c b a ,,,其中2=c ,又向量m )cos ,1(C =,n )1,cos (C =,m ·n =1.(1)若45A =︒,求a 的值;(2)若4=+b a ,求△ABC 的面积.8.已知:△ABC 中角A 、B 、C 所对的边分别为a 、b 、c 且sin cos sin cos sin 2A B B A C ⋅+⋅=.(1)求角C 的大小;(2)若,,a c b 成等差数列,且18CA CB ⋅=,求c 边的长.9.已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-2(cos ,cos 2)2A n A =,且72m n ⋅= . (1)求角A 的大小; (2)若3a =b c ⋅取得最大值时ABC ∆的形状.10.在ABC ∆中,54sin ,135cos =-=B A . (Ⅰ)求C cos 的值; (Ⅱ)设15=BC ,求ABC ∆的面积.11..已知31cos 32cos sin 2)(2--+=x x x x f ,]2,0[π∈x⑴求)(x f 的最大值及此时x 的值;⑵求)(x f 在定义域上的单调递增区间。
一、选择题1.在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=b,则角A等于()A. B. C. D.2.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定二、填空题3.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)·sin C,则△ABC面积的最大值为________.4.在△ABC中,角A,B,C的对边分别为a,b,c,已知4sin2-cos 2C=,且a+b=5,c=,则△ABC的面积为________.5.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为________.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sin A cos A-sin B cos B.(1)求角C的大小;(2)若sin A=,求△ABC的面积.7.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知4sin2+4sin A sin B=2+.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.8.在△ABC中,a、b、c分别为角A、B、C所对的边,且c=-3bcosA,tanC=.(1) 求tanB的值;(2) 若c=2,求△ABC的面积.9.在△ABC中,设角A、B、C的对边分别为a、b、c,且a cos C+c=b.(1) 求角A的大小;(2) 若a=,b=4,求边c的大小.10.在△ABC中,角A,B,C的对边分别为a,b,c,且=.(1)求角的值;(2)若角,边上的中线=,求的面积.11.在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sin B sin C的值.12.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=,sin B=cos C.(1)求tan C的值;(2)若a=,求△ABC的面积.13.如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.答案解析1.【答案】A【解析】本题主要考查锐角三角形的定义、正弦定理与解三角方程,意在考查考生的转化能力与三角变换能力.由正弦定理可得,2a sin B=b可化为2sin A sin B=sin B,又sin B≠0,所以sin A=,又△ABC为锐角三角形,得A=.2.【答案】B【解析】本题考查正弦定理和两角和的正弦公式的逆用.依据题设条件的特点,由正弦定理,得sin B cos C+cos B sin C=sin2A,有sin(B+C)=sin2A,从而sin(B+C)=sin A=sin2A,解得sin A=1,∴A =,故选B3.【答案】【解析】∵===2R,a=2,又(2+b)(sin A-sin B)=(c-b)sin C可化为(a+b)(a-b)=(c-b)·c,∴a2-b2=c2-bc,∴b2+c2-a2=bc.∴===cos A,∴A=60°.∵△ABC中,4=a2=b2+c2-2bc·cos 60°=b2+c2-bc≥2bc-bc=bc(“=”当且仅当b=c时取得),∴S△ABC=·bc·sin A≤×4×=.4.【答案】【解析】因为4sin2-cos 2C=,所以2[1-cos(A+B)]-2cos2C+1=,2+2cos C-2cos2C+1=,cos2C-cos C+=0,解得cos C=.根据余弦定理,有cos C==,则ab=a2+b2-7,故3ab=a2+b2+2ab-7=(a+b)2-7=25-7=18,所以ab =6,所以△ABC的面积S△ABC=ab sin C=×6×=.5.【答案】【解析】题考查诱导公式、余弦定理等基础知识,意在考查考生的转化和化归能力、运算求解能力.因为sin∠BAC=,且AD⊥AC,所以sin=,所以cos∠BAD=,在△BAD中,由余弦定理得,BD===.6.【答案】(1);(2)【解析】(1)由题意得-=sin 2A-sin 2B,即sin 2A-cos 2A=sin 2B-cos 2B,sin=sin.由a≠b,得A≠B.又A+B∈(0,π),得2A-+2B-=π,即A+B=,所以C=.(2)由c=,sin A=,=,得a=.由a<c,得A<C,从而cos A=,故sin B=sin(A+C)=sin A cos C+cos A sin C=,所以,△ABC的面积为S=ac sin B=.7.【答案】(1);(2).【解析】(1)由已知得2[1-cos(A-B)]+4sin A sin B=2+,化简得-2cos A cos B+2sin A sin B=,故cos(A+B)=-,所以A+B=,从而C=.(2)因为S△ABC=ab sin C,由S△ABC=6,b=4,C=,得a=3.由余弦定理c2=a2+b2-2ab cos C,得c=.8.【答案】(1);(2).【解析】(1) 由正弦定理,得sinC=-3sinBcosA,即sin(A+B)=-3sinBcosA.所以sinAcosB+cosAsinB=-3sinBcosA.从而sinAcosB=-4sinBcosA.因为cosAcosB≠0,所以=-4.又tanC=-tan(A+B)=,由(1)知,=,解得tanB=.(2) 由(1),得sinA=,sinB=,sinC=.由正弦定理,得a===.所以△ABC的面积为acsinB=××2×=.9.【答案】(1);(2)2±.【解析】(1) 用正弦定理,由a cos C+c=b,得sin A cos C+sin C=sin B.∵ sin B=sin(A+C)=sin A cos C+cos A sin C,∴sin C=cos A sin C.∵ sin C≠0,∴ cos A=.∵ 0<A<π,∴A=.(2) 用余弦定理,得a2=b2+c2-2bc cos A.∵a=,b=4,∴ 15=16+c2-2×4×c×.即c2-4c+1=0.则c=2±.10.【答案】(1);(2)【解析】(1)因为,由正弦定理得,即=sin(A+C) .因为B=π-A-C,所以sin B=sin(A+C),所以.因为B∈(0,π),所以sin B≠0,所以,因为,所以.(2)由(1)知,所以,.设,则,又在△AMC中,由余弦定理得即解得x=2.故11.【答案】(1);(2)【解析】(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=或cos A=-2(舍去).因为0<A<π,所以A=.(2)由S=bc sin A=bc·=bc=5,得bc=20.又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=.又由正弦定理得sin B sin C=sin A·sin A=sin2A=×=.12.【答案】(1);(2)【解析】(1)因为0<A<π,cos A=,得sin A==.又cos C=sin B=sin (A+C)=sin A cos C+cos A sin C=cos C+sin C.所以tan C=.(2)由tan C=,得sin C=,cos C=.于是sin B=cos C=.由a=及正弦定理=,得c=.设△ABC的面积为S,则S=ac sin B=.13.【答案】(1)(2)7【解析】(1)在△ADC中,因为cos∠ADC=,所以sin∠ADC=.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC cos B-cos∠ADC sin B =×-×=.(2)在△ABD中,由正弦定理得BD===3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×=49.所以AC=7.。
1.在ABC △中,角A ,B ,C 的对边分别为a ,b ,,且sin cos 0a B b A -=.〔1〕求角A 的大小:〔2〕假设a =,2b =.求ABC △的面积.2.在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos sin a B b A c +=.〔1〕求角A 的大小;〔2〕假设a =ABC ∆,求b c +的值. 3.〔12分〕在ABC ∆中,角A,B,C 所对的边分别为5,,,cos cos 3a b c c a B b A ⎛⎫-= ⎪⎝⎭.〔1〕求cos B 的值;〔2〕假设2,cos 17a C ABC ==-∆的外接圆的半径R. 4在中,内角,,的对边分别为,,,且.〔1〕求;〔2〕假设,,为边上一点,且,求的长. 5.在ABC △内,角A ,B ,C 所对的边分别为,,,且()cos cos cos b A c B c a B -=-.〔1〕求角B 的值;〔2〕假设ABC △的面积为b =ac +的值.6. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c 且sin ()sin sin b B c b C a A +-=.〔1〕求角A 的大小;〔2〕假设3sin sin 8B C =,且ABC △的面积为a .1.【答案】〔1〔2〕4. 【解析】〔1〕在ABC △中,由正弦定理得sin sin sin cos 0A B B A -=.······1分 即()sin sin cos 0B A A -=,又角B 为三角形内角,sin 0B ≠,ABC ∆A B C a b c cos cos 2cos c B b C a A +=A 2a =2sin sin sin B C A =D BC 13BD BC =AD所以sin cos 0A A -=,···········3分···········4分 又因为()0,πA ∈,所以···········6分 〔2〕在ABC △中,由余弦定理得:2222cos a b c bc A =+-⋅,···········7分即2160c -=.···········8分解得c =-c =···········10分所以1242S =⨯⨯=.···········12分 2.解:(1)由及正弦定理得:sin cos sin sin sin A B B A C +=,sin sin()sin cos cos sin C A B A B A B =+=+sin in cos sin Bs A A B ∴=,sin 0sin cos B A A ≠∴=(0,)4A A ππ∈∴=(2)11sin 2242ABC S bc A bc ===∴=又22222cos 2()(2a b c bc A b c bc=+-∴=+-+所以,2()4, 2.b c b c +=+=.4.解:〔1〕∵,∴.∴,∴.∵,∴,∴,∴. 〔2〕∵,,∴.由,得,∴,又,∴.cos cos 2cos c B b C a A +=sin cos sin cos 2sin cos C B B C A A +=()sin 2sin cos B C A A +=sin 2sin cos A A A =()0,A π∈sin 0A ≠1cos 2A =3A π=2a =2sin sin sinBC A =24bc a ==2222cos a b c bc A =+-2244b c =+-228b c +=4bc =2b c ==那么为等边三角形,且边长为,∴. 在中,,,,由余弦定理可得. 5.【答案】〔1〕3B π=;〔2〕7. 【解析】〔1〕∵()cos cos cos b A c B c a B -=-.∴由正弦定理,得()sin cos sin cos sin sin cos B A C B C A B -=-.···········1分∴sin cos cos sin 2sin cos A B A B C B +=.()sin 2sin cos A B C B ∴+=.···········3分 又++=πA B C ,∴()sin sin A B C +=.···········4分又∵0<<πC ,1cos 2B ∴=.··········5分 又()0∈π,B ,3π∴=B .··········6分 〔2〕据〔1〕求解知3π=B ,∴222222cos b a c ac B a c ac =+-=+-.①··········8分又1sin 2S ac B ==·········9分 ∴12ac =,②··········10分 又13b =,∴据①②解,得7a c +=.··········12分6.〔1〕由sin ()sin sin b B c b C a A +-=,由正弦定理得22()b c b c a +-=,即222b c bc a +-=,所以2221cos 22b c a A bc +-==,∴3A π=. 〔2〕由正弦定理simA sin sin a b cBC ==,可得sin sin a B b A =,sin sin a C c A=, 所以1sin 2ABC S bc A =△1sin sin sin 2sin sin a B a C A A A =⋅⋅2sin sin 2sin a B C A ==又3sin sin 8B C =,sin 2A =,∴28a =4a =.ABC ∆223BD =ABC ∆2AB =23BD =3B π=AD =。
解三角形练习(测试)题1.R t △ABC 是一防洪大堤背水坡的截面图,斜坡AB 长为12m,,它的坡角为45°,为了提高防洪能力,现将背水坡AD 的坡度改为32,则BD 长为 2.如图,某市在城区改造中,计划在一块三角形的空地上种植某种草皮美化环境,已知这种草皮的售价为a 元/㎡,AB=20m,AC=24m,∠BAC=150°,则购买这种草皮至少得 元。
3.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB = 米.4.如图河对岸有一古塔AB ,小敏在C 处测得塔顶A 的仰角为30°,向塔前进20m到达D ,在D 处测得A 的仰角为45°,则塔高为 米。
5.一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西20º的方向行驶40海里到达C 地,则A 、C 两地相距 海里。
6.如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,则CD ∶DB= . 7.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP =2,那么PP '的长为____________.(不取近似值. 以下数据供解题使用:sin15°,cos15°) 8.如图,在Rt △ABC 中,∠ACB=900,CD ⊥AB 于D ,若BD :AD=1:3,则tan ∠BCD= 。
8.9.计算:sin60°+sin45°+︒-︒30tan 60tan 1= . 1sin 60cos302-= . 10.已知α为锐角,且tan (90°-α)=3,则α的度数为( )A .30°B .60°C .45°D .75°A CB D 第1题 CA B 第2题 A B C 第3题 _ A _ B _ D _ C 第4题 第5题 第6题第7题 第8题 C BD11.在Rt △ABC 中, ∠C =90︒,AB =4,AC =1,则cos A 的值是 ( )AB .14CD .4 12.如图是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB ’的长为( )A .4B .33 C .332 D .334 13.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 上一点且AE :EB =4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( )A BCD14.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,数据如图,如果把小敏画的三角形面积记作S △ABC ,小颖画的三角形面积记作S △DEF ,那么你认为( ).A .S △ABC >S △DEFB .S △ABC <S △DEF C .S △ABC =S △DEFD .不能确定15.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知楼房与大树的水平距离为10m ,楼高AB=24m ,则树高CD 为( )A .()31024-mB .⎪⎪⎭⎫ ⎝⎛-331024mC .()3524-m D .9m 16.计算:⑴cos 230°-tan60°·sin45°+sin 230° ⑵01)41.12(45tan 32)31(-++---⑶ 1tan 45-. 32cos458-+17.已知,如图,∠ABC=∠BCD=90°,AC=15,sinA=54,BD=20, 求∠D 的三个三角函数值。
解三角形一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( ) A .2 B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=- 3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
一、选择题
1、在△ABC中,角A、B、C的对边分别为、、,若=,则△ABC的形状为()
A、正三角形
B、直角三角形
C、等腰三角形或直角三角形
D、等腰直角三角形
2、已知中,,,则角等于
A .
B .
C .
D .
3、在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()
A.(2,+∞) B.(0,2)
C.(2,) D.()
4、,则△ABC的面积等于
A .
B .
C .或
D .或
5、在中,,则角C的大小为
A.300
B.450
C.600
D.1200
6、的三个内角、、所对边长分别为、、,设向量
,,若,则角的大小为
()
A .
B .
C .
D .
7、若ΔABC的内角A、B、C所对的边a、b、c 满足,则ab的值为()
A .
B . C.1 D .
8、在中,若,且,则是( )
A.等边三角形
B.等腰三角形,但不是等边三角形
C.等腰直角三角形
D.直角三角形,但不是等腰三角形9、在中,所对的边分别是且满足,则
=
A .
B .
C .
D .
10、若α是三角形的内角,且sin α+cos α=,则这个三角形是( ).
A.等边三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
11、在△中,,,,则此三角形的最大边长为()
A. B. C. D.
12、在△ABC中, 角A、B、C的对边分别为a、b、c,若(a2+c 2b2)tanB=ac,则角B=()
A .
B .
C .或
D .或
13、(2012年高考(天津理))在中,内角,,所对的边分别是,已知,,则
()
A .
B .
C .
D .
14、已知△ABC中,=,=,B=60°,那么满足条件的三角形的个数为()
A、1
B、2
C、3
D、0
15、在钝角中,a,b,c分别是角A,B,C 的对边,若,则最大边c的取值范围是
( ) (
A .
B .
C .
D .
16、(2012年高考(上海理))在中,若,则的形状是()
A.锐角三角形. B.直角三角形. C.钝角三角形. D.不能确定.
17、在△ABC中,a=15,b=10, ∠A=,则()
A .
B .
C .
D .
18、在△ABC中,内角A,B,C的对边分别是a,b,c ,若,,则角A= ()
A .
B .
C .
D .
19、()
A. B. C. D.
20、给出以下四个命题:
(1)在中,若,则;
(2)将函数的图象向右平移个单位,得到函数的图象;
(3)在中,若,,,则为锐角三角形;
(4)在同一坐标系中,函数与函数的图象有三个交点;
其中正确命题的个数
是
() A.1 B.2 C.3 D.4
21、若△ABC的对边分别为、、C 且,,,则b=()
A、5
B、25
C 、
D 、
22、设A、B、C是△ABC三个内角,且tanA,tanB是方程3x2-5x+1=0的两个实根,那么△ABC是()
A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上均有可能
23、设△ABC的内角A, B, C所对的边分别为a, b, c, 若, 则△ABC的形状为
(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定
24、在中,若,则此三角形
是()
A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形
25、在△ABC中,已知A=,BC=8,AC=,则△ABC的面积为▲A.B.16 C .或16 D .或
26、在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足c sin A =a cos C,则sin A+sin B的最大值是( )
A.1 B. C. D.3
二、填空题
27、在△ABC中,角A、B、C的对边分别为a、b、c, 已知A=, a=, b=1,则c= .
28、已知△ABC 的面积 .
29、在△ABC中,角A、B、C所对的对边分别为a、b 、c,若,则A= 。
30、在△ABC 中,已知,,则△ABC的面积等于.
31、在△中,为边上一点,,,=2.若△的面积为,则∠=________.
32、ABC的三边分别为a,b,c且满足,则此三角形形状是。
33、已知分别是的三个内角所对的边,若且是与的等差中项,则= 。
34、已知是锐角的外接圆圆心,,若,则。
(用
表示)。
35、(2012年高考(北京理))在△ABC中,若,,,则___________.
三、简答题
36、在锐角中,已知内角A、B、C所对的边分别为,向量
,且向量.
(1)求角的大小;
(2)如果,求的面积的最大值.
37、在中,
①求的值。
②设BC=5,求的面积。
38、在锐角△中,、、分别为角、、所对的边,且
(1)确定角的大小;
(2)若,且△的面积为,求的值.
39、已知△的内角所对的边分别为,且,。
(1)若,求的值;
(2)若△的面积,求,的值.
40、在ΔABC中,内角 A、B、C的对边分别为a、b、c ,已知
(1)求的值;(2)若,求ΔABC的面积。
参考答案
一、选择题
1、B
2、D
3、C
4、D
5、C
6、 A
7、A
8、A
9、D 10、D 11、C 12、D 13、A 【解析】∵,由正弦定理得,又∵,∴,所以,
易知,∴,=.
14、A 15、 D 16、 C. 17、A 18、A 19、D 20、B 21、A 22、A 23、B 24、C 25、D 26、C
二、填空题
27、 2 28、29、30、31、 32、等边三角形; 33、 34、 35、
【解析】在中,得用余弦定理,化简得,与题目条件联立,可解得,答案为.
三、简答题
36、解:(1)
…………………………………………………………2分
即,……………………………………… 4分
又,所以,则,即………………………6分
(2)由余弦定理得即…………………7分
,当且仅当时等号成立……………………………9分
所以,得
所以……………………………………………… 11分
所以的最大值为………………………………………………… 12分
37、解:(Ⅰ)由,得,
由,得.
所以. (Ⅱ)由正弦定理得
所以的面积
.
38、解:(1)由得
sinA=2sinC sinA
=2 sinC C=- (2)由(1)知sinC= 又△的面积为
39、
40、。