现代分析测试技术_X射线物相分析
- 格式:pdf
- 大小:2.39 MB
- 文档页数:20
现代测试技术论文 -X-射线单晶衍射法的原理及在测试技术中的应用-土木工程学院材料一班 080330110袁野摘要:X-射线衍射法的原理、优点及其在现代分析测试技术中的应用和重要意义。
关键词:XRD 布拉格方程物相分析点阵常数X射线衍射分析(X-ray diffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。
将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。
1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。
这就是X射线衍射的基本原理。
衍射线空间方位与晶体结构的关系可用布拉格方程表示:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。
波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。
将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。
从衍射X射线强度的比较,可进行定量分析。
X射线分析的新发展,X射线分析由于设备和技术的普及已逐步变成晶体研究和材料测试的常规方法。
例如在如下领域,X射线都有着及其广泛的应用。
物相分析:晶体的X射线衍射图像实质上是晶体微观结构的一种精细复杂的变换,每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。
一、X射线物相分析的基本原理与思路在对材料的分析中我们大家可能比较熟悉对它化学成分的分析,如某一材料为Fe96.5%,C 0.4%,Ni1.8%或SiO2 61%, Al2O3 21%,CaO 10% ,FeO 4%等。
这是材料成分的化学分析。
一个物相是由化学成分和晶体结构两部分所决定的。
X射线的分析正是基于材料的晶体结构来测定物相的。
X射线物相分析的基本原理是什么呢?每一种结晶物质都有自己独特的晶体结构,即特定点阵类型、晶胞大小、原子的数目和原子在晶胞中的排列等。
因此,从布拉格公式和强度公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射晶面的晶面间距值d和反射线的强度来表征。
其中晶面网间距值d与晶胞的形状和大小有关,相对强度I则与质点的种类及其在晶胞中的位置有关。
衍射花样有两个用途:一是可以用来测定晶体的结构,这是比较复杂的;二是用来测定物相。
所以,任何一种结晶物质的衍射数据d和I是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相,分析的思路将样品的衍射花样与已知标准物质的衍射花样进行比较从中找出与其相同者即可。
X射线物相分析方法有:定性分析——只确定样品的物相是什么?包括单相定性分析和多相定性分析定量分析——不仅确定物相的种类还要分析物相的含量。
二、单相定性分析利用X射线进行物相定性分析的一般步骤为:①用某一种实验方法获得待测试样的衍射花样;②计算并列出衍射花样中各衍射线的d值和相应的相对强度I值;③参考对比已知的资料鉴定出试样的物相。
1、标准物质的粉末衍射卡片标准物质的X射线衍射数据是X射线物相鉴定的基础。
为此,人们将世界上的成千上万种结晶物质进行衍射或照相,将它们的衍射花样收集起来。
由于底片和衍射图都难以保存,并且由于各人的实验的条件不同(如所使用的X射线波长不同),衍射花样的形态也有所不同,难以进行比较。
因此,通常国际上统一将这些衍射花样经过计算,换算成衍射线的面网间距d值和强度I,制成卡片进行保存。
《材料现代分析技术》课程实验实验项目名称:X 射线物相定量分析 实验类型:综合 学时:4学时 一、 实验目的(1)学习了解X 射线衍射仪的结构和工作原理;(2)掌握利用X 射线粉末衍射进行物相定量分析的原理; (3)练习用RIR 方法对物质进行定量分析。
二、 主要仪器设备及耗材本实验使用的仪器是日本理学SmartLab-2006型X 射线衍射仪,主要由X 射线发生器(即X 射线管)、测角仪、X 射线探测器、计算机控制处理系统等组成。
耗材:两相混合物 三、实验原理X 射线的定量分析目的是在物相鉴定基础上,测定物质中各相含量。
其任务是用X 射线衍射技术,准确测定混合物中各相衍射强度,从而求出多相物质中各相含量。
X 射线定量相分析的理论基础是物质参与衍射的体积或重量与其所产生的衍射强度成正比。
因而,可通过衍射强度的大小求出混合物中某相参与衍射的体积分数或重量分数。
当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相多晶物质所产生的积分强度 (并考虑原子热振动及吸收的影响) 为式中I 0为入射光束强度,e ,m 分别为电子电量、质量、c 为光速。
λ为X 射线波长,V 0晶胞体积,V 为试样被X 光照射体积,F 为结构因子,P 为多重性因子,ϕ (θ)角因子, e -2M 为温度因子,A (θ)为吸收因子。
根据衍射强度与该物质参与衍射的体积或重量的增加而增加关系(非线性)。
表示为n 相混合物中,j 相某衍射线的强度与参与衍射的该相的体积V j 或重量分数W j 的关系式:()()2322202232M ce V I I P F A e R mc V λφθθπ-⎛⎫= ⎪⎝⎭mj nj j j j j j W V CK I μρ∑==1/mj nj j j j j j W W CK I μρ∑==1/为定量分析普适公式(Alexander 定量分析公式),其中常数213213424⋅=λπc m e I r C o强度因子Mhkl hklj e coa k P F K 222202sin 2cos 11-⋅⋅+=θθθν结构因子)(212i i i lz hy hx i ni i hkle f F ++-=∑=π(i 为晶胞中原子)● 外标法要纯标样,它不加到待测样中,该法实用于大批量试样中某相定量测量。
四大分析方法及应用摘要:本文论述材料的X射线粉末衍射分析(XRD)、电子显微分析、能谱分析(XPS,UPS,AES)和热分析(TG,DTA, DSC)等测试原理、制样技术、影响因素、图谱解析以及它们在材料研究中的具体应用。
以一些常见的化合物为基质的各类复合或是掺杂的材料为例,来重点介绍XRD、电镜、热分析等在研究材料物相组成、结构特征、形貌等方面的应用。
关键词:TiO2,XRD,SEM,XPS,TG,DTA前言由于铝等一些金属和无机物的优良的性质,如铝的密度很小,仅为2.7 g/cm3,虽然它比较软,但可制成各种铝合金,如硬铝、超硬铝、防锈铝、铸铝等。
.铝的导电性仅次于银、铜,虽然它的导电率只有铜的2/3,但密度只有铜的1/3,所以输送同量的电,铝线的质量只有铜线的一半铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。
铝有较好的延展性(它的延展性仅次于金和银),在100 ℃~150 ℃时可制成薄于0.01 mm 的铝箔。
铝的表面因有致密的氧化物保护膜,不易受到腐蚀,常被用来制造化学反应器、医疗器械、冷冻装置、石油精炼装置、石油和天然气管道等。
铝热剂常用来熔炼难熔金属和焊接钢轨等。
铝还用做炼钢过程中的脱氧剂。
铝粉和石墨、二氧化钛(或其他高熔点金属的氧化物)按一定比率均匀混合后,涂在金属上,经高温煅烧而制成耐高温的金属陶瓷,它在火箭及导弹技术上有重要应用。
所以工业上应用非常广泛。
1 X射线衍射分析(XRD)1.1 X射线衍射仪仪器核心部件:光源---高压发生器与X 光管、精度测角仪、光学系统、探测器、控测,数据采集与数据处理软件、X射线衍射应用软件。
定性相分析(物相鉴定):目的:分析试样属何物质,那种晶体结构,并确定其化学式。
原理:任何结晶物质均具有特定结晶结构(结晶类型,晶胞大小及质点种类,数目分布)和组成元素。
一种物质有自已独特衍射谱与之对应,多相物质的衍射谱为各个物相行对谱的叠加。
材料现代分析与测试技术考试大纲一、课程性质本课程是材料类专业的专业基础课,必修课程。
二、适用专业无机非金属材料工程材料化学材料物理电子科学与技术新能源材料与器件三、课程学分3.75学分四、试卷结构平时:10%,实验:10% ,期末考试:80%五、参考书目王晓春张希艳主编.材料现代分析与测试技术[M].北京:国防工业出版社2012六、考试内容与基本要求第一章X射线衍射分析[考试要求]本章要求考生掌握X射线物理基础、X射线衍射几何条件、单晶、多晶体的研究方法、衍射仪法及X射线物相分析。
[考试内容]1. X射线物理基础(1)X射线的性质(2)X射线的获得(3)X射线谱(4)X射线与物质的相互作用(5)X射线的吸收及应用2.X射线衍射几何条件3.单晶的研究方法4.多晶体的研究方法5.衍射仪法(1)粉末衍射仪的构造及衍射几何(2)衍射图分析处理6. X射线物相分析7.测定晶粒尺寸第二章电子显微分析[考试要求]本章要求学生掌握电子光学基础, 电子与固体物质的相互作用,透射电子显微镜分析,扫描电子显微镜分析,电子探针X射线显微分析,分析电子显微镜及电子显微分析在材料科学中的应用。
[考试内容]1. 电子光学基础(1)电子的波长和波性(2)电子在电磁场中的运动和电磁透镜(3)电磁透镜的像差和理论分辨率(4)电磁透镜的场深和焦深2. 电子与固体物质的相互作用(2)内层电子激发后的驰豫过程(3)自由载流子(4)各种电子信号(5)相互作用体积与信号产生的深度和广度3. 透射电子显微分析(1)透射电子显微镜(2)透射电镜样品制备(3)电子衍射(4)透射电子显微像及衬度(5)透射电子显微分析的应用4. 扫描电子显微分析(1)扫描电子显微镜(2)扫描电镜图像及衬度(3)扫描电镜样品制备5. 电子探针X射线显微分析(1)电子探针仪的构造和工作原理(2)X射线谱仪的类型及比较(3)电子探针分析方法及其应用6. 扫描探针显微分析(1)扫描隧道显微镜(2)原子力显微镜第三章热分析[考试要求]本章要求学生掌握热分析概念,差热分析,热重分析, 热膨胀法。
实验报告课程名称:材料测试技术实验项目:用X-射线衍射仪进行多晶体物质相分析实验班级: 2012310204学号: 201231020414姓名:某某指导教师:某某某实验时间: 2015 年 11月 18日利用X射线衍射仪分析多晶体物质相分析一、实验目的概括了解X射线衍射仪的结构及使用。
二、X射线衍射仪简介传统的衍射仪由X射线发生器、测角仪、记录仪等几部分组成。
自动化衍射仪是近年才面世的新产品,它采用微计算机进行程序的自动控制。
入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。
衍射线被探测器所接收,电脉冲经放大后进入脉冲高度分析器。
操作者在必要时可利用该设备自动画出脉冲高度分布曲线,以便正确选择基线电压与上限电压。
信号脉冲可送至计数率仪,并在记录仪上画出衍射图。
脉冲亦可送至计数器(以往称为定标器),经微处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。
控制衍射仪的专用微机可通过带编码器的步进电机控制试样及探测器进行连续扫描、阶梯扫描,连动或分别动作等等。
目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。
衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。
物相定性分析是X射线衍射分析中最常用的一项测试,衍射仪可自动完成这一过程;首先,仪器按所给定的条件进行衍射数据自动采集,接着进行寻峰处理并自动启动程序。
当检索开始时,操作者要选择输出级别(扼要输出、标准输出或详细输出),选择所检索的数据库(在计算机硬盘上,存贮着物相数据库,约有物相46000种,并设有无机、有机、合金、矿物等多个分库),指出测试时所使用的靶,扫描范围,实验误差范围估计,并输入试样的元素信息等。
此后,系统将进行自动检索匹配,并将检索结果打印输出。
三、用衍射仪进行物相分析X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。
X射线衍射技术在地学中的应用长安大学摘要:X射线衍射技术是现代分析测试物质组成和结构的基础手段之一,多种学科中都广泛应用,在地质学领域中的应用同样占重要地位。
本文综述了X射线衍射技术在岩石学、矿物学、矿床学、煤田、石油天然气、构造地质、地质灾害、宝石学以及与地质学相关的学科研究中的应用。
作为一种高效、准确、无损样品的测试分析手段X射线衍射技术在地质学中的应用领域将会不断扩展,发挥越来越重要的作用。
关键词:X射线衍射地质学应用引言1895年,德国维尔茨堡大学校长兼物理研究所所长伦琴教授在研究阴极射线时意外发现X射线[1];1912年德国物理学家劳厄(von Laue M)发现了X射线通过晶体时产生衍射现象[2],证明了X射线的波动性和晶体内部结构的周期性,并获得了劳厄晶体衍射公式;随后,小布拉格(Bragg WL)推导出著名的布拉格方程。
此后100余年间,作为19世纪末20世纪初物理学的三大发现之一,X射线的新理论和新应用不断产生,飞速发展。
劳厄的衍射理论与实验证明了X射线具有波动特性,是波长为几十到几百皮米的电磁波,并具有衍射的能力[3,4]。
在基础理论和科学技术的支持下,X射线衍射技术在物质定性和物相组成等方面的探测已经成为现代分析测试技术的基础组成部分,在材料、药物、金属、生物等领域的科学研究中均占有重要地位。
同样,X射线衍射在地质学领域中的应用也十分普遍。
1.基本原理和分析方法简介X射线是一种电磁辐射,波长(0.01—100埃,常用的为0.5—2.5埃)与物质晶体的原子间距(1埃)数量级相同。
利用晶体作为X射线的天然衍射光栅,当X射线入射时晶体原子的核外电子产生相干波彼此发生干涉,当发生波的加强就称之为衍射[5]。
晶体结构决定了X射线的衍射方向,通过测定衍射方向可以得到晶体的点阵结构、晶胞大小和形状等信息。
地质学中的X射线衍射分析就是通过这个原理确定样品物质的组成和结构等(图1)。
图1 X射线衍射分析工作原理图一般的X射线衍射分析方法有:a.劳厄法:连续X射线照射固定的单晶体,用照相底片记录衍射斑点;b.转晶法:单色X射线照射转动的单晶体,用照相底片记录平行分布的衍射斑点;c.粉末法:准直的单色X射线照射多晶粉末样品,圆筒状底片记录衍射斑点;d.衍射仪法:用各种辐射探测器和辐射测量控制电路记录衍射信号。
XRD :1.X 射线产生机理:(1)连续X 射线的产生:任何高速运动的带电粒子突然减速时,都会产生电磁辐射。
①在X 射线管中,从阴极发出的带负电荷的电子在高电压的作用下以极大的速度向阳极运动,当撞到阳极突然减速,其大部分动能变为热能都损耗掉了,而一部分动能以电磁辐射—X 射线的形式放射出来。
②由于撞到阳极上的电子极多,碰撞的时间、次数及其他条件各不相同,导致产生的X 射线具有不同波长,即构成连续X 射线谱。
(2)特征X 射线:根本原因是原子内层电子的跃迁。
①阴极发出的热电子在高电压作用下高速撞击阳极;②若管电压超过某一临界值V k ,电子的动能(eV k )就大到足以将阳极物质原子中的K 层电子撞击出来,于是在K 层形成一个空位,这一过程称为激发。
V k 称为K 系激发电压。
③按照能量最低原理,电子具有尽量往低能级跑的趋势。
当K 层出现空位后,L 、M 、N……外层电子就会跃入此空位,同时将它们多余的能量以X 射线光子的形式释放出来。
④K 系:L, M, N, ...─→K ,产生K α、K β、 K r ... 标识X 射线L 系:M, N, O,...─→L ,产生L α、L β... 标识X 射线 特征X 射线谱 M 系: N, O, ....─→M ,产生M α... 标识X 射线 特征谱Moseley 定律 2)(1αλ-•=Z a Z:原子序数,a 、α:常数2.X 射线与物质相互作用的三个效应(1)光电效应•当 X 射线的波长足够短时,X 射线光子的能量就足够大,以至能把原子中处于某一能级上的电子打出来,•X 射线光子本身被吸收,它的能量传给该电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态。
(2)荧光效应①外层电子填补空位将多余能量ΔE 辐射次级特征X 射线,由X 射线激发出的X 射线称为荧光X 射线。
②衍射工作中,荧光X 射线增加衍射花样背影,是有害因素③荧光X 射线的波长只取决于物质中原子的种类(由Moseley 定律决定),利用荧光X 射线的波长和强度,可确定物质元素的组分及含量,这是X 射线荧光分析的基本原理。
可编辑修改精选全文完整版第二章X射线多晶衍射方法及应用(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:选靶,滤波,衍射花样的指数化,连续扫描法,步进扫描法,X射线物相分析,X射线物相定性分析,X射线物相定量分析。
2.X射线衍射方法分为多晶体衍射方法和单晶体衍射方法;多晶体衍射方法主要有()和();单晶体衍射方法主要有()、()和()等。
3.根据底片圆孔位置和开口所在位置不同,德拜法底片的安装方法有3种,即()、()和()。
4.德拜法测定点阵常数,系统误差主要来源于()、()、()、()等,校正的方法主要是采用()安装底片。
5.入射X射线的波长λ越长则可能产生的衍射线条越多。
这种说法()。
A.正确;B.不正确6.靶不同,同一干涉指数(HKL)晶面的衍射线出现的位置(2θ)不同。
这种说法()。
A.正确;B.不正确7.德拜法的样品是平板状的,而衍射仪法的样品是圆柱形的。
这种说法()。
A.正确;B.不正确8.德拜照相法衍射花样上,掠射角(θ)越大,则分辨率(φ)越高,故背反射衍射线条比前反射线条分辨率高。
这种说法()。
A.正确;B.不正确9.在物相定量分析方面,德拜法的结果比衍射仪法准确。
这种说法()。
A.正确;B.不正确10.多晶衍射仪法测得的衍射图上衍射峰的位置十分精确,没有误差。
这种说法()。
A.正确;B.不正确11.如果采用Mo靶(λKα=0.07093nm),那么晶面间距小于0.035nm的晶面也可能产生衍射线。
这种说法()。
A.正确;B.不正确12.在X射线物相定性分析过程中,主要是以d值为依据,而相对强度仅作为参考依据。
这种说法()。
A.正确;B.不正确13.X射线衍射法测定晶体的点阵常数是通过衍射线的位置(2θ)的测定而获得的,点阵常数测定时应尽量选用低角度衍射线。
这种说法()。
A.正确;B.不正确14.入射X射线的波长(λ)越长则可能产生的衍射线条()。
A.越少;B.越多15.靶不同,同一指数(HKL)干涉面的衍射线出现的位置2θ()。
一、X射线物相分析的基本原理与思路在对材料的分析中我们大家可能比较熟悉对它化学成分的分析,如某一材料为Fe96.5%,C 0.4%,Ni1.8%或SiO2 61%, Al2O3 21%,CaO 10% ,FeO 4%等。
这是材料成分的化学分析。
一个物相是由化学成分和晶体结构两部分所决定的。
X射线的分析正是基于材料的晶体结构来测定物相的。
X射线物相分析的基本原理是什么呢?每一种结晶物质都有自己独特的晶体结构,即特定点阵类型、晶胞大小、原子的数目和原子在晶胞中的排列等。
因此,从布拉格公式和强度公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射晶面的晶面间距值d和反射线的强度来表征。
其中晶面网间距值d与晶胞的形状和大小有关,相对强度I则与质点的种类及其在晶胞中的位置有关。
衍射花样有两个用途:一是可以用来测定晶体的结构,这是比较复杂的;二是用来测定物相。
所以,任何一种结晶物质的衍射数据d和I是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相,分析的思路将样品的衍射花样与已知标准物质的衍射花样进行比较从中找出与其相同者即可。
X射线物相分析方法有:定性分析——只确定样品的物相是什么?包括单相定性分析和多相定性分析定量分析——不仅确定物相的种类还要分析物相的含量。
二、单相定性分析利用X射线进行物相定性分析的一般步骤为:①用某一种实验方法获得待测试样的衍射花样;②计算并列出衍射花样中各衍射线的d值和相应的相对强度I值;③参考对比已知的资料鉴定出试样的物相。
1、标准物质的粉末衍射卡片标准物质的X射线衍射数据是X射线物相鉴定的基础。
为此,人们将世界上的成千上万种结晶物质进行衍射或照相,将它们的衍射花样收集起来。
由于底片和衍射图都难以保存,并且由于各人的实验的条件不同(如所使用的X射线波长不同),衍射花样的形态也有所不同,难以进行比较。
因此,通常国际上统一将这些衍射花样经过计算,换算成衍射线的面网间距d值和强度I,制成卡片进行保存。
X射线复习(陈老师讲课内容)一、名词解释1、物相分析:是指确定材料由哪些相组成(即物相定性分析或称物相鉴定)和确定各组成相的含量(常以体积分数或质量分数表示,即物相定量分析)。
2、零层倒易面:属于同一[uvw]晶带的各(HKL)晶面对应的倒易矢量r*HKL处于一个平面内.这是一个通过倒易点阵原点的倒易面,称为零层倒易面。
3、X射线:一种波长介于紫外线和 射线之间的具有较短波长的电磁波。
4、Kα射线与Kβ射线:若K层产生空位,L层或M层或更外层电子向K层跃迁,产生的X射线统称为K系特征辐射,分别按顺序记为Kα,Kβ,…射线。
5、短波限:连续X射线谱中,波长连续分布的起点为短波限。
6、吸收限:产生光电效应可击出物质原子内层电子的入射X射线光子能量阈值相应的波长。
7、线吸收系数:因为μ表示X射线通过单位长度物质时强度的衰减.又因强度为(垂直于传播方向上)单位面积的能量,所以μ亦为X射线通过单位体积物质时能量的衰减.质量吸收系数:设μm= μ/ρ(ρ为物质密度),称μm为质量吸收系数,则:It = Iexp(- μ*t) = Iexp(- μm*ρ*t)∵ μ定义为X射线通过单位体积物质时能量的衰减.∴ μm为X射线通过单位质量物质时能量的衰减,亦称单位质量物质对X射线的吸收.8、晶带:在晶体中如果若干个晶面同时平行于某一轴向时,则这些晶面属于同一晶带,而这个轴向就称为晶带轴。
10、二次特征辐射(X射线荧光辐射)二、简答,论述,计算题1、辨析点阵与阵胞、点阵与晶体结构、阵胞与晶胞的关系.点阵:为了描述晶体中原子的排列规则,将每一个原子(原子团等)抽象视为一个几何点(称为阵点),从而得到一个按一定规则排列分布的无数多个阵点组成的空间阵列,称为空间点阵或晶体点阵,简称点阵.阵胞(晶胞):在点阵中选择一个由阵点连接而成的几何图形(一般为平行六面体)作为点阵的基本单元来表达晶体结构的周期性,称为阵胞(晶胞)阵胞与点阵的关系: 阵胞在空间的重复堆砌 → 空间点阵晶体结构与空间点阵若将组成晶体的原子(离子、分子等,以下称为结构基元)置于点阵的各个阵点上,则将还原为晶体结构,即:晶体结构 = 空间点阵 + 结构基元.2、在面心立方晶胞中标明(001)、(002)和(003)面,并据此回答:干涉指数表示的晶面上是否一定有原子分布?为什么?3、判别下列哪些晶面属于[111]晶带:(011),(123),(231),(211),(011),(331),(211),(213),(110),(212)。