机械设计基础第六章 机械常用机构
- 格式:ppt
- 大小:1.82 MB
- 文档页数:65
机械设计常用机构在机械设计中,机构是指由连接在一起的零件和它们之间的相对运动所组成的系统。
机构在机械设计中扮演着非常重要的角色,可以实现不同的功能和动力传递。
下面是一些常用的机构及其应用。
1.转动副:转动副是最简单的机构之一,用于实现两个零件之间的转动运动。
常见的转动副包括轴承、联轴器和齿轮等。
例如,轴承可以在旋转部件之间提供支撑和摩擦减小的功能,联轴器可以将两个轴连接在一起,齿轮可以将动力从一个轴传递到另一个轴。
2.平动副:平动副用于实现两个零件之间的直线运动。
常见的平动副包括直线导轨、滑块和斜块等。
例如,直线导轨可以提供平稳的直线运动,滑块可以在导轨上滑动,斜块可以将旋转运动转化为直线运动。
3.回转副:回转副用于实现一个零件相对于另一个零件的回转运动。
常见的回转副包括轴承、转轴和连杆等。
例如,轴承可以使一个零件在另一个零件上旋转,转轴可以将动力从一个零件传递到另一个零件,连杆可以将旋转运动转化为回转运动或直线运动。
4.正交副:正交副用于实现两个零件之间的相对平行移动。
常见的正交副包括齿轮、链条和齿条等。
例如,齿轮可以将动力从一个轴传递到另一个轴,并实现平行移动,链条可以在两个轮齿之间传递动力,齿条可以将旋转运动转化为直线运动。
5.万向节副:万向节副用于实现两个轴相互呈角度的任意转动。
常见的万向节副包括万向节和万向轴等。
例如,万向节可以使两个轴相互呈任意角度转动,万向轴可以将动力从一个任意角度的轴传递到另一个任意角度的轴。
除了以上介绍的机构,还有许多其他常用的机构,如滚珠丝杠副、曲柄滑块副、连杆机构等。
这些机构在不同的机械设计中扮演着不同的角色,用于实现各种功能和动力传递。
机械设计师在设计机构时需要考虑诸如结构复杂度、运动精度、可靠性和适应性等因素,并根据具体应用需求选择适合的机构。
常用机构辅导一一、常用机构概述机构由构件组合而成,但并非任意的构件组合都能成为机构,只有组成机构的各构件之间具有确定的相对运动,才能使机构按设计要求完成有规律的运动。
因此,学会识别机构以及掌握如何组合构件来满足机构具有确定运动的条件,是机构分析与设计的基础。
机构的运动简图是机械设计的工程语言,能够简明准确地表达出机构的实质内容,即运动的传递路线、各构件的运动形式以及构件之间的连接关系等。
因此,机构运动简图作为一种工具,应较熟练地加以掌握。
(一)机构的组成和运动副1.机构的组成机构由若干构件联接组合而成,根据运动传递路线和构件的运动状况,构件可分为三类:(1)机架机构中的固定构件或相对固定构件称为机架。
每个机构中均应有一个构件作为机架。
(2)原动件机构中作独立运动的构件称为原动件。
原动件是机构中输入运动的构件,故也称主动件。
每个机构都应至少有一个原动件。
在机构运动简图中,要求用箭头标明原动件的运动方向。
(3)从动件机构中除了机架和原动件以外的所有构件均称为从动件。
2.运动副概念两个构件直接接触而形成的可动联接称为运动副。
这个概念包含三层意思:(1)两个构件运动副中之“副”是成对的意思,一个构件谈不上运动副,由两个构件构成一个运动副,两个以上的构件则可构成多个运动副。
(2)直接接触两个构件只有直接接触才能构成运动副。
直接接触使构件的某些独立运动受到限制(或约束),构件的自由度减少,从而体现出运动副的作用。
一旦构件脱离接触而失去约束,它们所构成的运动副即不复存在。
(3)可动联接两个构件之间要能存在一定形式的相对运动,形成一种可动的联接。
显然,若两构件之间具有无相对运动的静联接,则二者固结为一个构件,它们之间不存在运动副。
在平面机构中,按构件的接触性质运动副可分为高副和低副两类,它们所约束的自由度数目和内容是不同的。
(二)平面机构的运动简图机构运动简图是表示机构组成和各构件相对运动关系的简明图形。
在机构运动简图中,不考虑机构外形和运动副的具体结构,仅用简单线条和符号表示构件和运动副,突出表达机构的运动关系。
第1、2章 平面机构的自由度和速度分析1.机器:通常将能够实现确定的机械运动,又能做有用功的机械功或实现能量、物料、信息的传递与变换的装置称为机器。
机构:只能实现运动和力的传递与变换的装置称为机器。
机械:机器和机构统称为机械。
零件:机器中每一个独立制造的单元体称为零件。
构件:机器中每一个独立运动的单元体称为构件。
2. 通用零件:各种机械中普遍使用的零件称为通用零件,如螺钉、轴、轴承等。
专用零件:在某一类型机械中使用的零件称为专用零件,如内燃机活塞、曲轴、汽轮机的叶片等。
3. 平面机构:所有构件都在同一个平面或平行平面内运动的机构称为平面机构。
机构运动简图:说明机构各构件间相对运动关系的简化图形称为机构运动简图。
用途:为了使问题简化,胡洛那些与运动无关的构件的外形和运动副的具体构造,禁用简单线条和符号来表示构件和运动副,并按比例定出各运动副的位置。
4.何谓运动副?运动副有哪些类型?各引入几个约束?用什么符号表示?答:运动副:这种使两构件直接接触并能产生一定相对运动的连接称为运动副。
转动副低副:两构件以面接触 平面运动副 (引入两个约束) 移动副高副:两构件以点或线的形式接触运动副的类型 (引入一个约束)空间运动副 符号表示见课本P65. 构件的组成:固定构件(机架)、原动件(主动件)、从动件8. 你能熟练掌握平面机构自由度的正确计算方法吗?(必考!)自由度:构件的独立运动称为自由度自由度计算公式:计算步骤 :1.分析机构运动规律2.察看有无特殊结构:复合铰链、局部自由度、虚约束3.确定活动构件数目n4.确定运动副种类和数目5.计算、验证自由度几种特殊结构的处理 :1、复合铰链—计算在内 (m-1)2、局部自由度—去掉3、虚约束--重复约束—去掉9 . 速度瞬心:速度瞬心是互相做平面相对运动的两个构件在任一瞬时时其相对速度为零的重合点简称瞬心。
H L P P F --=2n 3相对瞬心:如果两构件均在运动,则瞬心的绝对速度不等于零称为相对瞬心。
第三章部分题解参考3-5 图3-37所示为一冲床传动机构的设计方案。
设计者的意图是通过齿轮1带动凸轮2旋转后,经过摆杆3带动导杆4来实现冲头上下冲压的动作。
试分析此方案有无结构组成原理上的错误。
若有,应如何修改?习题3-5图习题3-5解图(a) 习题3-5解图(b) 习题3-5解图(c) 解 画出该方案的机动示意图如习题3-5解图(a),其自由度为:14233 2345=-⨯-⨯=--=P P n F 其中:滚子为局部自由度计算可知:自由度为零,故该方案无法实现所要求的运动,即结构组成原理上有错误。
解决方法:①增加一个构件和一个低副,如习题3-5解图(b)所示。
其自由度为:115243 2345=-⨯-⨯=--=P P n F ②将一个低副改为高副,如习题3-5解图(c)所示。
其自由度为:123233 2345=-⨯-⨯=--=P P n F 3-6 画出图3-38所示机构的运动简图(运动尺寸由图上量取),并计算其自由度。
习题3-6(a)图 习题3-6(d)图解(a) 习题3-6(a)图所示机构的运动简图可画成习题3-6(a)解图(a)或习题3-6(a)解图(b)的两种形式。
自由度计算:1042332345=-⨯-⨯=--=P P n F习题3-6(a)解图(a)习题3-6(a)解图(b)解(d) 习题3-6(d)图所示机构的运动简图可画成习题3-6(d)解图(a)或习题3-6(d)解图(b)的两种形式。
自由度计算:1042332345=-⨯-⨯=--=P P n F习题3-6(d)解图(a) 习题3-6(d)解图(b)3-7 计算图3-39所示机构的自由度,并说明各机构应有的原动件数目。
解(a) 10102732345=-⨯-⨯=--=P P n FA 、B 、C 、D 为复合铰链原动件数目应为1说明:该机构为精确直线机构。
当满足BE =BC =CD =DE ,AB =AD ,AF =CF 条件时,E 点轨迹是精确直线,其轨迹垂直于机架连心线AF解(b) 1072532345=-⨯-⨯=--=P P n FB 为复合铰链,移动副E 、F 中有一个是虚约束 原动件数目应为1说明:该机构为飞剪机构,即在物体的运动过程中将其剪切。
、两构件直接接触并能产生一定相对运动的联接称为运动副,按照其接触特性,又可将它分为 低副高副。
两构件通过面接触组成的运动副称为 低副;平面机构中又可将其分为 回转副移动副。
两构件通过点或直线接触组成的运动副称为 高副,且 自由度>0平面机构具有确定运动的条件是 自由度原动件个数,且机架,与其用回转连架杆接的构件称为 连杆连架杆是曲柄还是摇杆,可将铰链四杆机构分为三种基本型式曲柄摇杆机构、双曲柄机构双摇杆机构越小越大90力角是0,其传力性能很好摇杆为主动件时,在曲柄和连杆则行程速比系数就 越大急回性能也 越明显 1 就意味着该机构的急回性能没有设计中,习惯上用传动角来判断传力性能。
在出现死点时,传动角等于 0,压力角等于 90增大凸轮机构按凸轮形状可分为 盘形凸轮机构、移动凸轮机构和园柱凸轮机构。
按从动件的型式可分为滚子从动件、尖顶从动件和平底从动件理论轮廓;为使凸轮型线在任何位置既不变尖,更不相交,就要求滚子半径必须小于理论轮廓外凸部分的最小曲率半径。
的最小曲率半径。
凸轮机构中,从动件采用等加速等减速运动规律时,将引起 柔性刚性,机械效率 越低增大,为减小的半径越小,压力角就 越大,机械效率推力和避免自锁,压力角应越小越好,连续传动的条件为 重合度≥1m1=m2=m1=α2=α,连续传动的条件为法向模数相等法向螺旋角相等螺旋角大小相等,方向相反(m=m n2=m n1=n1αn2=-β2);一对锥齿轮的正确啮合条件是R1=R2,m1大=m2大=mα1=α2=α。
齿轮的加工方法仿形法范成法大于法向压力角,其法向法向小于直齿轮。
齿条的基园半径为 +∞17产生轴向力,此时该齿轮已产生 根切现象,为克服这一现象可采用 正变位正移距,这样制得的齿轮称为变位齿轮增大,发生根切的最少齿数 变小分度圆上齿廓的压力角为标准值且等于20大于分度园上的压力角(大于20,齿条的齿顶线上的压力角 等于角。
标准渐开线直齿轮齿顶圆上的齿距角。
第六章平面连杆机构判断题1.铰链四杆机构中的最短杆(就是)曲柄。
(不一定是)2.把(铰链四杆机构)中的最短杆作为机架,就可以得到双曲柄机构。
(曲柄摇杆机构)3.在曲柄长度不相等的双曲柄机构中,主动曲柄作等速转动,从动曲柄作变速转动。
(对)4.家用缝纫机的脚踏板机构是采用(双摇杆)机构。
(曲柄摇杆)5.平面连杆机构的基本形式是铰链四杆机构。
(对)6.曲柄和(连杆)都是连架杆。
(摇杆)7.铰链四杆机构都有连杆和机架。
(对)8.在平面连杆机构中,以最短杆为机架,(就)能得到双曲柄机构。
(不一定)9.在平面四杆机构中,只要两个连架杆都能绕机架作整周转动,必然是双曲柄机构。
(对)10.利用选择不同构件作机架的方法,可以把曲柄摇杆机构改变成双摇杆机构。
(对)11.铰链四杆机构形式的改变,(只能)通过选择不同构件作机架来实现。
(不一定)12.曲柄摇杆机构中,(摇杆)两极限位置所夹锐角称为极位夹角。
(曲柄)13.摆动导杆机构若以曲柄为主动件,导杆一定具有急回特性。
(对)14.因为偏心轮机构中的滑块不能作为主动件,偏心轮机构不存在死点位置。
(对)15.偏置曲柄滑块机构(没有)急回特性。
(有)16.在曲柄摇杆机构中,(当) 曲柄和连杆共线,就是死点位置。
(当摇杆为主动件时)17曲柄极位夹角θ越大,行程速度变化系数K也越大,机构的急回特性越显著。
(对)18.在平面四机构中,凡是能把转动运动转换成往复运动的机构,都会具有急回运动特性。
(对)19.极位夹角θ的大小,是根据设计时事先确定的K值,通过公式求得的。
(对)20.曲柄在死点位置的运动方向与原先的运动方向(相同)。
(不一定相同)21.在实际生产中,机构的死点位置对工作(都是不利的)。
(有利有弊)22.双曲柄机构(没有)死点位置。
(有)23.曲柄摇杆机构中,当曲柄为主动件时机构(有)死点位置。
(没有)24.双摇杆机构无急回特性。
(对)25.四杆机构的死点位置与哪个构件为原动件(无关)。
机械设计常用机构机械设计是一门综合性的学科,涉及到各种各样的机构和装置。
在机械设计中,机构是非常重要的一部分,它负责传递和转换力、运动和能量,从而实现机械装置的各项功能。
在机械设计中,常用的机构有很多种。
这些机构可以根据其功能、结构和运动特性进行分类和归纳。
下面,我将对一些常用的机构进行介绍。
一、连杆机构连杆机构是机械设计中最基本也是最常用的一种机构。
它由杆件和关节组成,通过杆件的连接和关节的运动,实现力和运动的传递。
连杆机构广泛应用于各种机械装置中,如汽车发动机的连杆机构、拉杆机构等。
二、齿轮机构齿轮机构是一种通过齿轮的相互啮合来传递运动和力的机构。
齿轮机构具有传动比恒定、传递力矩大、传递效率高等特点,广泛应用于各种传动装置中,如汽车变速器、机床传动等。
三、减速机构减速机构主要通过齿轮、皮带等传动元件将输入的高速运动转换为输出的低速运动。
减速机构在机械设计中非常常见,用于满足不同场合的运动速度要求。
四、滑块机构滑块机构是一种通过滑块在导轨上做直线运动来实现运动转换和力传递的机构。
滑块机构广泛应用于各种机械装置中,如工具机的进给机构、压力机的传动机构等。
五、摆线机构摆线机构是一种通过连杆和摆线来实现直线运动的机构。
它通过摆线的特殊形状和连杆的运动,将旋转运动转换为直线运动,广泛应用于各种机械装置中,如剪切机的摆线滑块机构、织机上纬缸的摆线机构等。
六、万向节机构万向节机构是一种通过球面和容器来实现输动与变动传动的机构。
它具有结构简单、运动灵活等优点,广泛应用于汽车、船舶和航空等领域。
以上介绍的只是机械设计中的一小部分常用机构,还有很多其他的机构在实际设计中也扮演着重要的角色。
在进行机械设计时,我们需要根据具体的应用要求和设计目标选择合适的机构,合理地组合和运用这些机构,以实现设计的目的。
总结起来,机械设计中常用的机构有连杆机构、齿轮机构、减速机构、滑块机构、摆线机构和万向节机构等。
这些机构在机械装置中起着重要的作用,通过它们的运动和力传递,实现了各种功能和要求。
机械设计基础掌握机械设计中的机构与机构设计机械设计基础:掌握机械设计中的机构与机构设计机械设计是工程领域中的一个重要分支,涉及到机械结构的设计、分析与优化。
在机械设计的过程中,机构是一个核心概念,它由若干个连杆、齿轮、轴等零件组成,通过相对运动实现特定功能。
了解机构的类型、原理和设计方法对于合理设计出高效可靠的机械系统至关重要。
一、机构的类型与原理在机械设计中,机构主要分为平面机构和空间机构两大类。
1. 平面机构平面机构是指机构的运动全部或者部分在一个平面内发生,广泛应用于各类机械设备中。
常见的平面机构包括曲柄滑块机构、齿轮传动机构、摆线器机构等。
例如,曲柄滑块机构用于将旋转运动转化为直线运动,广泛应用于汽车发动机的活塞运动控制。
2. 空间机构空间机构是指机构的运动在三维空间中发生,具有更高的自由度和灵活性。
空间机构常用于机器人、航天器、通用设备等高精度、多功能的机械系统中。
例如,机器人的关节结构就是一种空间机构,通过控制关节的位置和力矩可以实现机器人的运动和操作。
二、机构设计的关键要素在机械设计中,机构设计是实现特定功能的重要环节。
好的机构设计应该满足以下几个关键要素:1. 运动正确机构的设计应能实现所需的运动,包括平动、回转、摆动等。
通过合理的零件配合和运动传递,保证机构的运动轨迹和速度符合设计需求。
2. 功耗少机构的设计应尽量减小能量损耗,提高机构的效率。
通过合理选择材料、优化零件形状和配合,减小摩擦、阻力和能量散失。
3. 刚度足够机构的设计应具备足够的刚度,以保证机构的稳定性和工作精度。
通过增加零件的尺寸和材料刚性,使用刚性连接和支撑等方式增加机构的刚度。
4. 结构坚固机构的设计应保证结构坚固,能够承受额定的工作载荷和外部冲击。
通过合理的结构设计和材料选择,增加机构的强度和耐久性。
三、机构设计的基本步骤机构设计的过程包括需求分析、方案设计、零件选择、装配仿真和优化等多个步骤。
下面以一个简单的摆线器机构为例,介绍机构设计的基本步骤。
机械设计手册之常用机构概述1. 引言机构是机械设计中的重要概念,它是由多个零件组成的一个系统,能够完成特定的功能。
在机械设计过程中,不同的机构可以根据需求选择并组合,以完成机械设备的运动、传动和控制等功能。
本文将对常用机构进行概述,介绍它们的基本原理、结构形式和应用场景,帮助读者了解和运用机构设计。
2. 常用机构概述2.1 杆件机构杆件机构是由杆件连接的机构,是机械设计中最基本的构件之一。
杆件机构可以实现直线运动、旋转运动或复杂的连续运动,常见的杆件机构有连杆机构、曲柄机构等。
在连杆机构中,由一个或多个连杆组成,通过杆件的连续运动实现相对运动。
而曲柄机构则是通过曲柄和连杆的相对运动,将旋转运动转换为直线运动。
2.2 齿轮机构齿轮机构是利用齿轮的啮合传动来实现机械运动的传动机构。
齿轮机构具有传动比恒定、传动效率高、精度高等特点,被广泛应用于各种机械设备。
常见的齿轮机构包括直齿轮机构、斜齿轮机构、蜗杆机构等。
直齿轮机构是最简单的一种齿轮机构,通过齿轮的啮合传动实现旋转运动的传递。
斜齿轮机构则是在直齿轮的基础上引入了斜齿轮,使得传动方向可以改变。
蜗杆机构则是利用蜗杆和蜗轮的啮合传动,实现高速运动向低速运动的转换。
2.3 减速机减速机是一种将高速运动转换为低速高扭矩运动的传动装置。
减速机常用于需要较大扭矩输出的场合,例如工业生产设备、机床等。
减速机根据传动方式可以分为齿轮减速机、带传动减速机、摆线减速机等。
齿轮减速机采用齿轮传动,通过齿轮的传动比来实现降低转速。
带传动减速机则是利用皮带的摩擦传动来实现速度的降低,常见应用于车辆的变速器中。
摆线减速机则是利用摆线齿轮的机构来实现高转速的降低。
2.4 滑动轴承和滚动轴承滑动轴承和滚动轴承是机械设备中常见的轴承类型,用于支撑和保持轴的旋转运动。
滑动轴承是采用润滑剂在滑动接触面上形成润滑膜,减少摩擦损失。
滚动轴承则是通过滚动体(如球、滚子)的滚动来减少摩擦损失,提高轴的旋转效率。
机械设计基础知识点详解绪论1、机器的特征:(1)它是人为的实物组合;(2)各实物间具有确定的相对运动;(3)能代替或减轻人类的劳动去完成有效的机械功或转换机械能。
第一章平面机构的自由度和速度分析要求:握机构的自由度计算公式,理解的基础上掌握机构确定性运动的条件,熟练掌握机构速度瞬心数的求法。
1、基本概念运动副:凡两个构件直接接触而又能产生一定相对运动的联接称为运动副。
低副:两构件通过面接触组成的运动副称为低副。
高副:两构件通过点或线接触组成的运动副称为高副。
复合较链:两个以上的构件同时在一处用回转副相联构成的回转副。
局部自由度:机构中常出现的一种与输出构件运动无关的自由度,称为局部自由度或多余自由度。
虚约束:对机构运动不起限制作用的重复约束称为虚约束或称消极约束。
瞬心:任一刚体相对另一刚体作平面运动时,具相对运动可看作是绕某一重合点的转动,该重合点称为瞬时回转中心或速度瞬心,简称瞬心。
如果两个刚体都是运动的,则其瞬心称为相对速度瞬心;如果两个刚体之一是静止的,则其瞬心称为绝对速度瞬心。
2、平面机构自由度计算作平面运动的自由构件具有三个自由度,每个低副引入两个约束,即使构件失去两个自由度;每个高副引入一个约束,使构件失去一个自由度。
计算平面机构自由度的公式:F=3n-2P L-P H机构要具有确定的运动,则机构自由度数必须与机构的原动件数目相等。
即, 机构具有确定运动的条件是F>0,且F等于原动件个数。
3、复合校链、局部自由度和虚约束(a)K个构件汇交而成的复合较链应具有(K-1)个回转副。
(b)局部自由度虽然不影响整个机构的运动,但滚子可使高副接触处的滑动摩擦变成滚动摩擦,减少磨损,所以实际机械中常有局部自由度出现。
(c)虚约束对机构运动虽不起作用,但是可以增加构件的刚性和使构件受力均衡,所以实际机械中虚约束随处可见。
4、速度瞬心如果一个机构由K个构件组成,则瞬心数目为N=K(K-1)/2瞬心位置的确定:(a)已知两重合点相对速度方向,则该两相对速度向量垂线的交点便是两构件的瞬心。