安森美载波芯片功能说明
- 格式:pdf
- 大小:458.46 KB
- 文档页数:5
安森美半导体推出助听器DSP系统级芯片安森美半导体推出助听器DSP系统级芯片下一代Ezairo?7100 优化了性能、尺寸及功耗,同时提供公开可编程的架构2013 年10 月29 日–推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ONNN)推出Ezairo 7100 系列集成电路及封装的混合电路,用于先进的助听器及听力植体设备。
这款系统级芯片(SoC)的处理能力是前一代系统的5 倍,提供内置灵活性以支持不断演变的算法、无线及系统级需求。
Ezairo 7100 是业界集成度最高及能效最高的单芯片方案之一。
它独特的四核架构采用24 位公开可编程CFX 数字信号处理器(DSP)内核。
加入的ARM?Cortex-M3 处理器支持无线协定,并以特殊错误修正及音频编码支持与DSP 内核相辅相成。
此系统还包含专门用于音频处理任务的HEAR 可配置加速器引擎,以及进行高能效时域滤波的新的滤波器引擎。
当此系统结合非易失性存储器及无线收发器时,即构成完整硬件平台。
安森美半导体听力及音频方案高级总监Michel De Mey 说:“Ezairo 7100 中的主要信号处理功能在逻辑模块中采用硬连线,而可编程DSP 能用于以软件实现额外的信号处理功能。
这公开架构的设计专门用于助听器及听力植体设备,使制造商能够快速回应不断变化的市场需求。
”这系列SoC 采用65 纳米(nm)工艺技术制造,集成了模拟前端电路及无与伦比的110 dB 输入动态范围,从而提供高精度及高品质的声音。
可编程滤波器引擎支持44 μs的超低延迟音频通道,提供优异性能的功能,如堵耳效应(occlusion)管理。
增加的集成无线控制器兼容近场磁感应(NFMI)及射频(RF)无线技术,能高能效地将数据传输至无线收发器及从无线收发器接收数据。
DATA SHEET Axial-Lead GlassPassivated StandardRecovery Rectifiers1N4001, 1N4002, 1N4003,1N4004, 1N4005, 1N4006,1N4007This data sheet provides information on subminiature size, axiallead mounted rectifiers for general−purpose low−power applications. Features•Shipped in Plastic Bags, 1000 per bag•Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix to the part number•Available in Fan−Fold Packaging, 3000 per box, by adding a “FF”suffix to the part number•Pb−Free Packages are AvailableMechanical Characteristics•Case: Epoxy, Molded•Weight: 0.4 gram (approximately)•Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable•Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds, 1/16 in. from case •Polarity: Cathode Indicated by Polarity Band*For additional information on our Pb−Free strategy and soldering details, please download the onsemi Soldering and Mounting T echniques Reference Manual, SOLDERRM/D.CASE 59−10AXIAL LEADPLASTICLEAD MOUNTED RECTIFIERS50−1000 VOLTSDIFFUSED JUNCTIONMARKING DIAGRAMSee detailed ordering and shipping information on page 5 of this data sheet.ORDERING INFORMATIONA= Assembly Location1N400x= Device Numberx= 1, 2, 3, 4, 5, 6 or 7YY= YearWW= Work WeekG= Pb−Free Package(Note: Microdot may be in either location)MAXIMUM RATINGSRating Symbol1N40011N40021N40031N40041N40051N40061N4007Unit†Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage V RRMV RWMV R501002004006008001000V†Non−Repetitive Peak Reverse Voltage(halfwave, single phase, 60 Hz)V RSM6012024048072010001200V †RMS Reverse Voltage V R(RMS)3570140280420560700V†Average Rectified Forward Current(single phase, resistive load,60 Hz, T A = 75°C)I O 1.0A†Non−Repetitive Peak Surge Current(surge applied at rated load conditions)I FSM30 (for 1 cycle)AOperating and Storage Junction Temperature Range T JT stg−65 to +150°CStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.†Indicates JEDEC Registered DataTHERMAL CHARACTERISTICSRating Symbol Max Unit Maximum Thermal Resistance, Junction−to−Ambient R q JA Note 1°C/W ELECTRICAL CHARACTERISTICS†Rating Symbol Typ Max Unit Maximum Instantaneous Forward Voltage Drop, (i F = 1.0 Amp, T J = 25°C)v F0.93 1.1V Maximum Full−Cycle Average Forward Voltage Drop, (I O = 1.0 Amp, T L = 75°C, 1 inch leads)V F(AV)−0.8VMaximum Reverse Current (rated DC voltage) (T J = 25°C)(T J = 100°C)I R0.051.01050m AMaximum Full−Cycle Average Reverse Current, (I O = 1.0 Amp, T L = 75°C, 1 inch leads)I R(AV)−30m A Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.†Indicates JEDEC Registered DataV F , INSTANTANEOUS FORWARD VOLTAGE (V)Figure 1. Typical Forward Voltage Figure 2. Typical Reverse CurrentI F , F O R W A R D C U R R E N T (A )1.0E −V R , REVERSE VOLTAGE (V)Figure 3. Typical CapacitanceI R , R E V E R S E C U R R E N T (A )1.0E −1.0E −1.0E −1.0E −1.0E −V R , REVERSE VOLTAGE (V)C , C A P A C I T A N C E (p F )NOTE 1. − AMBIENT MOUNTING DATAORDERING INFORMATIONDevice Package Shipping†1N4001Axial Lead*1000 Units/Bag1000 Units/Bag1N4001G Axial Lead*(Pb−Free)1N4001RL Axial Lead*5000/T ape & Reel5000/T ape & Reel1N4001RLG Axial Lead*(Pb−Free)1N4002Axial Lead*1000 Units/Bag1000 Units/Bag1N4002G Axial Lead*(Pb−Free)1N4002RL Axial Lead*5000/T ape & Reel5000/T ape & Reel1N4002RLG Axial Lead*(Pb−Free)1N4003Axial Lead*1000 Units/Bag1000 Units/Bag1N4003G Axial Lead*(Pb−Free)1N4003RL Axial Lead*5000/T ape & Reel5000/T ape & Reel1N4003RLG Axial Lead*(Pb−Free)1N4004Axial Lead*1000 Units/Bag1000 Units/Bag1N4004G Axial Lead*(Pb−Free)1N4004RL Axial Lead*5000/T ape & Reel5000/T ape & Reel1N4004RLG Axial Lead*(Pb−Free)1N4005Axial Lead*1000 Units/Bag1000 Units/Bag1N4005G Axial Lead*(Pb−Free)1N4005RL Axial Lead*5000/T ape & Reel5000/T ape & Reel1N4005RLG Axial Lead*(Pb−Free)1N4006Axial Lead*1000 Units/Bag1000 Units/Bag1N4006G Axial Lead*(Pb−Free)3000 Units/Box1N4006FFG Axial Lead*(Pb−Free)1N4006RL Axial Lead*5000/T ape & Reel1N4006RLG Axial Lead*5000/T ape & Reel(Pb−Free)1N4007Axial Lead*1000 Units/Bag1000 Units/Bag1N4007G Axial Lead*(Pb−Free)3000 Units/Box1N4007FFG Axial Lead*(Pb−Free)1N4007RL Axial Lead*5000/T ape & Reel5000/T ape & Reel1N4007RLG Axial Lead*(Pb−Free)†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.*This package is inherently Pb−Free.SCALE 1:1BDIM MIN MAX MIN MAX MILLIMETERSINCHES A 4.10 5.200.1610.205B 2.00 2.700.0790.106D 0.710.860.0280.034F −−− 1.27−−−0.050K25.40−−−1.000−−−NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO −41 OUTLINE SHALL APPLY4.POLARITY DENOTED BY CATHODE BAND.5.LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION.AXIAL LEAD CASE 59−10ISSUE UDATE 15 FEB 2005GENERICMARKING DIAGRAM*xxx = Specific Device Code A = Assembly Location YY = YearWW= Work WeekSTYLE 1:PIN 1.CATHODE (POLARITY BAND)2.ANODESTYLE 2:NO POLARITYSTYLE 1STYLE 2*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.MECHANICAL CASE OUTLINEPACKAGE DIMENSIONSON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor thePUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTNorth American Technical Support:Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910LITERATURE FULFILLMENT :Email Requests to:*******************onsemi Website: Europe, Middle East and Africa Technical Support:Phone: 00421 33 790 2910For additional information, please contact your local Sales Representative。
毕业设计(论文)任务及指导书设计题目:某10万t/d城镇污水处理及回用水工艺系统设计指导专业:20**级环工专业指导教师:闫怡新起至日期:20**年3月~6月毕业设计题目:某10万t/d城镇污水处理及回用水工艺系统设计一、毕业设计的目的意义1、毕业设计是实现工科本科生培养目标不可缺少的教学环节,是教学计划的有机组成部分;2、通过毕业设计,使学生综合运用所学的基础理论,基础知识和技能以及分析、解决实际问题的能力进一步提高;3、毕业设计与其它教学环节紧密配合,相辅相成,并使其它教学环节得以继续、深化和发展;4、使学生受到工程师必备的综合训练,在不同程度上提高调查研究、查阅文献、收集资料和正确熟练使用工具书的能力;理论分析、制订设计方案的能力;设计、计算和绘图能力;技术经济分析和组织工作能力;总结提高和编制技术文件的能力;5、了解并在一定程度和范围内熟悉国内外污水(废水)处理工艺技术,新方法及其实际应用情况,为将来从事本领域的实际工作奠定良好的基础;6、有助于培养学生理论联系实际,国情与具体工程实际相结合,发扬创新精神和严肃的科学态度、工作作风。
二、主要设计内容1. 设计范围:污水处理厂工程的处理工艺及回用水系统,不包括市区管网工程。
2. 设计内容:(1)根据国内外现有城市污及处理厂处理工艺及其效果,主要技术经济指标,结合该城镇城市污水水质状况,确定污水处理工艺、技术路线(重点比较A/O、A2/O活性污泥法、卡鲁塞尔氧化沟、奥贝尔氧化沟、SBR及其改进工艺CASS等)和工程设计工艺技术方案;(2)由确定的技术方案,进行污水处理厂设计,其主要内容有:工艺流程设计、厂区平面图设计、厂内管网系统设计,污泥处理系统设计、主要处理工艺单元设计。
3、设计原则(1)工艺设计应兼顾先进和实用性,力求在满足处理目标的前提下,采用先进实用的处理工艺、技术;尽可能节省工程造价、处理成本及操作管理方便。
(2)总图布置设计,采用紧凑布局原则,节约占地,按要求(规范),保证厂区人流、物流畅通,并使装置、设备操作维护便利;在高程、流程设计时,本着节能原则,尽可能地减提升次数,采用一次提升后的逐级自流设计方式。
Abstract:ON Semiconductor (OnSemi) Company A-B-type main NCP2890 audio power amplifier performance characteristics and the basic working principle, give the design of the NCP2890 audio amplifier with a typical application circuit and design method.Key words: NCP2890; AB type; audio amplifier1 outlinesON Semiconductor NCP2890 are (OnSemi) has introduced cost-effective, full-featured audio Series Products of the first audio power amplifier, it is designed for mobile phone and PDA, such as battery-powered wireless devices designed for production, are one kinds of very good quality wireless applications A-B-type audio power amplifier can provide customers with superior audio performance. The device has a superior power supply rejection ratio (PSRR) and total harmonic distortion plus noise (THD + N) characteristics at the same time, a combination of external control gain characteristics and adjustable boot and shutdown time delay function, and have a "startup and shutdown "control circuit that can eliminate the opening and closing of such audio power amplifier generated audible noise, can be flexibly used in portable audio equipment design. NCP2890 allows lithium-ion or lithium polymer battery direct power supply, and thus obviates the extra Low Dropout Regulators (LDO), while reducing board space and reduces the overall cost. 2-chip structure and performance parametersTo meet the specific needs of the market, NCP2890 currently have Mi-crobump-9 (2.25mm2) and Micro-8 (14.7mm2) two different kinds of packaging forms, shown in Figure 1 with its pin diagram, all cited the function of the foot such as Table 1 NCP2890 include 671 internal transistor, MOS gate 1899, which has excellent audio performance, Table 2 give the NCP2890 the main performance parameters.Table 2NC2890 main performance parameters3 Application Circuit DesignFigure 2 shows a typical NCP2890 audio amplifier application circuit, Figure 2 can be seen from, NCP2890 external only used to adjust the gain of the two resistors, an input coupling capacitor, a bypass capacitor, such as a small number of components, therefore the external requirements devices extremely easy3.1 Working Principle circuitNCP2890 contains two identical power amplifiers, the input audio signal by the first power amplifier amplified the output from the OUTA. Voltage gain by external resistor Rf and Rin the ratio of the decision. The audio signal amplified by the gain of one and then the second power amplifier RP enlarge, and OUTB output. Because of OUTA and OUTB client-side audio output signal power equal to the size, phase contrast, and two outputs (OUTA and OUTB) DC the same static potential (Vp / 2), so, speakers can be connected directly to the client OUTA and OUTB , rather than increase the output coupling circuit. Two power amplifier output stage using PMOS and NMOS transistors by the special design. Normal conduction, the channel resistance of less than 0.6Ω, and thus its output waveform distortion is very small.General power amplifier in the open and turn off the process will produce the human ear can hear the noise, in order to eliminate audible noise, in-house designed NCP2890 noise elimination circuit. Boot time, add the switch control logic high end of bypass capacitor Cby on the DC voltage values begin to increase exponentially when the voltage value reaches the value of common-mode voltage (Vp / 2) when the beginning of output power (this process around 50ms); and shutdown, the control low-level termination, load to be connected to the grounding terminal, the output power to zero, when the DC circuit quiescentcurrent less than 100nA3.2 circuit element parametersRin and Rf amplifier used to set the closed-loop gain, NCP2890 in order to optimize the performance of the closed-loop gain amplifier should be set at a relatively low level, THD at this time the smallest, the largest signal to noise ratio, wide frequency response range. So in most cases, the closed-loop gain amplifier installed in general between 2 ~ 5, therefore, input resistance (Rin) values of D in the 20kΩ more appropriate, and Rf is used to adjust the closed-loop gain to control the output power. Input coupling capacitor Cin input amplifier used to isolate the DC voltage, Rin simultaneously with the formation of a high-pass filter, but it will affect the filter cutoff frequency threshold. In order to enable the low-frequency signals do not decay too great, in theory, Cin should take a larger value, while the larger capacitor charge and discharge time is long, therefore, required a longer period of time to make input to reach the static potential Vp / 2, which is easy to make the output noise generated boot. Therefore, in most cases, Cin values generally between 0.1 ~ 0.39μF more appropriate (Rin = 20kΩ pm). Bypass capacitor Cby are common-mode voltage (Vp / 2) of the filter, is to determine the length of the boot, boot noise reduction as a key component, in most cases, 1.0μF bypass capacitor Cby check more appropriate. R1 and R2 components of the partial pressure circuit chips used to produce the start voltage, general R1 value 100kΩ, designed according to voltage value to select the resistance R2, as long as the pressure so that the value is greater than 1.2V can be about 3.3 CautionWhen the circuit reaches the maximum output power Porms = 1.0W, Vp = 5.0V, RL = 8.0Ω when the load on the peak current of 500mA. In order to prevent the output load circuit when the output current is too large, set up chip output current detection circuit, it can be limited to a maximum output circuit 800mA. In this way, once the output current of over 800mA, the output side of the four MOS transistors will be gated off and no longer voltage output current. When the chip temperature exceeds 160 ℃, the internal amplifier will be shut down and stop working until the temperature is below 140 ℃, the internal amplifier to begin work to restart. Despite the NCP2890 contains an internal over-current and over-temperature protection circuit, but when in use, we must pay attention to power supply voltage should not exceed their limits, so as to avoid chip damage.摘要:介绍了安森美半导体(OnSemi)公司A-B类音频功率放大器NCP2890的主要性能特点和基本工作原理,给出了用NCP2890设计音频功放的典型应用电路和设计方法。
安森美为智能电表应用提供解决方案在方兴未艾的智能电网应用中,智能电表发挥关键的作用。
安森美半导体身为应用于高能效绿色电子产品的首要高性能硅方案供应商,在提供应用于智能电表的方案方面经验丰富,历史悠久。
我们应用于智能电表的电力线载波(PLC)调制解调器和电源管理产品在欧洲拥有成功应用纪录,同时我们还提供丰富的存储器(EEPROM 及SRAM)、时钟、接口、保护/滤波产品等,构成我们应用于智能电表的完整解决方案。
本文将介绍用于各个功能模块的方案。
通信模块:PLC 调制解调器及线路驱动器方案智能电网应用中,从智能电表到数据集中器(concentrator)这一段的网络连接通常对通信速率的要求不高,最主要的考虑因素是降低成本。
电力线载波(PLC)技术因为不需要额外布线以及相对较低的成本,非常适合应用于这类系统。
而在PLC 调制技术方面,复杂度低、商业应用潜力更大及有可靠现场应用记录的S-FSK 调制技术无疑是适合的选择。
安森美半导体在开发PLC 调制解调器方面拥有较长的历史。
速率1.2 kb 的AMIS-30585 为早前推出,最初开发时就符合IEC 61334 标准(S-FSK 规范),迄今已历经8 年的现场应用检验。
这器件采用PLCC-28 封装。
为了应对客户对更高数据率的要求,安森美半导体推出了AMIS-49587高集成度低功率PLC 调制解调器方案。
这器件支持2.4 kb 的更高半双工可调节通信速率,提供PLCC-28 和QFN-52 等不同封装,符合IEC61334-5-1 标准,为客户提供众多应用优势,如基于ARM7TDMI 处理器内核,同时包含物理接口收发器(PHY)和媒体访问控制器(MAC)层,使其以单芯片方案结合了模拟调制解调器前端和数字后处理功能。
设计人员使用AMIS-49587 调制解调器,可以简化设计,能更快地开发出全套互操作PLC 方案,还降低开发成本。
安森美高性能语音捕获系统级芯片R26
佚名
【期刊名称】《世界电子元器件》
【年(卷),期】2015(000)006
【摘要】<正>概述BELASIGNA R261是一个完整的系统级芯片(SoC)解决方案,在语音捕获应用(例如笔记本电脑、手机、网络摄像头、平板电脑和得益于更高语音清晰度的其他应用程序)中实现了先进的双麦克风降噪。
该芯片采用了新方法来去除机械、固定和非固定噪声,能够保持语音自然性,从而提高了语音清晰度,即使是在讲话人远离或者并未完全对准麦克风时,从而为终端用户提供了无与伦比的行动自由。
Bela Signa R261与各种编解码器、基带芯片和麦克风兼容,无需校准,易于集成,从
【总页数】1页(P32)
【正文语种】中文
【中图分类】TN47
【相关文献】
1.安森美半导体推出高性能语音捕获SoC [J],
2.安森美半导体推出BelaSigna-R261高性能语音捕获SoC [J],
3.安森美半导体推出新的语音触发系统级芯片方案 [J],
4.安森美半导体推出基于DSP的系统级芯片 [J],
5.安森美半导体推出BelaSigna—R261高性能语音捕获SoC [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
AC-DC芯片选型安森美半导体是全球高性能电源解决方案领先供应商,NCP系列单片开关电源管理芯片为中小功率各种电源提供先进的解决方案,具有使用灵活、电路简单、成本低廉等众多优点。
安森美半导体最近推出NCP101X 系列电源管理芯片,应用电路极其灵活,可设计成隔离或者非隔离的AC-DC变换电路,NCP101X是家用电器、工业应用领域取代小功率线性电源的理想芯片。
NCP101X集成固定频率电流模式控制器、700V的MOSFET,软启动,频率抖动,短路保护,跳频模式,最大峰值电流设置和动态自供电等,仅使用数个外围元件即可实现市电到低压直流的小功率变换。
由于去掉体积大成本高的变压器,克服阻容降压电路负载特性差等缺点,因此应用NCP101X,可实现体积更小,重量更轻,效率更高的低成本方案。
NCP101X系列包含NCP1010、NCP1011、NCP1012、NCP1013、NCP1014和NCP1015。
提供多种开关频率,多种封装,多种峰值电流,如下表所示。
表1.1 NCP101X选型表TNY264开关电源的应用电路图TNY264开关电源的应用电路图TinySwitch II系列产品可广泛用于23W以下小功率、低成本的高效开关电源。
例如,IC卡付费电度表中的小型化开关电源模块,手机电池恒压/恒流充电器,电源适配器(Powersupplyadapter),微机、彩电、激光打印机、录像机、摄录像机等高档家用电器中的待机电源(Standbypowersupply),还适用于ISDN及DSL网络终端设备。
使用TinySwitch II便于实现开关电源的优化设计。
由于其开关频率提高到132kHz,因此高频变压器允许采用EE13或EF12.6小型化磁芯,并达到很高的电源效率。
TinySwitch II具有频率抖动特性,仅用一只电感(在输出功率小于3W或可接受的较低效率时,还可用两个小电阻)和两只电容,即可进行EMI滤波。
G.C.P.: Gain Compression Point, S.C.L.: Single Carrier LevelCASE STYLE: IAFujitsu recommends the following conditions for the reliable operation of GaAs FETs:1. The drain-source operating voltage (V DS ) should not exceed 10 volts.2. The forward and reverse gate currents should not exceed 13.0 and -1.4 mA respectively with gate resistance of 100Ω.DESCRIPTIONThe FLM1314-3F is a power GaAs FET that is internally matched for standard communication bands to provide optimum power and gain in a 50 ohm system.Eudyna’s stringent Quality Assurance Program assures the highest reliability and consistent performance.FEATURES• High Output Power:P 1dB = 35.0dBm (Typ.)• High Gain:G 1dB = 5.5dB (Typ.)• High PAE:ηadd = 25% (Typ.)• Low IM 3= -45dBc@Po = 24.0dBm • Broad Band:13.75 ~ 14.5GHz• Impedance Matched Zin/Zout = 50ΩPOWER DERATING CURVE500100150200Case Temperature (°C)243018126T o t a l P o w e r D i s s i p a t i o n (W)OUTPUT POWER & IM 3 vs. INPUT POWERV DS =10V f1 = 14.5 GHz f2 = 14.51 GHz 2-tone test1519172321Input Power (S.C.L.) (dBm)S.C.L.: Single Carrier LevelO u t p u t P o w e r (S .C .L .) (d B c )-25-15-35-45-5524222026283018I M 3 (d B c )IM 3P out13.913.714.114.314.5323133343536Frequency (GHz)O u t p u t P o w e r (d B m )OUTPUT POWER vs. FREQUENCYV DS = 10V P 1dBPin = 31dBm29dBm 27dBm25dBm201822242628303228242630323436301020Input Power (dBm)O u t p u t P o w e r (d B m )ηa d d (%)ηaddPoutOUTPUT POWER vs. INPUT POWERV DS = 10V f = 14.25 GHzS 0°S 21S 12S-PARAMETERSV DS = 10V , I DS = 900mAFREQUENCY S11S21S12S22(MHZ)MAG ANG MAG ANG MAG ANG MAG ANG 1355.52260.0 1.928-160.3.071-179.5.52789.51360.50354.7 1.973-165.0.079176.8.51184.81365.48549.3 2.012-169.9.083171.6.49679.61370.46143.5 2.044-175.0.087165.4.47574.61375.44037.4 2.080179.9.090161.9.45869.31380.41831.2 2.114174.5.096156.3.43863.71385.39424.4 2.145169.3.102150.8.41957.51390.37017.6 2.160163.8.105146.9.39850.71395.34410.0 2.181158.3.109139.7.37644.21400.322 2.1 2.187153.1.115136.8.35536.71405.299-6.0 2.197147.5.120130.8.33329.11410.275-15.0 2.196142.0.123127.0.31821.31415.255-24.8 2.193136.5.126121.4.29712.31420.235-35.9 2.186130.8.128115.3.278 3.81425.220-46.3 2.174125.4.132110.1.263-5.81430.205-58.6 2.152119.9.133104.5.245-16.41435.195-71.6 2.133114.5.137100.3.232-27.51440.190-85.3 2.107109.0.13894.1.219-37.71445.190-98.6 2.081103.7.13989.4.209-49.31450.193-111.2 2.04298.7.13984.0.205-60.71455.199-123.6 2.02193.4.14079.5.204-71.81460.212-135.6 1.98488.3.14174.9.206-83.41465.223-146.3 1.94483.4.13969.1.205-93.71470.245-155.51.90978.2.13865.4.211-104.6Eudyna Devices Inc. products contain gallium arsenide(GaAs) which can be hazardous to the human body and the environment. For safety, observe the following procedures:CAUTION• Do not put this product into the mouth.• Do not alter the form of this product into a gas, powder, or liquidthrough burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed.• Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures.For further information please contact:Eudyna Devices USA Inc.2355 Zanker Rd.San Jose, CA 95131-1138, U.S.A.TEL:(408) 232-9500FAX:(408) 428-9111Eudyna Devices Europe Ltd.Network House Norreys DriveMaidenhead, Berkshire SL6 4FJ United KingdomTEL:+44 (0) 1628 504800FAX:+44 (0) 1628 504888Eudyna Devices Asia Pte Ltd.Hong Kong BranchRm.1101, Ocean Centre, 5 Canton Rd.Tsim Sha Tsui, Kowloon, Hong Kong TEL:+852-2377-0227FAX:+852-2377-3921Eudyna Devices Inc.Sales Division1, Kanai-cho, Sakae-kuY okohama, 244-0845, Japan TEL:+81-45-853-8156FAX:+81-45-853-8170Eudyna Devices Inc.reserves the right to change products and specifications without notice.The information does not convey any license under rights of Eudyna Devices Inc.or others.©2004 Eudyna Devices USA Inc.Printed in U.S.A.。
FS6500, FS4500Safety power system basis chip with CAN FD and LIN transceiversRev. 7.0 — 11 November 2020Product short data sheet1General descriptionThe FS6500/FS4500 SMARTMOS devices are a multi-output, power supply, integrated circuit, including CAN Flexible Data (FD) and/or LIN transceivers, dedicated to the automotive market.Multiple switching and linear voltage regulators, including low-power mode (32 μA) are available with various wake-up capabilities. An advanced power management scheme is implemented to maintain high efficiency over a wide range of input voltages (down to 2.7V) and output current ranges (up to 2.2 A).The FS6500/FS4500 includes configurable fail-safe/fail silent safety behavior and features, with two fail-safe outputs, becoming a full part of a safety oriented system partitioning, to reach a high integrity safety level (up to ASIL D).The built-in CAN FD interface fulfills the ISO 11898-2(13)and -5(14)standards. The LINinterface fulfills LIN protocol specifications 2.0, 2.1(23), 2.2(24), and SAE J2602-2(25).High temperature capability up to T A = 125 °C and T J = 150 °C, compliant with AEC-Q100 Grade 1 automotive qualification.2Features and benefits•Battery voltage sensing and MUX output pin•Highly flexible SMPS pre-regulator, allowing two topologies: non-inverting buck-boost and standard buck•Family of devices to supply MCU core from 1.0 V to 5.0 V, with SMPS (0.8 A, 1.5 A or 2.2 A) or LDO (0.5 A)•Linear voltage regulator dedicated to auxiliary functions, or to sensor supply (V CCA tracker or independent), 5.0 V, or 3.3 V•Linear voltage regulator dedicated to MCU Analog/Digital (A/D) reference voltage or I/Os supply (V CCA ), 5.0 V, or 3.3 V•3.3 V keep alive memory supply available in low-power mode •Long duration timer, counting up to 6 months with 1.0 s resolution •Multiple wake-up sources in low-power mode: CAN, LIN, IOs, LDT •Five configurable I/Os3Applications•Drive Train Electrification (BMS, Hybrid EV and HEV, Inverter, DC-DC, Alterno Starter)•Drive Train - Chassis and Safety (Active Suspension, Steering, Safety Domain Gateway)•Power Train (EMS, TCU, Gear Box)•ADAS (LDW, Radar, Sensor Fusion Safety area)Safety power system basis chip with CAN FD and LIN transceivers 4Simplified application diagramsSafety power system basis chip with CAN FD and LIN transceivers 5Ordering information5.1Part number definitionMC33FS c 5 x y z AE/R2Safety power system basis chip with CAN FD and LIN transceivers5.2Part numbers listSafety power system basis chip with CAN FD and LIN transceivers[1]To order parts in tape and reel, add the R2 suffix to the part number.[2]LIN and FS1B functions are exclusive. The differentiation is made by part numbers. When LIN is available, FS1B is not, and vice versa. VKAM on bydefault is available on certain part numbers only.Safety power system basis chip with CAN FD and LIN transceivers 6Block diagramSafety power system basis chip with CAN FD and LIN transceivers7Pinning information7.1Pinning informationVSUP1BOOT_CORE VSUP2SW_CORE VSENSE VCORE_SNS VSUP3COMP_CORE FS1B FB_CORE GND_COM SELECT CAN_5V VDDIO CANH INTB CANLNCS IO_4SCLK IO_5/VKAM MOSI IO_0MISOF C R B M S W _P R E 1F S 0B S W _P R E 2D E B U G B O O T _P R EA G N D D G N DM U X _O U T G A T E _L SI O _2V C C AI O _3V C C A _BT X D V C C A _ER X D V A U X _EV P U _F S V A U X _Bn .c .R S T B V A U XV P R Eaaa-037734123456789101112363534333231302928272625131415161718192021222348474645444342414039383724Figure 5. FS6500 pinout with CAN and FS1BVSUP1BOOT_CORE VSUP2SW_CORE VSENSE VCORE_SNS VSUP3COMP_CORE LINFB_CORE GND_COM SELECT CAN_5V VDDIO CANH INTB CANLNCS IO_4SCLK IO_5/VKAM MOSI IO_0MISOF C R B M S W _P R E 1F S 0B S W _P R E 2D E B U G B O O T _P R EA G N D D G N DM U X _O U T G A T E _L SI O _2V C C AI O _3V C C A _BT X D V C C A _ER X D V A U X _ET X D L V A U X _BR X D L R S T B V A U XV P R E aaa-037735123456789101112363534333231302928272625131415161718192021222348474645444342414039383724Figure 6. FS6500 pinout with CAN and LINSafety power system basis chip with CAN FD and LIN transceiversVSUP1BOOT_CORE VSUP2SW_CORE VSENSE VCORE_SNS VSUP3COMP_CORE n.c.FB_CORE GND_COM SELECT CAN_5VVDDIO n.c INTB n.cNCS IO_4SCLK IO_5/VKAM MOSI IO_0MISOF C R B M S W _P R E 1F S 0B S W _P R E 2D E B U G B O O T _P R EA G N D D G N DM U X _O U T G A T E _L SI O _2V C C AI O _3V C C A _Bn .c .V C C A _En .c .V A U X _En .c .V A U X _Bn .c .R S T B V A U XV P R Eaaa-037736123456789101112363534333231302928272625131415161718192021222348474645444342414039383724Figure 7. FS6500 pinout without CAN, without LINVSUP1n.c.VSUP2VCORE VSENSE VCORE_SNS VSUP3n.c.FS1B FB_CORE GND_COM SELECT CAN_5V VDDIO CANH INTB CANLNCS IO_4SCLK IO_5/VKAM MOSI IO_0MISOF C R B M S W _P R E 1F S 0B S W _P R E 2D E B U G B O O T _P R EA G N D D G N DM U X _O U T G A T E _L SI O _2V C C AI O _3V C C A _BT X D V C C A _ER X D V A U X _EV P U _F S V A U X _Bn .c .R S T B V A U XV P R Eaaa-037737123456789101112363534333231302928272625131415161718192021222348474645444342414039383724Figure 8. FS4500 pinout with CAN and FS1BSafety power system basis chip with CAN FD and LIN transceivers7.2Pin descriptionA functional description of each pin can be found in the full data sheet.Safety power system basis chip with CAN FD and LIN transceiversSafety power system basis chip with CAN FD and LIN transceivers8Maximum ratingsTable 4. Maximum ratingsAll voltages are with respect to ground, unless otherwise specified. Exceeding these ratings may cause a malfunction or permanent damage to the device.Safety power system basis chip with CAN FD and LIN transceiversSafety power system basis chip with CAN FD and LIN transceivers[1]All V SUPS (V SUP1/2/3) must be connected to the same supply (Figure 1).[2]Compared to AGND.[3]Per JEDEC JESD51-6(18) with the board (JESD51-7)(19) horizontal.[4]Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC - 883 Method 1012.1)(22).[5]Thermal resistance between the die and the solder pad on the bottom of the packaged based on simulation without any interface resistance.9Packaging9.1Package mechanical dimensionsPackage dimensions are provided in package drawings. To find the most currentpackage outline drawing, go to and perform a keyword search for thedrawing’s document number.Safety power system basis chip with CAN FD and LIN transceivers 9.2Package outlineSafety power system basis chip with CAN FD and LIN transceiversSafety power system basis chip with CAN FD and LIN transceiversSafety power system basis chip with CAN FD and LIN transceivers 10SolderingSafety power system basis chip with CAN FD and LIN transceiversSafety power system basis chip with CAN FD and LIN transceiversSafety power system basis chip with CAN FD and LIN transceivers 11ReferencesObtain additional information on related NXP products and application solutions throughthe documents and URLs listed below.(1)AN5238 - FS6500 and FS4500 Safe System Basis Chip Hardware Design and Product Guidelines - Application Notehttps:///AN5238-DOWNLOAD(2)AN4388 - Quad Flat Package (QFP)https:///files/analog/doc/app_note/AN4388.pdf(3)FS6500-FS4500PDTCALC - Power dissipation tool (Excel File)https:///files/analog/software_tools/FS6500-FS4500-power-dissipation-calculator.xlsx(4)V CORE compensation network simulation tool (CNC)[1](5)FMEDA - FS6500/FS4500 FMEDA[1](6)FS6500-FS4500SMUG - FS6500/FS4500 Safety manual – user guidehttps:///products/product-hierarchy?query=Sm5509(7)KITFS6522LAEEVM - FS6522, System Basis Chip, DC-DC 2.2 A Vcore LDT, CAN, LIN/KITFS6522LAEEVM(8)KITFS6523CAEEVM - FS6523, System Basis Chip, DC-DC 2.2A Vcore FS1B LDT CANhttps:///KITFS6523CAEEVM(9)KITFS4503CAEEVM - FS4503, System Basis Chip, Linear 0.5 A Vcore, FS1b, LDT, CANhttps:///KITFS4503CAEEVM(10)FS6500 product summary page -https:///FS6500(11)FS4500 product summary page -https:///FS4500(12)Analog power management homepage -https:///products/power-management(13)ISO 11898-2:2003 - Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access unithttps:///standard/33423.html(14)ISO 11898-5:2007 - Road vehicles — Controller area network (CAN) — Part 5: High-speed medium access unit withlow-power modehttps:///contents/data/standard/04/12/41284.html(15)ISO 7637-2:2011 - Road vehicles — Electrical disturbances from conduction and coupling — Part 2: Electricaltransient conduction along supply lines onlyhttps:///standard/50925.html(16)ISO 10605:2008 - Road vehicles — Test methods for electrical disturbances from electrostatic dischargehttps:///standard/41937.html(17)IEC 61000-4-2:2008 - Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques -Electrostatic discharge immunity testhttps://webstore.iec.ch/publication/4189(18)JESD51- 6 - INTEGRATED CIRCUIT THERMAL TEST METHOD ENVIRONMENTAL CONDITIONS - FORCEDCONVECTION (MOVING AIR)(19)JESD51-7 - HIGH EFFECTIVE THERMAL CONDUCTIVITY TEST BOARD FOR LEADED SURFACE MOUNTPACKAGES(20)JESD22-A114F - ELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING HUMAN BODY MODEL (HBM)Safety power system basis chip with CAN FD and LIN transceivers (21)JESD22-C101F - FIELD-INDUCED CHARGED-DEVICE MODEL TEST METHOD FOR ELECTROSTATICDISCHARGE WITHSTAND THRESHOLDS OF MICROELECTRONIC COMPONENTS(22)MIL-STD-883-1, Method 1012.1 - TEST METHOD STANDARD MICROCIRCUITS(23)LIN Specification Package Revision 2.1:2006https:///fileadmin/microsites//resources/documents/LIN-Spec_Pac2_1.pdf(24)LIN Specification Package Revision 2.2A:2010https:///fileadmin/microsites//resources/documents/LIN_2.2A.pdf(25)SAE J2602-2:201211 - LIN Network for Vehicle Applications Conformance Testhttps:///standards/content/j2602/2_201211/[1]Available upon request.12Revision historySafety power system basis chip with CAN FD and LIN transceivers 13Legal information13.1 Data sheet status[1]Please consult the most recently issued document before initiating or completing a design.[2]The term 'short data sheet' is explained in section "Definitions".[3]The product status of device(s) described in this document may have changed since this document was published and may differ in case of multipledevices. The latest product status information is available on the Internet at URL .13.2 DefinitionsDraft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may resultin modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors productis deemed to offer functions and qualities beyond those described in the Product data sheet.13.3 DisclaimersLimited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does notgive any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liabilityfor the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makesno representation or warranty that such applications will be suitablefor the specified use without further testing or modification. Customersare responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated withtheir applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is basedon any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above thosegiven in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at /profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance orthe grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.Safety power system basis chip with CAN FD and LIN transceiversTranslations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.Security — Customer understands that all NXP products may be subjectto unidentified or documented vulnerabilities. Customer is responsiblefor the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary technologies supported by NXP products for usein customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT)(************************)thatmanagestheinvestigation, reporting, and solution release to security vulnerabilities of NXP products.Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL-classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referredto as “Critical Applications”), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerningits products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable forany such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys’ fees) that NXP may incur related to customer’s incorporation of any product in a Critical Application.13.4 TrademarksNotice: All referenced brands, product names, service names and trademarks are the property of their respective owners.NXP — wordmark and logo are trademarks of NXP B.V.SafeAssure — is a trademark of NXP B.V.Safety power system basis chip with CAN FD and LIN transceivers TablesTab. 1.Part number breakdown (3)Tab. 2.Orderable part variations (4)Tab. 3.FS6500/FS4500 pin definition ...........................9Tab. 4.Maximum ratings (11)Tab. 5.Package mechanical dimensions (13)Tab. 6.Revision history (21)FiguresFig. 1.FS6500C simplified application diagram -buck boost configuration - FS1B (2)Fig. 2.FS6500L simplified application diagram -buck configuration - LIN - VCCA = 100 mA (2)Fig. 3.FS4500C simplified application diagram -buck boost configuration - FS1B (3)Fig. 4.FS6500/FS4500 with CAN and LINsimplified internal block diagram (6)Fig. 5.FS6500 pinout with CAN and FS1B (7)Fig. 6.FS6500 pinout with CAN and LIN (7)Fig. 7.FS6500 pinout without CAN, without LIN ..........8Fig. 8.FS4500 pinout with CAN and FS1B (8)Fig. 9.SOT1571-1 Rev F (14)Fig. 10.SOT1571-1 Rev. F Detail View (15)Fig. 11.SOT1571-1 Rev F Notes (16)Fig. 12.SOT1571-1 Rev. F - PCB design guidelines- solder mask opening pattern (17)Fig. 13.SOT1571-1 Rev. F - PCB design guidelines- I/O pads and solderable area (18)Fig. 14.SOT1571-1 Rev. F - PCB design guidelines- solder paste stencil (19)Safety power system basis chip with CAN FD and LIN transceiversPlease be aware that important notices concerning this document and the product(s)described herein, have been included in section 'Legal information'.Contents1General description ............................................12Features and benefits .........................................13Applications .........................................................14Simplified application diagrams ........................25Ordering information ..........................................35.1Part number definition .......................................35.2Part numbers list ...............................................46Block diagram .....................................................67Pinning information ............................................77.1Pinning information ............................................77.2Pin description ...................................................98Maximum ratings ...............................................119Packaging ..........................................................139.1Package mechanical dimensions ....................139.2Package outline ...............................................1410Soldering ............................................................1711References .........................................................2012Revision history (2113)Legal information (22)。
安森美半导体完整ESD及EMI保护方案
对于电子产品而言,保护电路是为了防止电路中的关键敏感型器件受
到过流、过压、过热等冲击的损害。
保护电路的优劣对电子产品的质量和寿命
至关重要。
随着消费类电子产品需求的持续增长,更要求有强固的静电放电(ESD)保护,同时还要减少不必要的电磁干扰(EMI)/射频干扰(RFI)噪声。
此外,消费者希望最新款的消费电子产品可以用小尺寸设备满足越来越高的下载和带
宽能力。
随着设备的越来越小和融入性能的不断增加,ESD以及许多情况下的EMI/RFI抑制已无法涵盖在驱动所需接口的新一代IC当中。
另外,先进的系统级芯片(SoC)设计都是采用几何尺寸很小的工艺制造的。
为了优化功能和芯片尺寸,IC设计人员一直在不断减少其设计的功能的最小尺寸。
IC尺寸的缩小导致器件更容易受到ESD电压的损害。
过去,设计人员只要选择符合IEC61000-4-2规范的一个保护产品就足够了。
因此,大多数保护产品的数据表只包括符合评级要求。
由于集成电路变得
越来越敏感,较新的设计都有保护元件来满足标准评级,但ESD冲击仍会形成过高的电压,有可能损坏IC。
因此,设计人员必须选择一个或几个保护产品,
不仅要符合ESD脉冲要求,而且也可以将ESD冲击钳位到足够低的电压,以
确保IC得到保护。
图1:美国静电放电协会(ESDA)的ESD保护要求
先进技术实现强大ESD保护
安森美半导体的ESD钳位性能备受业界推崇,钳位性能可从几种方法观察和量化。
使用几个标准工具即可测量独立ESD保护器件或集成器件的ESD。
载波通信芯片载波通信芯片是一种用于无线通信中的重要电子元件,它可以实现信号的调制、放大、解调等功能。
本文将从其工作原理、应用领域和未来发展趋势等方面进行探讨。
一、工作原理载波通信芯片的工作原理可以简单地描述为两个步骤:调制和解调。
首先,调制器将要传输的信息信号与一定频率的高频信号进行合成,形成调制信号。
然后,调制信号通过天线发送出去,经过传输介质(如空气)到达接收端,再经过解调器进行解调,恢复出原始的信息信号。
具体来说,载波通信芯片内部包含有振荡器、放大器、滤波器和调制器等重要模块。
振荡器负责产生一定频率的高频信号,放大器将调制信号放大到合适的幅度,滤波器则用于去除频率不需要的信号,最后调制器将信息信号与高频信号进行合成。
二、应用领域载波通信芯片被广泛应用于各种无线通信设备中,如手机、电视、无线网络设备等。
其主要应用领域包括以下几个方面:1. 移动通信:载波通信芯片是实现手机通信的核心部件,可以使手机与基站之间进行无线信号的传输。
2. 无线网络:无线路由器、无线接入点等设备中的载波通信芯片可以实现无线网络的组网和数据传输。
3. 电视广播:数字电视和卫星电视等广播系统中的载波通信芯片可以实现信号的调制和解调,使电视信号进行无线传输。
4. 蓝牙设备:蓝牙耳机、蓝牙音箱等设备中的载波通信芯片可以实现蓝牙信号的传输和接收。
三、未来发展趋势随着5G时代的到来,载波通信芯片也将迎来新的发展机遇和挑战。
未来的载波通信芯片有以下几个发展趋势:1. 低功耗:随着物联网的兴起,对于无线通信设备的功耗要求越来越低,未来的载波通信芯片将更加注重节能和降低功耗。
2. 高速传输:5G网络的高速传输要求使通信芯片需要具备更高的数据传输能力和更快的信号处理速度。
3. 强安全性:随着数字安全威胁的增加,未来的载波通信芯片需要提供更高的安全性和防护机制,以防止信息泄漏和黑客攻击。
4. 小型化:随着电子设备的小型化趋势,未来的载波通信芯片将越来越小巧,以适应各种微型设备的需求。
太阳能电池控制器NCP1294功能介绍
安森美半导体开发了一款太阳能电池控制器NCP1294,用来实现太阳能电池板的最大峰值功率点跟踪(MPPT),以最高能效为蓄电池充电。
本文将介绍该器件的一些主要功能和应用时需要注意的问题。
增强型电压模式PWM 控
制器
NCP1294 是一款固定频率电压模式PWM 前馈控制器,包含电压模式运作所需的所有基本功能。
作为支持降压、升压、降压-升压及反激等不同拓扑结构的充电控制器,NCP1294 针对高频初级端控制操作进行了优化,具有逐脉冲限流及双向同步功能,支持功率最高达140 W 的太阳能板。
这款器件提供的MPPT 功能能够定位最大功率点,并实时根据环境条件来调节,使控制器保持接近最大功率点,从而从太阳能板析取最大的电量,提供最佳的能效。
此外,NCP1294 还具有软启动、精确控制占空比限制、低于50 μA的启动电流、过压和欠压保护等功能。
在太阳能应用中,NCP1294 可以作为一种灵活的解决方案,用在模块级电源管理(MLPM)解决方案。
基于NCP1294 的参考设计最大功率点追踪误差小于5%,可以为串联或并联的四个电池充电。
图1
是NCP1294 120 W 太阳能控制器框图。
图1:安森美半导体的NCP1294 120 W 太阳能控制器框图
如图1 所示,该系统的核心是功率段,它必须承受12 V 至60 V 的输入电压,并产生12 V 至36 V 的输出。
由于输入电压范围覆盖了所需的输出电压,必须有一个降压-升压拓扑结构来支持应用。
设计人员可以选择多种拓扑结构:SEPIC、非反相降压-升压。
反激式、单开关正激、双开关正激、半桥、全桥或。
REV.BInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication oraWideband, Unity-Gain Stable,Fast Settling Op AmpAD841One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.FEATURESAC PERFORMANCEUnity-Gain Bandwidth: 40 MHz Fast Settling: 110 ns to 0.01%Slew Rate: 300 V/sFull Power Bandwidth: 4.7 MHz for 20 V p-p into a 500 ⍀ Load DC PERFORMANCEInput Offset Voltage: 1 mV max Input Voltage Noise: 13 nV/√Hz typOpen-Loop Gain: 45 V/mV into a 1 k ⍀ Load Output Current: 50 mA min Supply Current: 12 mA maxAPPLICATIONSHigh Speed Signal Conditioning Video and Pulse Amplifiers Data Acquisition Systems Line Drivers Active FiltersAvailable in 14-Pin Plastic DIP Hermetic Cerdip, 12-Pin TO-8 Metal Can and 20-Pin LCC Packages Chips and MIL-STD-883B Parts Available PRODUCT DESCRIPTIONThe AD841 is a member of the Analog Devices family of wide bandwidth operational amplifiers. This high speed/high precision family includes, among others, the AD840, which is stable at a gain of 10 or greater, and the AD842, which is stable at a gain of two or greater and has 100 mA minimum output current drive.These devices are fabricated using Analog Devices’ junction iso-lated complementary bipolar (CB) process. This process permits a combination of dc precision and wideband ac performance previously unobtainable in a monolithic op amp. In addition to its 40 MHz unity-gain bandwidth product, the AD841 offers ex-tremely fast settling characteristics, typically settling to within 0.01% of final value in 110 ns for a 10 volt step.Unlike many high frequency amplifiers, the AD841 requires no external compensation. It remains stable over its full operating temperature range. It also offers a low quiescent current of12 mA maximum, a minimum output current drive capability of 50 mA, a low input voltage noise of 13 nV/√Hz and low input offset voltage of 1 mV maximum.The 300 V/µs slew rate of the AD841, along with its 40 MHz gain bandwidth, ensures excellent performance in video and pulse amplifier applications. This amplifier is well suited for use in high frequency signal conditioning circuits and wide band-width active filters. The extremely rapid settling time of thePlastic DIP (N) PackageandCerdip (Q) PackageCONNECTION DIAGRAMSTO-8 (H) Package LCC (E) PackageAD841 makes it the preferred choice for data acquisition applications which require 12-bit accuracy. The AD841 is also appropriate for other applications such as high speed DAC and ADC buffer amplifiers and other wide bandwidth circuitry.APPLICATION HIGHLIGHTS1.The high slew rate and fast settling time of the AD841make it ideal for DAC and ADC buffers, and all types of video instrumentation circuitry.2.The AD841 is a precision amplifier. It offers accuracy to 0.01% or better and wide bandwidth performance previ-ously available only in hybrids.3.The AD841’s thermally balanced layout and the speed of the CB process allow the AD841 to settle to 0.01% in 110 ns without the long “tails” that occur with other fast op amps.ser wafer trimming reduces the input offset voltage to 1 mV max on the K grade, thus eliminating the need for external offset nulling in many applications. Offset null pins are provided for additional versatility.5.The AD841 is an enhanced replacement for the HA2541.查询AD841供应商捷多邦,专业PCB打样工厂,24小时加急出货AD841–SPECIFICATIONS ModelAD841J AD841KAD841S 1ConditionsMinTyp Max Min Typ MaxMin TypMax Units INPUT OFFSET VOLTAGE 20.82.00.5 1.00.5 2.0mV T MIN –T MAX5.03.35.5mV Offset Drift353535µV/°C INPUT BIAS CURRENT3.58 3.55 3.58µA T MIN –T MAX10612µA Input Offset Current0.10.40.10.20.10.4µA T MIN –T MAX0.50.30.6µAINPUT CHARACTERISTICS Differential ModeInput Resistance 200200200k ΩInput Capacitance 222pF INPUT VOLTAGE RANGE Common Mode؎1012؎1012؎1012V Common-Mode Rejection V CM = ±10 V 8610010310986110dB T MIN –T MAX 8010080dB INPUT VOLTAGE NOISE f = 1 kHz151515nV/√Hz Wideband Noise 10 Hz to 10 MHz 474747µV rms OPEN-LOOP GAINV O = ±10 V R LOAD ≥ 500 Ω254525452545V/mV T MIN –T MAX 122012V/mVOUTPUT CHARACTERISTICS Voltage R LOAD ≥ 500 ΩT MIN –T MAX ±10±10±10V CurrentV OUT = ±10 V 505050mA OUTPUT RESISTANCE Open Loop 555ΩFREQUENCY RESPONSE Unity Gain Bandwidth V OUT = 90 mV p-p 404040MHz Full Power Bandwidth 3V O = 20 V p-p R LOAD ≥ 500 Ω 3.14.7 3.14.7 3.14.7MHz Rise Time 4A V = –1101010ns Overshoot 4A V = –1101010%Slew Rate 4A V = –1200300200300200300V/µs Settling Time – 10 V StepA V = –1to 0.1%900090ns to 0.01%110110110ns OVERDRIVE RECOVERY –Overdrive 200200200ns +Overdrive 700700700ns DIFFERENTIAL GAIN f = 4.4 MHz 0.030.030.03%Differential Phase f = 4.4 MHz0.0220.0220.022Degree POWER SUPPLY Rated Performance ±15±15±15V Operating Range ±5±18±5±18±5±18V Quiescent Current111211121112mA T MIN –T MAX141416mA Power Supply Rejection Ratio V S = ±5 V to ±18 V 861009010086100dB T MIN –T MAX808680dB TEMPERATURE RANGE Rated Performance 50+75+75–55+125°CPACKAGE OPTIONS LCC (E-20A)AD841SE, AD841SE/883B Cerdip (Q-14)AD841JQ AD841KQ AD841SQ, AD841SQ/883B Plastic (N-14)AD841JN AD841KN TO-8 (H-12)AD841JH AD841KHAD841SH, AD841SH/883BChipsAD841J CHIPSAD841S CHIPSNOTES 1Standard Military Drawing Available: 5962-89641012A – (SE/883B); 5962-8964101CA – (SQ/883B).2Input offset voltage specifications are guaranteed after 5 minutes at T A = +25°C.3Full power bandwidth = Slew Rate/2 π V PEAK .3Refer to Figure 19.4“S” grade T MIN –T MAX specifications are tested with automatic test equipment at T A = –55°C and T A = +125°C.All min and max specifications are guaranteed. Specifications shown in boldface are tested on all production units.(@ +25؇C and ؎15 V dc, unless otherwise noted)AD841ABSOLUTE MAXIMUM RATINGS1Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V Internal Power Dissipation2TO-8 (H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 W Plastic (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 W Cerdip (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±Vs Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . .±6 V Storage Temperature RangeQ, H, E . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +150°C N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +125°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . .+175°C Lead Temperature Range (Soldering 60 sec) . . . . . . . .+300°C NOTES1Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.2Maximum internal power dissipation is specified so that TJdoes not exceed +175°C at an ambient temperature of +25°C.Thermal Characteristics:θJCθJAθSACerdip Package35°C/W110°C/W38°C/W Recommended Heat Sink: TO-8 Package30°C/W100°C/W37°C/W Aavid Engineering© #602B Plastic Package30°C/W100°C/WLCC Package35°C/W150°C/WMETALIZATION PHOTOGRAPH Contact factory for latest dimensions.Dimensions shown in inches and (mm).Figure 1.Input Common-ModeRange vs. Supply Voltage Figure 4.Quiescent Current vs.Supply Voltage Figure 7.Quiescent Current vs.TemperatureAD841–Typical Characteristics(at +25؇C and V S = ؎15 V, unless otherwise noted)Figure 2.Output Voltage Swingvs. Supply Voltage Figure 5.Input Bias Current vs.TemperatureFigure 8.Short-Circuit CurrentLimit vs. Temperature Figure 3.Output Voltage Swingvs. Load ResistanceFigure 6.Output Impedance vs.FrequencyFigure 9.Gain Bandwidth Product vs. TemperatureAD841Figure 10.Open-Loop Gain andPhase Margin vs. Frequency Figure mon-ModeRejection vs. FrequencyFigure 16.Harmonic Distortion vs.Frequency Figure 12.Power Supply Rejectionvs. FrequencyFigure 15.Output Swing andError vs. Settling TimeFigure 18.Input Voltage NoiseSpectral DensityFigure 11.Open-Loop Gain vs.Supply VoltageFigure rge Signal FrequencyResponseFigure 17.Slew Rate vs.TemperatureAD841INPUT CONSIDERATIONSAn input resistor (R IN in Figure 20) is recommended in circuits where the input to the AD841 will be subjected to transient or continuous overload voltages exceeding the ±6 V maximum dif-ferential limit. This resistor provides protection for the input transistors by limiting the maximum current that can be forced into the input.For high performance circuits it is recommended that a resistor (R B in Figures 19 and 20) be used to reduce bias current errors by matching the impedance at each input. The output voltage error caused by the offset current is more than an order of mag-nitude less than the error present if the bias current error is not removed.AD841 SETTLING TIMEFigures 22 and 24 show the settling performance of the AD841in the test circuit shown in Figure 23.Settling time is defined as:The interval of time from the application of an ideal step function input until the closed-loop amplifier output has entered and remains within a specified error band.This definition encompasses the major components which com-prise settling time. They include (1) propagation delay through the amplifier; (2) slewing time to approach the final outputvalue; (3) the time of recovery from the overload associated withslewing and (4) linear settling to within the specified error band.Figure 19a.Inverting AmplifierConfiguration (DIP Pinout)Figure 20a.Unity-Gain Buffer AmplifierConfiguration (DIP Pinout)Figure 19b.Inverter Large SignalPulse Response Figure 20b.Buffer Large SignalPulse Response Figure 19c.Inverter Small SignalPulse ResponseFigure 20c.Buffer Small Signal Pulse ResponseOFFSET NULLINGThe input offset voltage of the AD841 is very low for a high speed op amp, but if additional nulling is required, the circuitshown in Figure 21 can be used.Figure 21.Offset Nulling (DIP Pinout)Figure 22.AD841 0.01% Settling TimeExpressed in these terms, the measurement of settling time is obvi-ously a challenge and needs to be done accurately to assure theuser that the amplifier is worth consideration for the application.Figure 23.Settling Time Test CircuitMeasurement of the AD841’s 0.01% settling in 110 ns was ac-complished by amplifying the error signal from a false summing junction with a very high speed proprietary hybrid error ampli-fier specially designed to enable testing of small settling errors.The device under test was driving a 500 Ω load. The input to the error amp is clamped in order to avoid possible problems as-sociated with the overdrive recovery of the oscilloscope input amplifier. The error amp gains the error from the false summing junction by 10, and it contains a gain vernier to fine trim the gain.Figure 24 shows the “long term” stability of the settling charac-teristics of the AD841 output after a 10 V step. There is no evi-dence of settling tails after the initial transient recovery time.The use of a junction isolated process, together with careful lay-out, avoids these problems by minimizing the effects of transis-tor isolation capacitance discharge and thermally induced shifts in circuit operating points. These problems do not occur even under high output current conditions.Applying the AD841Figure 24.AD841 Settling Demonstrating No Settling TailsGROUNDING AND BYPASSINGIn designing practical circuits with the AD841, the user must remember that whenever high frequencies are involved, some special precautions are in order. Circuits must be built with short interconnect leads. Large ground planes should be used whenever possible to provide a low resistance, low inductance circuit path, as well as minimizing the effects of high frequency coupling. Sockets should be avoided because the increased interlead capacitance can degrade bandwidth.Feedback resistors should be of low enough value to assure that the time constant formed with the circuit capacitances will not limit the amplifier performance. Resistor values of less than 5 k Ω are recommended. If a larger resistor must be used, a small (<10 pF) feedback capacitor in parallel with the feedback resistor, R F , may be used to compensate for these stray capaci-tances and optimize the dynamic performance of the amplifier in the particular application.Power supply leads should be bypassed to ground as close as possible to the amplifier pins. A 2.2 µF capacitor in parallel with a 0.1 µF ceramic disk capacitor is recommended.CAPACITIVE LOAD DRIVING ABILITYLike all wideband amplifiers, the AD841 is sensitive to capaci-tive loading. The AD841 is designed to drive capacitive loads of up to 20 pF without degradation of its rated performance. Ca-pacitive loads of greater than 20 pF will decrease the dynamic performance of the part although instability should not occur unless the load exceeds 100 pF (for a unity-gain follower). A resistor in series with the output can be used to decouple larger capacitive loads.Figure 25 shows a typical configuration for driving a large ca-pacitive load. The 51 Ω output resistor effectively isolates the high frequency feedback from the load and stabilizes the circuit.Low frequency feedback is returned to the amplifier summing junction via the low pass filter formed by the 51 Ω resistor and the load capacitance, C L .AD841C 1242–15–11/88P R I N T E D I N U .S .A.Figure 25.Circuit for Driving a Large Capacitive Load USING A HEAT SINKThe AD841 draws less quiescent power than most precision high speed amplifiers and is specified for operation without a heat sink. However, when driving low impedance loads, the cur-rent to the load can be 4 to 5 times the quiescent current. This will create a noticeable temperature rise. Improved performance can be achieved by using a small heat sink such as the Aavid Engineering #602B.TERMINATED LINE DRIVERThe AD841 functions very well as a high speed line driver of ei-ther terminated or unterminated cables. Figure 26 shows the AD841 driving a doubly terminated cable in a follower configu-ration. The AD841 maintains a typical slew rate of 300 V/µs,which means it can drive a ±10 V, 4.7 MHz signal or a ±3 V,15.9 MHz signal.The termination resistor, R T , (when equal to the characteristic impedance of the cable) minimizes reflections from the far end of the cable. A back-termination resistor (R BT , also equal to the characteristic impedance of the cable) may be placed between the AD841 output and the cable in order to damp any stray sig-nals caused by a mismatch between R T and the cable’s charac-teristic impedance. This will result in a “cleaner” signal, but since 1/2 the output voltage will be dropped across R BT , the op amp must supply double the output signal required if there is no back termination. Therefore the full power bandwidth is cut in half.If termination is not used, cables appear as capacitive loads. If this capacitive load is large, it should be decoupled from the AD841 by a resistor in series with the output (see above:Driving a Capacitive Load).Figure 26.Line Driver ConfigurationOVERDRIVE RECOVERYFigure 27 shows the overdrive recovery capability of the AD841.Typical recovery time is 200 ns from negative overdrive andFigure 27.Overdrive RecoveryFigure 28.Overdrive Recovery Test CircuitE-20A20-Terminal LeadlessCeramic Chip Carrier12-Lead Metal Can Package(TO-8 Style)14-Pin Cerdip (Q) Package14-Pin Plastic (N) Package OUTLINE DIMENSIONSDimensions shown in inches and (mm).。
安森美半导体Quantenna的WiWi-Fi标准从1999年制定实施以来,最迅速度由最初的11Mbps演化到54Mbps、600Mbps、6.8Gbps,到现在Wi-Fi 6的9.6Gbps,吞吐量不断提高,在Wi-Fi的天线方面,从最初的1x1到4x4乃至现在普遍用法的8x8。
从Wi-Fi 1到Wi-Fi 6,20年内提速约1000倍(3个数量级),这意味着若您想发送或接收一部3.8GB的电影,用Wi-Fi 1约耗时3850秒(64分钟),而用802.11ax Wi-Fi 6仅需约4.5秒。
无线技术频率和带宽越大越好从调幅(AM)到调频(FM)无线电再到5G,用法的频率越来越高,Wi-Fi 用法2.4GHz、5GHz的频段,将来的Wi-Fi 6E还会扩展到6GHz。
带宽越大,就能传输更多数据。
2.4GHz的带宽约83.5MHz,5GHz的带宽约500MHz,6GHz的带宽约1200MHz,是2.4GHz和5GHz合并值的两倍多。
什么是波束成形、MIMO和MU-MIMO波束成形是将能量聚焦于特定方向的传输,是用法数字信号处理让能量聚焦在所需要的客户端,在相控阵中组合元素以使特定角度的信号经受建设性干扰,而其他信号则经受破坏性干扰,以达成能量聚焦的目的,获得最佳的Wi-Fi信号增益。
安森美半导体的Quantenna是首创将波束成形用于4x4 Wi-Fi 4 产品的半导体供给商。
多入多出(MIMO)指在放射端和接收端都有多个天线的通信系统,从而提升收发数据的速度和信号强固性。
MU-MIMO基于MIMO和波束成形,支持多用户跨不同空间流,让Wi-Fi笼罩范围内的多个客户端都能获得最好的信号强度并提升速度。
安森美半导体的Quantenna是首个支持4x4、8x8 MIMO和MU-MIMO的半导体供给商。
解决Wi-Fi痛点的关键技术在实际用法中,有无数因素可能降低Wi-Fi性能,Quantenna的Wi-Fi 增加功能可充实这许多影响。
安森美载波模块功能说明
Ver 0.02
Rex Tang
JUL 2012
1.安森美各载波模块的功能
安森美载波模块的工作原理框图如下图示,49587-A载波模块用于集中器终端,使用GDW376.2协议与集中器通信;49587-B载波模块用于采集器或电表终端,使用DL/T 645-1997/2007协议通信。
各载波模块之间的通讯遵循IEC-61334协议。
●49587-A载波模块:用于集中器设备,非路由工作模式,放弃发现与注册功能,对从节点采用广
播MAC地址(FFFH)通讯,为了提高通讯效率,每次从节点应答时,以电表表号作为索引保存
更新从节点的信用值(Credit),下次与该从节点通信时使用最新的信用值。
●49587-B载波模块:用于采集器或RS485电表,根据读取到的表地址区分采集器或电表模式。
工
作在采集器模式时,收到主节点发送来的数据包时,不对电表地址进行过滤直接透传给采集器,
由采集器对电表地址进行过滤;工作在电表模式时,对电表地址进行过滤,只有收到和本地电
表地址相一致的数据帧才传输给本地电表。
当目标地址为99 99 99 99 99 99H广播地址时不对
地址进行过滤。
2.通信速率
49587-A载波模块的通信速率固定为9600bps,49587-B载波模块的通信速率固定为2400bps。
3.读取从节点通讯地址
49587-B载波模块上电3秒后,先以DL/T 645 2007读地址;若不成功再以DL/T645 1997协议读地址。
若首次读取地址失败,则延迟1分钟再次尝试读取,之后每隔32分钟读取一次地址,直到读取成功。
返回数据帧通信地址为BB BB BB BB BB BB时,开启采集器工作模式,不对电表地址进行过滤直接透传给采集器,由采集器对电表地址进行过滤。
3.1 DL/T 645-1997读取从节点通讯地址
3.1.1 读地址命令帧
功能:读取从节点的通讯地址
控制码: C = 01H
地址域: 99 99 99 99 99 99H
数据长度: L = 02H
数据域:32H C0H(数据标识D0 D1)
帧格式:
3.1.2 从站正常应答帧
功能:应答从节点的通讯地址
控制码: C = 81H
地址域: A0…A5(设备地址码)
数据长度: L = 08H
+33H处理。
采集器应答:
注:数据域中A0…A5为读取的设备地址加33H后的数据,数据域的内容均作+33H处理。
3.2 DL/T 645-2007读取从节点通讯地址
3.2.1 读地址命令帧
功能:读取从节点的通讯地址
控制码: C = 13H
地址域: AA AA AA AA AA AAH
数据长度: L = 00H
数据域:无
帧格式:
3.2.2 从站正常应答帧
功能:应答从节点的通讯地址
控制码: C = 93H
地址域: A0…A5(设备地址码)
数据长度: L = 06H
帧格式:
注:数据域中A0…A5为读取的设备地址加33H后的数据。
采集器应答:
4.事件上报流程说明
4.1事件上报流程
事件上报流程如下图:
①. 正常状态下,电表的EVENT引脚为低电平,当有事件发生时,电表将EVENT引脚置为高电平。
②. 当49587-B检测到EVENT引脚为高电平时,认为有事件发生,使用载波芯片内部指令
PhyAlarmRequest通知49587-A模块(为避免通讯冲突,不使用实际数据帧)。
③. 49587-A模块收到通知后,使用采用广播MAC地址(FFFH)发布事件查询帧(自定义)查询哪
些模块有事件产生。
④. 49587-B收到事件查询帧后,若当前模块的EVENT引脚为高电平,等待随机时间片(一个时间
片150ms)后使用DLT 645协议的查询电表状态字命令040005FFh读取具体电表事件,本模块在
DL/T645-2007《多功能电能表通信协议》的基础上对电表运行状态字1扩展,增加了开表盖、
时钟错误、存储器故障事件定义。
⑤. 电表应答状态字查询命令。
⑥. 49587-B收到事件应答帧后,通过电力网通信传输给集中器载波模块49587-A。
⑦. 49587-A收到事件应答帧后,使用GDW376.2协议打包传输给集中器。
⑧. 集中器收到事件数据帧后通过GDW376.2协议回复DLT-645确认帧。
⑨. 集中器载波模块49587-A通过电力网通信将DLT645确认帧传输给电表载波模块49587-B,电表
载波模块49587-B直接将数据透传给电表。
⑩. 电表收到确认帧后,将EVENT引脚拉低,事件上报流程结束。
4.2事件查询及应答帧格式
4.2.1电表状态字查询帧
功能:向485表查询告警事件
控制码: C = 11H
地址域: A0…A5(表地址)
数据长度: L = 04H
数据域:FFH, 05H, 00H, 04H
4.2.2电表状态字应答帧
功能: 485表应答告警事件查询
控制码: C = 91H
地址域: A0…A5(表地址)
数据长度: L = 4 + n(n为事件信息的长度 n = 0~50)
数据域:FFH, 05H, 00H, 04H, (电表状态字)
帧格式:
注:数据域的内容均作+33H处理。
4.2.3告警事件查询确认帧
功能:集中器收到告警事件数据帧后,需通过电力网通信向485表回复确认帧,485表收
到确认帧后,表示此事件已经上传至载波模块,即不再向载波模块发送此事件。
控制码: C = 91H
地址域: A0…A5(表地址)
数据长度: L = 04H
数据域:FFH, 05H, 00H, 04H
帧格式:
4.3电表运行状态字1扩展
在DL/T645-2007《多功能电能表通信协议》的基础上对电表运行状态字1扩展,增加了开表盖、时钟错误、存储器故障事件定义。