函数的凹凸性与拐点
- 格式:doc
- 大小:312.65 KB
- 文档页数:5
§5. 函数的凹凸性与拐点教学内容:函数的凹凸性与拐点的定义以及判断。
教学目的:清楚函数凸性与拐点的概念,掌握函数凸性的几个等价论断,会求曲线的拐点,能应用函数的凸性证明某些有关的命题。
教学重点:利用导数研究函数的凸性。
教学难点:利用凸性证明相关命题。
教学方法:讲授与练习。
教学学时:2学时。
引言:前面我们已经讨论了函数的单调性与极值及最值,这对函数性态的了解是有很大作用的。
为了更深入和较精确地掌握函数的性态,本节再讲述一下有关函数凸性与拐点的概念及判断与求解方法。
一、函数凹、凸性的定义:在讨论函数图象时,我们经常会遇到具有以下两种特性的函数: y yB AB Ao 1x x 2x x o 1x x 2x x 凸函数 凹函数特点⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧---+≥∈∀⎪⎩⎪⎨⎧---+≤∈∀)()()()()(),()()()()()(),(1121212*********x x x x x f x f x f x f x x x AB AB x x x x x f x f x f x f x x x AB AB ,总有的上方,即有:总在线段曲线上任意两点间的弧凹函数,总有的下方,即有:总在线段曲线上任意两点间的弧凸函数 , 而)1,0(,)1(10),(2112221∈-+=⇔<--=<⇔∈∀λλλλx x x x x xx x x x便于我们研究应用,对凸函数与凹函数作如下定义:定义1 设函数f 为定义在区间I 上的函数,若对I 上任意两点1x 、2x 和任意实数(0,1)λ∈总有:(1)1212((1))()(1)()f x x f x f x λλλλ+-≤+-,则称f 为I 上的凸函数; (2)1212((1))()(1)()f x x f x f x λλλλ+-≥+-,则称f 为I 上的凹函数。
以上不等式严格成立时,则分别称为严格凸函数与严格凹函数。
二、函数凹、凸性的性质及判定:由定义易见,如果函数f 为区间I 上的凸函数,那么函数f -就为区间I 上的凹函数,也就是说,凹函数的性质及判定可通过凸函数的性质及判定完成,所以以下我们只需讨论凸函数的性质及判定即可。
函数的凹凸性和拐点
函数的凹凸性和拐点是微积分中的重要概念,用于研究函数图像的形态和性质。
下面
将分别对凹凸性和拐点进行详细介绍。
一、凹凸性
在数学中,一个函数在某一区间上的凹凸性是指函数图像在该区间上是向上凸或向下凸。
几何上,一个曲线在某点处向上凸表明曲线凹向上方,而向下凸则表明曲线凹向下方。
凹凸性的判断方法是通过函数的二阶导数来进行。
如果函数的二阶导数大于零,则函
数在该点处向上凸;反之,如果函数的二阶导数小于零,则函数在该点处向下凸。
函数的图像如果是向上凸的,则可以将其形容为“形如碗状”,反之则形容为“形如
山状”或“钩状”。
在具体的分析中,凹凸性可作为确定函数的最值和极值的重要参考。
二、拐点
拐点是指函数图像上的一点,该点处曲线的凹凸性发生变化。
在拐点之前,函数图像
呈现一种凹凸性,而在拐点之后,则呈现相反的凹凸性。
因此,拐点也被称为凹凸性变化点。
拐点的判断方法是通过函数的二阶导数进行判断。
如果函数在某一点处的二阶导数发
生了从正数变成负数,或从负数变成正数的变化,则该点即为拐点。
在实际分析中,拐点
可用于确定函数的折线形态,以及确定函数的最值和极值。
综上所述,函数的凹凸性和拐点是微积分中的重要概念,用于研究函数图像的性质和
形态。
凹凸性可以帮助我们更好地理解函数的最值和极值,而拐点则可以帮助我们确定函
数的折线形态,以及确定函数的最值和极值。
在实际运用中,我们应该结合具体问题进行
分析,寻找函数的凹凸性和拐点,以便更好地解决问题。
函数的凹凸性与拐点的判定在微积分中,函数的凹凸性与拐点是非常重要的概念。
凹凸性描述了函数曲线的弯曲情况,而拐点则表示曲线的方向发生改变的点。
凹凸性和拐点的判定对于函数的研究和应用具有重要作用。
本文将介绍函数凹凸性和拐点的概念,并讨论如何判定和应用。
一、函数的凹凸性函数的凹凸性是指函数曲线的弯曲情况。
我们可以通过函数的二阶导数来判断函数的凹凸性。
1. 定义设函数f(x)在区间I上具有二阶导数,如果对于任意x1和x2∈I,有f''(x)>0,则函数f(x)在区间I上是凹函数;如果对于任意x1和x2∈I,有f''(x)<0,则函数f(x)在区间I上是凸函数。
2. 凹凸点根据函数的凹凸性质,我们可以定义凹凸点。
若对于函数f(x)的定义域I上的某一点x0,存在一个区间(x0-δ,x0+δ),在该区间内f(x)是凹函数,那么称点(x0,f(x0))是函数f(x)的一个凹点;若在区间(x0-δ,x0+δ)内f(x)是凸函数,则称点(x0,f(x0))是函数f(x)的一个凸点。
二、拐点的判定拐点表示函数曲线的方向发生改变的点。
我们可以通过函数的二阶导数来判断拐点。
1. 定义设函数f(x)在区间I上具有二阶导数。
如果在某一点x0∈I处,f''(x0)=0,并且f''(x0-)和f''(x0+)的符号相反,则称点(x0,f(x0))是函数f(x)的一个拐点。
2. 拐点的性质拐点具有以下性质:- 在拐点处,函数的凹凸性发生改变,由凸转为凹或由凹转为凸。
- 拐点不一定存在,只有当函数曲线的凹凸性发生改变时,才会有拐点。
- 如果函数曲线有k个拐点,那么至多有k+1个不同的凹凸区间。
三、判定和应用判定函数的凹凸性和拐点的方法可以通过以下步骤进行。
1. 求导数首先,求出函数f(x)的一阶和二阶导数f'(x)和f''(x)。
图1函数的单调性可用函数的一阶导函数来判定,对于同样的递增函数有着不同的增法,如向上凸的增或凹的增,那么对于这两种不同的增法我们如何刻画呢?一、曲线的凹凸与拐点1.曲线的凹凸定义和判定法从图1可以看出曲线弧ABC 在区间()c a ,内是向下凹入的,此时曲线弧ABC 位于该弧上任一点切线的上方;曲线弧CDE 在区间()b c ,内是向上凸起的,此时曲线弧CDE 位于该弧上任一点切线的下方.关于曲线的弯曲方向,我们给出下面的定义:定义1 如果在某区间内的曲线弧位于其任一点切线的上方,那么此曲线弧叫做在该区间内是凹的;如果在某区间内的曲线弧位于其任一点切线的下方,那么此曲线弧叫做在该区间内是凸的.例如,图1中曲线弧ABC 在区间()c a ,内是凹的,曲线弧CDE 在区间()b c ,内是凸的. 由图1还可以看出,对于凹的曲线弧,切线的斜率随x 的增大而增大;对于凸的曲线弧,切线的斜率随x 的增大而减小.由于切线的斜率就是函数()x f y =的导数,因此凹的曲线弧,导数是单调增加的,而凸的曲线弧,导数是单调减少的.由此可见,曲线()x f y =的凹凸性可以用导数()x f '的单调性来判定.而()x f '的单调性又可以用它的导数,即()x f y =的二阶导数()x f ''的符号来判定,故曲线()x f y =的凹凸性与()x f ''的符号有关.由此提出了函数曲线的凹凸性判定定理:定理1 设函数()x f y =在()b a ,内具有二阶导数.(1)如果在()b a ,内,()x f ''>0,那么曲线在()b a ,内是凹的;(2)如果在()b a ,内,()x f ''<0,那么曲线在()b a ,内是凸的. x y o ()y f x =A B x yo ()y f x =A B图2例1 判定曲线3x y =的凹凸性.2.拐点的定义和求法定义2 连续曲线上凹的曲线弧和凸的曲线弧的分界点叫做曲线的拐点. 定理2(拐点存在的必要条件) 若函数()x f 在0x 处的二阶导数存在,且点()()00,x f x 为曲线()x f y =的拐点,则().00=''x f我们知道由()x f ''的符号可以判定曲线的凹凸.如果()x f ''连续,那么当()x f ''的符号由正变负或由负变正时,必定有一点0x 使()0x f ''=0.这样,点()()00,x f x 就是曲线的一个拐点.因此,如果()x f y =在区间()b a ,内具有二阶导数,我们就可以按下面的步骤来判定曲线()x f y =的拐点:(1) 确定函数()x f y =的定义域;(2) 求()x f y ''='';令()x f ''=0,解出这个方程在区间()b a ,内的实根;(3) 对解出的每一个实根0x ,考察()x f ''在0x 的左右两侧邻近的符号.如果()x f ''在0x 的左右两侧邻近的符号相反,那么点()()00,x f x 就是一个拐点,如果()x f ''在0x 的左右两侧邻近的符号相同,那么点()()00,x f x 就不是拐点.例2 求曲线233x x y -=的凹凸区间和拐点.解 (1)函数的定义域为()+∞∞-,;(2)()1666,632-=-=''-='x x y x x y ;令0=''y ,得1=x ;(3)列表考察y ''的符号(表中“∪”表示曲线是凹的,“∩” 表示曲线是凸的): x()1,∞- 1 ()+∞,1 y ''- 0 + 曲线y ∩ 拐点 ()2,1- ∪由上表可知,曲线在()1,∞-内是凸的,在()+∞,1内是凹的;曲线的拐点为()2,1-.例3 已知点(1,3)为曲线32y ax bx =+的拐点,求,a b的值。
函数的凹凸性与拐点函数的凹凸性和拐点是数学中的重要概念,它们可以帮助我们了解函数的特性和性质。
本文将介绍函数的凹凸性和拐点,并解释它们的意义和用法。
一、函数的凹凸性函数的凹凸性是指函数图像在某个区间上是否呈凹曲面或凸曲面。
具体来说,对于函数f(x)在区间I上连续二阶可导,若对于任意的x1,x2∈I且x1<x2,有f''(x)>0,则函数在区间I上是凹函数;若对于任意的x1,x2∈I且x1<x2,有f''(x)<0,则函数在区间I上是凸函数。
凹凸性可以从图像上观察得出。
对于凹函数而言,在函数图像的任意两点之间,曲线位于连接两点的弦的上方。
相反,凸函数在任意两点之间,曲线位于连接两点的弦的下方。
函数的凹凸性在数学和经济学中有广泛的应用。
在最优化问题中,我们常常需要求一个函数的极值点,而函数的凹凸性可以帮助我们判断极值点的性质。
此外,在经济学中,凸函数常用于描述生产函数、效用函数等经济关系。
二、拐点拐点是指函数图像由凹转为凸,或由凸转为凹的点。
具体来说,对于函数f(x)在区间I上连续二阶可导,若存在一个点c∈I,使得f在c 的左侧是凹函数,在c的右侧是凸函数(或反过来),则称c是函数f 的一个拐点。
拐点可以用来确定函数曲线上的转折点。
在拐点处,函数曲线的凹凸性发生变化,这也意味着函数的斜率也会发生变化。
拐点的确定可以通过求函数的二阶导数来实现。
当函数的二阶导数存在,且在某个点c处二阶导数为零,此时有可能存在拐点。
拐点的概念在工程、经济学和物理学等领域都有应用。
在工程中,拐点可以帮助我们确定材料的断裂点;在经济学中,拐点可以帮助我们分析市场供需关系的变化;在物理学中,拐点可以帮助我们理解物体的运动和变形特性。
综上所述,函数的凹凸性和拐点是数学中重要的概念,它们可以帮助我们分析函数的特性,并在实际问题中得到应用。
通过研究函数的凹凸性和拐点,我们可以更好地理解和运用数学知识。
函数的凹凸性与拐点函数的凹凸性以及拐点是微积分中重要的概念,它们能够帮助我们更好地理解函数的性质和行为。
在本文中,我们将详细探讨函数的凹凸性以及如何确定函数的拐点。
一、函数的凹凸性函数的凹凸性描述了函数曲线的弯曲程度。
具体而言,我们可以通过观察函数的二阶导数来确定函数是凹还是凸。
1. 凹函数:如果函数的二阶导数在定义域内恒小于等于零,则该函数被称为凹函数。
凹函数的图像呈现出一种向下的弯曲形状。
举例来说,考虑函数f(x),它在定义域内处处可导。
我们可以检查函数的二阶导数f''(x)是否小于等于零。
如果f''(x) <= 0对于所有x都成立,则函数f(x)是一个凹函数。
2. 凸函数:与凹函数相反,如果函数的二阶导数在定义域内恒大于等于零,则该函数被称为凸函数。
凸函数的图像呈现出一种向上的弯曲形状。
举例来说,考虑函数g(x),它在定义域内处处可导。
我们可以检查函数的二阶导数g''(x)是否大于等于零。
如果g''(x) >= 0对于所有x都成立,则函数g(x)是一个凸函数。
请注意,如果函数的二阶导数既不小于等于零也不大于等于零,那么该函数既不是凹函数也不是凸函数。
二、函数的拐点拐点是函数曲线上的一个特殊点,它代表了函数从凹转为凸或从凸转为凹的位置。
通过找到函数的拐点,我们可以进一步了解函数的曲线的形状。
1. 拐点的判定要确定函数的拐点,我们需要观察函数的二阶导数的变化情况。
首先,我们找到函数f(x)在定义域内的所有驻点,即一阶导数f'(x)等于零的点。
然后,我们计算这些驻点对应的二阶导数f''(x)的值。
- 如果二阶导数f''(x)在某个驻点x处由负转正,那么该点就是函数的拐点。
- 如果二阶导数f''(x)在某个驻点x处由正转负,那么该点也是函数的拐点。
需要注意的是,函数的拐点并不一定都存在。
微分学中函数的凹凸性与拐点微分学是数学中一个重要的分支,通过研究函数的变化率和曲线的特征,可以帮助我们更好地理解数学和物理问题。
其中,函数的凹凸性和拐点是微分学中的两个重要概念,它们可以帮助我们分析函数的性质和图像的特点。
一、函数的凹凸性函数的凹凸性表示的是函数曲线的弯曲程度。
具体来说,若函数$y=f(x)$在区间$I$上连续且在$I$上有可导的二阶导数,则函数$f(x)$在该区间的凹凸性可通过二阶导数的正负性进行判断。
1. 凹函数与凸函数函数$f(x)$在区间$I$上是凹函数,当且仅当对于区间$I$上的任意两个不同的实数$x_1,x_2$以及介于它们之间的任意实数$t \in (0,1)$,有以下不等式成立:$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$$即曲线的下方比直线连接处更低。
而函数$f(x)$在区间$I$上是凸函数,则是指对于区间$I$上的任意两个不同的实数$x_1,x_2$以及介于它们之间的任意实数$t \in (0,1)$,有以下不等式成立:$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$即曲线的下方比直线连接处更高。
2. 判定凹凸性的方法通过计算函数的二阶导数可以判断函数的凹凸性。
若函数$f(x)$在区间$I$上连续并且两阶可导,且对于区间$I$上任意$x$,有$f''(x)>0$,则函数$f(x)$在区间$I$上是凹的;若对于区间$I$上任意$x$,有$f''(x)<0$,则函数$f(x)$在区间$I$上是凸的。
二、函数的拐点函数的拐点是指函数曲线由凸转为凹,或由凹转为凸的点。
具体来说,若函数$y=f(x)$在区间$I$上连续且在$I$上有可导的二阶导数,则函数$f(x)$在该区间的拐点可以通过二阶导数的变号来判断。
1. 判定拐点的方法通过计算函数的二阶导数的符号变化可以判断函数的拐点。
求函数的凹凸区间及拐点的步骤一、概念解析在数学中,我们经常会遇到求函数的凹凸区间及拐点的问题。
这涉及到了函数的二阶导数,以及函数图像的变化规律。
下面我将按照从简到繁的方式,逐步探讨这一主题。
1. 凹凸性的概念我们需要了解什么是函数的凹凸性。
对于函数f(x),若在区间I上满足f''(x)>0(f''(x)表示f(x)的二阶导数),则称函数f(x)在I上是凹的;若在区间I上满足f''(x)<0,则称函数f(x)在I上是凸的。
2. 拐点的概念另外,拐点指的是函数图像上的一个特殊点,该点对应的二阶导数f''(x)发生变号的点。
二、步骤探究接下来,我们将讨论求函数的凹凸区间及拐点的具体步骤。
我将结合具体的例子来说明每一步的操作方法,以便你能更深入地理解。
1. 求导数我们需要求出函数f(x)的一阶和二阶导数,分别记为f'(x)和f''(x)。
这一步是求凹凸区间及拐点的基础。
2. 解方程f''(x)=0在区间I上,我们需要解方程f''(x)=0,找出f(x)的二阶导数为0的点。
这些点就是函数可能存在拐点的位置。
3. 列出数表我们需要列出f''(x)的变号区间,并通过数表的形式进行展示。
在这一步,我们可以通过选取区间内的特定点,代入f''(x)的值,来判断函数的凹凸性。
4. 确定凹凸区间及拐点根据数表中f''(x)的正负情况,我们可以确定函数f(x)的凹凸区间,并找出拐点的具体位置。
这样,我们就完成了求函数的凹凸区间及拐点的步骤。
三、总结回顾通过以上步骤,我们可以比较清晰地了解了如何求函数的凹凸区间及拐点。
在实际应用中,我们可以通过这些步骤,快速、准确地分析函数的凹凸性质,从而更好地理解函数的图像特征。
个人观点:求函数的凹凸区间及拐点是数学中的重要问题,它不仅有着重要的理论意义,也在实际问题的解决中发挥着重要作用。
高等数学曲线的凹凸性与拐点高等数学曲线中经常会遇到凹凸性和拐点,这两类现象事关重大,对于函数的图像分析有很重要的作用。
本文将对凹凸性和拐点做一个
详细的介绍,以帮助理解高等数学曲线的关系。
首先,对于凹凸性来说,简单来讲,就是指曲线在两端的作用力
的不同,借此来判断曲线的弯曲程度以及连接点的位置。
凹凸性可以
分为凸函数和凹函数,两种函数的特点都是当输入值增大的时候,输
出结果的变化的趋势是不断上升的,但是凹凸性不同,当曲线两边的
作用力不同时,就会有所不同,曲线的形状也会有不同的变化,凸函
数输入值增大时会出现上升的趋势,凹函数则会出现下降的趋势。
因此,凹凸性是指曲线有凹函数和凸函数之分,关系到它们的形状及其
连接处的位置。
其次是拐点。
简单来说,就是在曲线上出现可逆变化的点。
也就
是在曲线上某个特殊点,曲线两边的切线方向相反,就是拐点。
拐点
的判断有两个关键点,第一个是曲线的二阶导数,第二个是曲线的三
阶导数。
如果曲线的二阶导数是0,而且它的三阶导数也不是0或者小于0,那么它就是一个拐点,拐点处曲线切线方向就会发生变化。
以上就是高等数学曲线凹凸性和拐点的相关介绍,凹凸性和拐点都是非常重要的问题,影响着该曲线的分析与研究,这一点读者一定要引起足够的重视,同时还要多加研究,深入了解曲线的凹凸性和拐点,来进一步深入理解曲线的内在结构,对更好的进行数学分析有很大帮助。
高等数学I 教案
如果恒有
()()222121x f x f x x f +>
⎪⎭⎫
⎝⎛+,
(a ) (b ) 图2
那么称)(x f 在I 上的图形是(向上)凸的(凸弧)。
从图1还可以看到如下事实:对于凹的曲线弧,其切线的斜率)(x f '随着x 的增大而增大,即)(x f '单调增加;对于凸的曲线弧,其切线的斜率)(x f '随着x 的增大而减少,即)(x f '单调减少.而函数
)(x f '的单调性又可用它的导数,即)(x f 的二阶导数)(x f ''的符号来判定,故曲线)(x f y =的凹凸
性与)(x f ''的符号有关。
3、曲线凹凸性的判定
定理1 若)(x f 在[]b a ,上连续,()b a ,内具有一阶和二阶导数,那么 (1)若在()b a ,内0)(>''x f ,那么)(x f 在[]b a ,上的图形是凹的; (2)若在()b a ,内0)(<''x f ,那么)(x f 在[]b a ,上的图形是凸的。
例1.判定曲线x y ln =的凹凸性. 解 函数的定义域),0(+∞,而x y 1=',21
x
y -='', 因此曲线x y ln =在),0(+∞内是凸的. 例2.讨论曲线3
x y =的凹凸区间.
解 函数的定义域为),(+∞-∞,2
3x y =',x y 6=''。
显然,当0>x 时,0<''y ;当0<x 时,0>''y .因此)0,(-∞为曲线的凸区间,),0(+∞为曲线的凹区间。
4、拐点的定义
定义2 连续曲线)(x f 上的凹弧和凸弧的分界点成为这条曲线的拐点。