2013年全国硕士研究生入学统一考试数学二试题及答案解析
- 格式:pdf
- 大小:382.84 KB
- 文档页数:13
2013考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设cos 1sin ()x x x α-=,其中()2x πα<,则当0x →时,()x α是( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小 (C )与x 同阶但不等价的无穷小 (D )与x 等价的无穷小(2)设函数()y f x =由方程cos()ln 1xy y x +-=确定,则2lim ()1n n f n→∞⎡⎤-=⎢⎥⎣⎦( )(A )2 (B )1 (C )1- (D )2- (3)设函数sin ,0()=2,2x x f x x πππ≤<⎧⎨≤≤⎩,0()()x F x f t dt =⎰,则( )(A )x π= 是函数()F x 的跳跃间断点 (B )x π= 是函数()F x 的可去间断点(C )()F x 在x π=处连续但不可导 (D )()F x 在x π=处可导(4)设函数111,1(1)()=1,ln x e x f x x e x x αα-+⎧<<⎪-⎪⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则( )(A )2α<- (B )2α> (C )20α-<< (D )02α<< (5)设()yz f xy x=,其中函数f 可微,则x z z y x y ∂∂+=∂∂( ) (A )2()yf xy ' (B )2()yf xy '- (C )2()f xy x (D )2()f xy x- (6)设k D 是圆域{}22(,)|1D x y x y =+≤在第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则( )(A )10I > (B )20I > (C )30I > (D )40I > (7)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价(B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(8)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a (D )为任意常数b a ,2=二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 1ln(1)lim(2)x x x x→∞+-= . (10)设函数()xf x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dx dy== .(11)设封闭曲线L 的极坐标方程为cos3()66r ππθθ=-≤≤,则L 所围成的平面图形的面积为 .(12)曲线arctan ln x ty =⎧⎪⎨=⎪⎩1t =的点处的法线方程为 .(13)已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程满足条件00x y==01x y ='=的解为y = .(14)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)当0x →时,1cos cos2cos3x x x -⋅⋅与nax 为等价无穷小,求n 与a 的值。
2013年考研数学二真题及答案一、填空题(此题共5小题,每题3分,总分值15分.把答案填在题中横线上.).(1). 0lim ln x x x +→=______. (2). 函数()y y x =由方程222sin()0x x y e xy ++-=所确定,那么dydx=______. (3).设1()(2(0)xF x dt x =>⎰,那么函数()F x 的单调减少区间是______. (4).=______. (5). 曲线()y f x =过点1(0,)2-,且其上任一点(,)x y 处的切线斜率为2ln(1)x x +,那么()f x =______.二、选择题(此题共5小题,每题3分,总分值15分.每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.). (1).当x →时,变量211sin x x是( ).(A). 无穷小 (B). 无穷大(C). 有界的,但不是无穷小 (D). 有界的,但不是无穷大(2). 设2|1|,1,()12, 1,x x f x x x ⎧-≠⎪=-⎨⎪=⎩那么在点1x =处函数()f x( ).(A). 不连续 (B). 连续,但不可导 (C). 可导,但导数不连续 (D). 可导,且导数连续(3). 2,01,()1, 12,x x f x x ⎧≤<= ⎨≤≤⎩ 设1()()x F x f t dt =⎰(02)x ≤≤,那么()F x 为 ( ).(A).31,013,12x x x x ⎧≤<⎪ ⎨⎪≤≤⎩ (B). 311,0133,12x x x x ⎧-≤<⎪⎨⎪≤≤⎩ (C). 31,0131,12x x x x ⎧≤<⎪⎨⎪-≤≤⎩ (D). 311,01331,12x x x x ⎧-≤<⎪⎨⎪-≤≤⎩(4). 设常数0k >,函数()ln xf x x k e=-+在(0,)+∞内零点个数为 ( ).(A). 3 (B). 2 (C). 1 (D). 0 (5). 假设()()f x f x =--,在(0,)+∞内()0,()0f x f x '''>>,那么()f x 在(,0)-∞内 ( ).(A). ()0,()0f x f x '''<< (B). ()0,()0f x f x '''<> (C). ()0,()0f x f x '''>< (D). ()0,()0f x f x '''>>三、(此题共5小题,每题5分,总分值25分.).(1). 设2sin[()]y f x =,其中f 具有二阶导数,求22d ydx.(2). 求lim )x x x →-∞.(3). 求401cos 2xdx x π+⎰.(4). 求3(1)xdx x +∞+⎰. (5). 求微分方程2(1)(2cos )0x dy xy x dx -+-=满足初始条件01x y ==的特解.四、(此题总分值9分).设二阶常系数线性微分方程xy y y e αβγ'''++=的一个特解为2(1)xx y e x e =++,试确定常数,,αβγ,并求该方程的通解.五、(此题总分值9分).设平面图形A 由222x y x +≤与y x ≥所确定,求图形A 绕直线2x =旋转一周所得旋转体的体积.六、(此题总分值9分).作半径为r 的球的外切正圆锥,问此圆锥的高h 为何值时,其体积V 最小,并求出该最小值.七、(此题总分值6分).设0x >,常数a e >,证明()aa xa x a++<.八、(此题总分值6分).设()f x '在[0,]a 上连续,且(0)0f =,证明:2()2aMa f x dx ≤⎰,其中0max |()|x a M f x ≤≤'=.答案一、填空题(此题共5小题,每题3分,总分值15分.). (1).【答案】:0(2).【答案】:222222cos()2cos()2x y e x x y y x y xy--++-(3).【答案】:104x <≤ (4).【答案】:1/22cos x C -+(5).【答案】:222111(1)ln(1)222x x x ++-- (5).【答案】:(C).三、(此题共5小题,每题5分,总分值25分.). (1).{}222sin[()]cos[()]()2y f x f x f x x '''==⋅⋅,{}22cos[()]()2y f x f x x ''''=⋅⋅{}2222cos[()]()2cos[()]()2f x f x x f x f x x ''''⎡⎤=⋅⋅+⋅⋅⎣⎦22cos[()]()(2)f x f x x ''+⋅⋅2222222sin[()][()](2)cos[()]()(2)f x f x x f x f x x '''=-⋅⋅+⋅⋅22cos[()]()2f x f x '+⋅⋅.()()dy f u g x dx ''=⋅ 或 dy dy dudx du dx=⋅. (2).应先化简再求函数的极限,lim )limx x x x →-∞=100limlim11x x x →-∞==.因为0x <,所以100100limlim501111x x x→-∞===---. (3).先进展恒等变形,再利用根本积分公式和分部积分法求解.2444000sec 1tan 1cos 222x x x dx dx xd x x πππ==+⎰⎰⎰[]4440001111sin tan tan (0)22242cos x x x xdx dx x ππππ=-=--⎰⎰ []4400111cos ln(cos )82cos 82d x x x ππππ-=-=+⎰111[ln(cos )ln(cos0)]ln 28248284ππππ=+-=+=-. (4).用极限法求广义积分.2333000(1)1[(1)(1)](1)(1)(1)x x dx dx x x d x x x +∞+∞+∞--+-==+-++++⎰⎰⎰ 1220121(1)(1)lim 22(1)bb x x x x +∞--→+∞⎡⎤+⎡⎤=-+++=-⎢⎥⎢⎥+⎣⎦⎣⎦ 221111lim02(1)222b b b →+∞+=-+=+=+.(5).所给方程是一阶线性非齐次微分方程,其标准形式是2222cos , 1011x x y y x x x '+=-≠--, 通解为 2222112cos []1xxdxdxx x x y ee dx C x ---⎰⎰=+-⎰ 2222(1)(1)112cos 1d x d x x x x e edx C x -----⎡⎤⎰⎰=+⎢⎥-⎢⎥⎣⎦⎰ 221sin cos 11x C xdx C x x +⎡⎤=+=⎣⎦--⎰. 代入初始条件 01x y ==,得 2sin 0101C +=-,所以 1C =-.所求特解为 2sin 11x y x -=-.四、(此题总分值9分).要确定常数,,αβγ,只需将特解代入原微分方程后,用比拟系数法即得.对于特解2(1)xx y e x e =++,有222(1)2(2)xx x x x y ee x e e x e '=+++=++,2222(2)4(2)4(3)x x x x x x x y e x e e e x e e x e '''⎡⎤=++=+++=++⎣⎦,代入方程x y y y e αβγ'''++=,得恒等式 2224(3)2(2)(1)xx x x x x xe x e e x e e x e e αβγ⎡⎤⎡⎤⎡⎤++++++++=⎣⎦⎣⎦⎣⎦, 化简得2(42)(32)(1)x x x x e e xe e αβαβαβγ++++++++≡,比拟同类项系数,得4203210αβαβγαβ++=⎧⎪++=⎨⎪++=⎩, 解之得3,2,1αβγ=-==-.于是原方程为32x y y y e '''-+=-,所对应的齐次微分方程320y y y '''-+=的特征方 程为2320r r -+=,解之得 121,2r r ==. 所以微分方程32x y y y e '''-+=-的通解为2*222121212(1)x x x x x x x x x y c e c e y c e c e e x e c e c e xe =++=++++=++.五、(此题总分值9分).利用定积分求旋转体的体积,用微元法.222x y x +≤等价于22(1)1x y -+≤.解法一:考虑对y 的积分,那么边界限为2111x y =--与2(01)x y y =≤≤,如右图所示.当y y dy →+时, 2212(2)(2)dV x dy x dy ππ=---222(211)(2)y y dy π⎡⎤=-+---⎣⎦2221(1)y y dy π⎡⎤=---⎣⎦. 所以 122021(1)V y y dy π⎡⎤=---⎣⎦⎰.对于1201y dy -⎰,令sin y t =,那么cos dy tdt =,所以2122220001111cos (1cos 2)sin 22224y dy tdt t dt t t ππππ⎡⎤-==+=+=⎢⎥⎣⎦⎰⎰⎰;对于 131122000(1)1(1)(1)(1)33y y dy y d y ⎡⎤--=---=-=⎢⎥⎣⎦⎰⎰, 所以 12201121(1)243V y y dy πππ⎛⎫⎡⎤=---=- ⎪⎣⎦⎝⎭⎰.解法二:取x 为积分变量,那么边界限为212y x x =-与2(01)y x x =≤≤,如右图所示.当x x dx →+时,1222(2)()2(2)(2),dV x y y dx x x x x dx ππ=--=---所以1202(2)(2)V x x x x dx π=---⎰.令1x t -=,那么1,x t dx dt =+=,所以 120(2)(2)x x x x dx ---⎰21(1)2(1)(1)(1)t t t t dt -⎡⎤=-+-+-+⎣⎦⎰02221111t t t t dt -⎡⎤=---+-⎣⎦⎰. 再令sin t θ=,那么cos dt d θθ=,所以 00222212111(cos sin cos sin 1)cos t t t t dt d πθθθθθθ--⎡⎤---+-=-+-⎣⎦⎰⎰2222222cossin cos sin cos cos d d d d ππππθθθθθθθθθθ----=-+-⎰⎰⎰⎰00002222221(1cos 2)cos cos sin sin cos 2d d d d ππππθθθθθθθθ----=+++-⎰⎰⎰⎰[]00330222211cos sin sin 2sin 2233ππππθθθθθ----⎡⎤⎡⎤⎡⎤=+++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 111143343ππ=++-=-. 所以 120112(2)(2)2()43V x x x x dx πππ=---=-⎰.六、(此题总分值9分).这是一个将立体几何问题转化为函数求最值的问题. 设圆锥底半径为R ,如图,,,BC R AC h OD r ===.ADOCB由,BC ODAD AC AD==有R R h =⇒=于是圆锥体积22211(2)332h V R h r r h h rππ==<<+∞-.对上式两端对h 求导,并令0V '=,得2222212(2)1(4)03(2)3(2)h h h r h h h r V r r h r h r ππ---'===--, 得唯一驻点4h r =,且24,04,0r h r V r h V '<<<⎧⎨'<<+∞>⎩, 所以4h r =为极小值点也是最小值点,最小体积38(4)3V r r π=.七、(此题总分值9分).首先应简化不等式,从中发现规律.当0x >,常数a e >时,原不等式两边取自然对数可化为ln()()ln a a x a x a +<+ 或ln()ln a x aa x a+<+.证法一:令()()ln ln()f x a x a a a x =+-+,那么()ln af x a a x'=-+.由,0,a e x >>知ln 1,1,aa a x><+故 ()0(0)f x x '>>. 从而()f x 为严格单调递增函数,且()()ln ln()(0)ln ln 0,(0)f x a x a a a x f a a a a x =+-+>=-=>即 ()ln ln()0a x a a a x +-+>, 所以 ()aa xa x a ++<.证法二:令ln ()x f x x =,那么21ln ()xf x x-'=. 当x a e >>时,有21ln ()0xf x x -'=<, 所以函数在x a e >>为严格单调递减函数,即()()f x a f a +<,所以有ln()ln a x aa x a+<+,即 ()a a x a x a ++<.八、(此题总分值9分). 证法一:用微分中值定理.对任意给定的[0,]x a ∈,由拉格朗日中值定理,得()(0)(),(0)f x f f x x ξξ'=+<<由(0)0f =,知()()f x f x ξ'=.因为0max |()|x aM f x ≤≤'=,所以|()||()|f x f x Mx ξ'=≤,将两边从0a →做x 的定积分,有2|()|2aaMa f x dx M xdx ≤=⎰⎰.由定积分的根本性质可知 20|()||()|2aaMa f x dx f x dx ≤≤⎰⎰.证法二:用牛顿-莱布尼茨公式.对任意给定的[0,]x a ∈,以及(0)0f =,可知()()(0)()xf t dt f x f f x '=-=⎰,从而 0|()||()|xf x f t dt Mx '≤≤⎰,以下同证法一.证法三:分部积分法.00()()()[()()]()()aaaaf x dx f x d x a f x x a a x f x dx '=-=-+-⎰⎰⎰[()()(0)(0)]()()()()a af a a a f a a x f x dx a x f x dx ''=---+-=-⎰⎰.所以()()()()()()aaa af x dx a x f x dx a x f x dx M a x dx ''=-≤-≤-⎰⎰⎰⎰2201122aM ax x Ma ⎡⎤=-=⎢⎥⎣⎦.。
2013年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设cos 1sin ()x x x α-=,其中()2x πα<,则当0x →时,()x α是( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小 (C )与x 同阶但不等价的无穷小 (D )与x 等价的无穷小(2)设函数()y f x =由方程cos()ln 1xy y x +-=确定,则2lim ()1n n f n→∞⎡⎤-=⎢⎥⎣⎦( )(A )2 (B )1 (C )1- (D )2- (3)设函数sin ,0()=2,2x x f x x πππ≤<⎧⎨≤≤⎩,0()()x F x f t dt =⎰,则( )(A )x π= 是函数()F x 的跳跃间断点 (B )x π= 是函数()F x 的可去间断点(C )()F x 在x π=处连续但不可导 (D )()F x 在x π=处可导(4)设函数111,1(1)()=1,ln x e x f x x e x xαα-+⎧<<⎪-⎪⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则( )(A )2α<- (B )2α> (C )20α-<< (D )02α<< (5)设()y z f xy x =,其中函数f 可微,则x z z y x y∂∂+=∂∂( ) (A )2()yf xy ' (B )2()yf xy '- (C )2()f xy x (D )2()f xy x- (6)设k D 是圆域{}22(,)|1D x y x y =+≤在第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则( )(A )10I > (B )20I > (C )30I > (D )40I > (7)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价(8)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 1ln(1)lim(2)x x x x→∞+-= . (10) 设函数()xf x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dx dy== .(11)设封闭曲线L 的极坐标方程为cos3()66r ππθθ=-≤≤,则L 所围成的平面图形的面积为 .(12)曲线arctan x ty =⎧⎪⎨=⎪⎩1t =的点处的法线方程为 .(13)已知321x x y e xe =-,22x x y e xe =-,23x y xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程满足条件00x y==01x y ='=的解为y = .(14)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)当0x →时,1cos cos 2cos3x x x -⋅⋅与nax 为等价无穷小,求n 与a 的值。
2013年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设cos 1sin ()x x x α-=,其中()2x πα<,则当0x →时,()x α是( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小 (C )与x 同阶但不等价的无穷小 (D )与x 等价的无穷小(2)设函数()y f x =由方程cos()ln 1xy y x +-=确定,则2lim ()1n n f n→∞⎡⎤-=⎢⎥⎣⎦( )(A )2 (B )1 (C )1- (D )2- (3)设函数sin ,0()=2,2x x f x x πππ≤<⎧⎨≤≤⎩,0()()x F x f t dt =⎰,则( )(A )x π= 是函数()F x 的跳跃间断点 (B )x π= 是函数()F x 的可去间断点(C )()F x 在x π=处连续但不可导 (D )()F x 在x π=处可导(4)设函数111,1(1)()=1,ln x e x f x x e x xαα-+⎧<<⎪-⎪⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则( )(A )2α<- (B )2α> (C )20α-<< (D )02α<< (5)设()yz f xy x=,其中函数f 可微,则x z z y x y ∂∂+=∂∂( ) (A )2()yf xy ' (B )2()yf xy '- (C )2()f xy x (D )2()f xy x- (6)设k D 是圆域{}22(,)|1D x y x y =+≤在第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则( )(A )10I > (B )20I > (C )30I > (D )40I > (7)设矩阵A,B,C 均为n 阶矩阵,若,B AB C =则可逆,则 (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的行向量组与矩阵B 的列向量组等价2(8)矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与2000b 0000⎛⎫ ⎪⎪ ⎪⎝⎭相似的充分必要条件为(A )a 0,b 2== (B )为任意常数b a ,0= (C )0,2==b a(D )为任意常数b a ,2=二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 1ln(1)lim(2)x x x x→∞+-= . (10) 设函数()xf x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dx dy== .(11)设封闭曲线L 的极坐标方程为cos3()66r ππθθ=-≤≤,则L 所围成的平面图形的面积为 .(12)曲线arctan ln x ty =⎧⎪⎨=⎪⎩1t =的点处的法线方程为 .(13)已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,该方程满足条件00x y==01x y ='=的解为y = .(14)设ij A (a )=是三阶非零矩阵,|A |为A 的行列式,ij A 为ij a 的代数余子式,若ij ij a A 0(i,j 1,2,3),____A +===则三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)当0x →时,1cos cos2cos3x x x -⋅⋅与nax 为等价无穷小,求n 与a 的值。
2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、设cos 1sin ()x x x α-=⋅,()2x πα<,当0x →时,()x α( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价的无穷小 (D )与x 是等价无穷小【答案】(C )【考点】同阶无穷小 【难易度】★★ 【详解】cos 1sin ()x x x α-=⋅,21cos 12x x --21sin ()2x x x α∴⋅-,即1sin ()2x x α-∴当0x →时,()0x α→,sin ()()x x αα1()2x x α∴-,即()x α与x 同阶但不等价的无穷小,故选(C ). 2、已知()y f x =由方程cos()ln 1xy y x -+=确定,则2lim [()1]n n f n →∞-=( )(A )2 (B )1 (C )-1 (D )-2【答案】(A )【考点】导数的概念;隐函数的导数 【难易度】★★【详解】当0x =时,1y =.002()12(2)1(2)(0)lim [()1]lim lim 2lim 2(0)12n n x x f f x f x f n n f f n x xn→∞→∞→→---'-==== 方程cos()ln 1xy y x -+=两边同时对x 求导,得1sin()()10xy y xy y y''-++⋅-= 将0x =,1y =代入计算,得 (0)(0)1y f ''==所以,2lim [()1]2n n f n→∞-=,选(A ).3、设sin [0,)()2[,2]x f x πππ⎧=⎨⎩,0()()x F x f t dt =⎰,则( )(A )x π=为()F x 的跳跃间断点 (B )x π=为()F x 的可去间断点 (C )()F x 在x π=处连续不可导 (D )()F x 在x π=处可导 【答案】(C )【考点】初等函数的连续性;导数的概念 【难易度】★★ 【详解】202(0)sin sin sin 2F tdt tdt tdt πππππ-==+=⎰⎰⎰,(0)2F π+=,(0)(0)F F ππ∴-=+,()F x 在x π=处连续.()()()lim 0xx f t dt f t dtF x ππππ--→-'==-⎰⎰,0()()()lim 2xx f t dt f t dtF x ππππ++→-'==-⎰⎰,()()F F ππ-+''≠,故()F x 在x π=处不可导.选(C ).4、设函数1111(1)()1ln x e x f x x e x xαα-+⎧<<⎪-⎪=⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则( )(A )2α<- (B )2α> (C )20α-<< (D )02α<<【答案】(D )【考点】无穷限的反常积分 【难易度】★★★ 【详解】11()()()e ef x dx f x dx f x dx +∞+∞=+⎰⎰⎰由1()f x dx +∞⎰收敛可知,1()e f x dx ⎰与()ef x dx +∞⎰均收敛.1111()(1)eef x dx dx x α-=-⎰⎰,1x =是瑕点,因为111(1)e dx x α--⎰收敛,所以112αα-<⇒< 111()(ln )ln eeef x dx dx x x x ααα+∞+∞+∞-+==-⎰⎰,要使其收敛,则0α>所以,02α<<,选D. 5、设()yz f xy x=,其中函数f 可微,则x z z y x y ∂∂+=∂∂( ) (A )2()yf xy ' (B )2()yf xy '- (C )2()f xy x (D )2()f xy x- 【答案】(A )【考点】多元函数的偏导数 【难易度】★★【详解】22()()z y y f xy f xy x x x ∂'=-+∂,1()()z f xy yf xy y x ∂'=+∂ 221[()()][()()]x z z x y y f xy f xy f xy yf xy y x y y x x x∂∂''∴+=-+++∂∂ 11()()()()2()f xy yf xy f xy yf xy yf xy x x'''=-+++=,故选(A ).6、设k D 是圆域{}22(,)1D x y x y =+≤位于第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则( )(A )10I > (B )20I > (C )30I > (D )40I > 【答案】(B )【考点】二重积分的性质;二重积分的计算 【难易度】★★【详解】根据对称性可知,130I I ==.22()0D I y x dxdy =->⎰⎰(0y x ->),44()0D I y x dxdy =-<⎰⎰(0y x -<)因此,选B.7、设A 、B 、C 均为n 阶矩阵,若AB=C ,且B 可逆,则( ) (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价 【答案】(B )【考点】等价向量组 【难易度】★★【详解】将矩阵A 、C 按列分块,1(,,)n A αα=,1(,,)n C γγ=由于AB C =,故111111(,,)(,,)n n n n nn b b b b ααγγ⎛⎫ ⎪=⎪ ⎪⎝⎭即1111111,,n n n n nn n b b b b γααγαα=++=++即C 的列向量组可由A 的列向量组线性表示.由于B 可逆,故1A CB -=,A 的列向量组可由C 的列向量组线性表示,故选(B ).8、矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件是( )(A )0,2a b == (B )0,a b =为任意常数 (C )2,0a b == (D )2,a b = 为任意常数【答案】(B )【考点】矩阵可相似对角化的充分必要条件 【难易度】★★【详解】题中所给矩阵都是实对称矩阵,它们相似的充要条件是有相同的特征值.由20000000b ⎛⎫ ⎪ ⎪ ⎪⎝⎭的特征值为2,b ,0可知,矩阵1111a A a b a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值也是2,b ,0. 因此,22111122022401120a a E A ab a b a a a aa-----=---=---=-=---0a ⇒=将0a =代入可知,矩阵10100101A b ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值为2,b ,0.此时,两矩阵相似,与b 的取值无关,故选(B ).二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、10ln(1)lim(2)x x x x→+-= . 【答案】12e【考点】两个重要极限 【难易度】★★ 【详解】011ln(1)1ln(1)1ln(1)1ln(1)1(1)(1)lim (1)000ln(1)ln(1)lim(2)lim[1(1)]lim x x x x x xx x xx xx xx x x x x eex x→++++-⋅-⋅-⋅-→→→++-=+-==其中,20000111ln(1)ln(1)11lim(1)lim lim lim 22(1)2x x x x x x x x x x x xx x x →→→→-+-++⋅-====+故原式=12e10、设函数()xf x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dxdy== .【考点】反函数的求导法则;积分上限的函数及其导数 【难易度】★★【详解】由题意可知,(1)0f -=1()y x dy dx dx dxf x dx dy dy dy==-'==⇒=⇒==.11、设封闭曲线L 的极坐标方程方程为cos3()66r ππθθ=-≤≤,则L 所围平面图形的面积是 . 【答案】12π 【考点】定积分的几何应用—平面图形的面积【难易度】★★ 【详解】面积622666000611cos 61sin 6()cos 3()222612S r d d d πππππθθπθθθθθθ-+====+=⎰⎰⎰12、曲线arctan ,ln x t y =⎧⎪⎨=⎪⎩1t =点处的法线方程为 .【答案】ln 204y x π+--=【考点】由参数方程所确定的函数的导数【难易度】★★★【详解】由题意可知,12//1dy dy dt t dx dx dtt-===+,故11t dy dx == 曲线对应于1t =点处的法线斜率为111k -==-. 当1t =时,4x π=,ln 2y =.法线方程为ln 2()4y x π-=--,即ln 204y x π+--=.13、已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件00x y ==,01x y ='=的解为y = . 【答案】32xx x y ee xe =--【考点】简单的二阶常系数非齐次线性微分方程 【难易度】★★【详解】312x x y y e e -=-,23xy y e -=是对应齐次微分方程的解.由分析知,*2xy xe =-是非齐次微分方程的特解. 故原方程的通解为3212()xx x x y C ee C e xe =-+-,12,C C 为任意常数.由00x y ==,01x y ='=可得 11C =,20C =. 通解为32xx x y ee xe =--.14、设()ij A a =是3阶非零矩阵,A 为A 的行列式,ij A 为ij a 的代数余子式,若0(,1,2,3)ij ij a A i j +==,则A = .【答案】-1【考点】伴随矩阵 【难易度】★★★【详解】**0T T ij ij ij ij a A A a A A AA AA A E +=⇒=-⇒=-⇒=-= 等式两边取行列式得230A A A -=⇒=或1A =- 当0A =时,00TAA A -=⇒=(与已知矛盾) 所以1A =-.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)当0x →时,1cos cos2cos3x x x -⋅⋅与nax 为等价无穷小,求n 和a 的值. 【考点】等价无穷小;洛必达法则 【难易度】★★★【详解】00cos6cos 4cos 2111cos cos 2cos34lim lim n n x x x x x x x x ax ax →→+++--⋅⋅= 1003cos6cos 4cos 26sin 64sin 42sin 2lim lim 44n n x x x x x x x xax anx-→→---++== 2036cos 616cos 44cos 2lim4(1)n x x x xan n x-→++=- 故20n -=,即2n =时,上式极限存在.当2n =时,由题意得001cos cos 2cos336cos616cos 44cos 236164limlim 188n x x x x x x x x ax a a→→-⋅⋅++++==== 7a ⇒= 2,7n a ∴==16、(本题满分10分)设D 是由曲线13y x =,直线x a =(0)a >及x 轴所围成的平面图形,x V ,y V 分别是D 绕x 轴,y轴旋转一周所得旋转体的体积,若10y x V V =,求a 的值. 【考点】旋转体的体积 【难易度】★★【详解】根据题意,15523330033()55aax V x dx x a πππ===⎰177333066277a ay V x x dx xa πππ=⋅==⎰. 因10y x V V =,故7533631075a a a ππ=⨯⇒=17、(本题满分10分)设平面区域D 由直线3x y =,3y x =,8x y +=围成,求2Dx dxdy ⎰⎰【考点】利用直角坐标计算二重积分 【难易度】★★【详解】根据题意 3286y x x x y y ==⎧⎧⇒⎨⎨+==⎩⎩,16328x y x y x y ⎧==⎧⎪⇒⎨⎨=⎩⎪+=⎩故2368222233xxx xDx dxdy dx x dy dx x dy -=+⎰⎰⎰⎰⎰⎰264340228132416()12833333x x x =+-=+=18、(本题满分10分)设奇函数()f x 在[1,1]-上具有二阶导数,且(1)1f =,证明: (Ⅰ)存在(0,1)ξ∈,使得()1f ξ'=; (Ⅱ)存在(1,1)η∈-,使得()()1f f ηη'''+=. 【考点】罗尔定理 【难易度】★★★【详解】(Ⅰ)由于()f x 在[1,1]-上为奇函数,故(0)0f =令()()F x f x x =-,则()F x 在[0,1]上连续,在(0,1)上可导,且(1)(1)10F f =-=,(0)(0)00F f =-=.由罗尔定理,存在(0,1)ξ∈,使得()0F ξ'=,即()1f ξ'=.(Ⅱ)考虑()()1(()())(())x x x xf x f x e f x f x e e f x e ''''''''+=⇔+=⇔=[()]0x x e f x e ''⇔-=令()()xxg x e f x e '=-,由于()f x 是奇函数,所以()f x '是偶函数,由(Ⅰ)的结论可知,()()1f f ξξ''=-=,()()0g g ξξ⇒=-=.由罗尔定理可知,存在(1,1)η∈-,使得()0g η'=,即()()1f f ηη'''+=. 19、(本题满分10分)求曲线331(0,0)x xy y x y -+=≥≥上的点到坐标原点的最长距离和最短距离. 【考点】拉格朗日乘数法 【难易度】★★★【详解】设(,)M x y为曲线上一点,该点到坐标原点的距离为d =构造拉格朗日函数 2233(1)F x y x xy y λ=++-+-由22332(3)02(3)010x y F x x y F y y x F x xy y λλλ'⎧=+-=⎪'=+-=⎨⎪'=-+-=⎩ 得 11x y =⎧⎨=⎩点(1,1)到原点的距离为d ==,然后考虑边界点,即(1,0),(0,1),它们到原点的距离都是1.,最短距离为1. 20、(本题满分11分) 设函数1()ln f x x x=+(Ⅰ)求()f x 的最小值; (Ⅱ)设数列{}n x 满足11ln 1n n x x ++<,证明lim n n x →∞存在,并求此极限.【考点】函数的极值;单调有界准则【难易度】★★★【详解】(Ⅰ)由题意,1()ln f x x x =+,0x >22111()x f x x x x-'⇒=-= 令()0f x '=,得唯一驻点1x =当01x <<时,()0f x '<;当1x >时,()0f x '>.所以1x =是()f x 的极小值点,即最小值点,最小值为(1)1f =. (Ⅱ)由(Ⅰ)知1ln 1n n x x +≥,又由已知11ln 1n n x x ++<,可知111n n x x +>,即1n n x x +> 故数列{}n x 单调递增. 又由11ln 1n n x x ++<,故ln 10n n x x e <⇒<<,所以数列{}n x 有上界. 所以lim n n x →∞存在,设为A.在11ln 1n n x x ++<两边取极限得 1ln 1A A +≤ 在1ln 1n n x x +≥两边取极限得 1ln 1A A+≥ 所以1ln 11A A A+=⇒=即lim 1n n x →∞=.21、(本题满分11分) 设曲线L 的方程为211ln (1)42y x x x e =-≤≤满足 (Ⅰ)求L 的弧长;(Ⅱ)设D 是由曲线L ,直线1x =,x e =及x 轴所围平面图形,求D 的形心的横坐标. 【考点】定积分的几何应用—平面曲线的弧长;定积分的物理应用—形心 【难易度】★★★ 【详解】(Ⅰ)设弧长为S ,由弧长的计算公式,得1111S ====⎰⎰⎰⎰221111111()(ln )22424eee x dx x x x +=+=+=⎰ (Ⅱ)由形心的计算公式,得22111ln 242100111ln 24210011(ln )4211(ln )42ex x D e x x Dxdxdyx x x dx dx xdy x dxdy x x dx dx dy ---===-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 422423311111()3(23)16164221114(7)12122e e e e e e e ---+--==---. 22、(本题满分11分) 设110a A ⎛⎫=⎪⎝⎭,011B b ⎛⎫= ⎪⎝⎭,当,a b 为何值时,存在矩阵C 使得AC CA B -=,并求所有矩阵C.【考点】非齐次线性方程组有解的充分必要条件 【难易度】★★★【详解】由题意可知矩阵C 为2阶矩阵,故可设1234x x C x x ⎛⎫=⎪⎝⎭.由AC CA B -=可得 12123434101011011x x x x a x x x x b b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 整理后可得方程组2312413423011x ax ax a ax x x x x ax b-+=⎧⎪-++=⎪⎨--=⎪⎪-=⎩ ① 由于矩阵C 存在,故方程组①有解.对①的增广矩阵进行初等行变换:01001011110111101010001001011101010000101000a a a a aa a a ab b b -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪---++⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组有解,故10a +=,0b =,即1a =-,0b =.当1a =-,0b =时,增广矩阵变为10111011000000000000--⎛⎫⎪⎪⎪⎪⎝⎭34,x x 为自由变量,令341,0x x ==,代入相应齐次方程组,得211,1x x =-=令340,1x x ==,代入相应齐次方程组,得210,1x x ==故1(1,1,1,0)T ξ=-,2(1,0,0,1)T ξ=,令340,0x x ==,得特解(1,0,0,0)Tη=方程组的通解为112212112(1,,,)Tx k k k k k k k ξξη=++=++-(12,k k 为任意常数)所以121121k k k C k k ++-⎛⎫=⎪⎝⎭.23、(本题满分11分)设二次型2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++,记123a a a α⎛⎫ ⎪= ⎪ ⎪⎝⎭,123b b b β⎛⎫⎪= ⎪ ⎪⎝⎭(Ⅰ)证明二次型f 对应的矩阵为2T Tααββ+;(Ⅱ)若,αβ正交且均为单位向量,证明f 在正交变换下的标准形为22122y y +【考点】二次型的矩阵表示;用正交变换化二次型为标准形;矩阵的秩 【难易度】★★★ 【详解】(Ⅰ)证明:2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++1111123212321232123233332(,,)(,,)(,,)(,,)a x b x x x x a a a a x x x x b b b b x a x b x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112323(,,)(2)T T T x x x x x x Ax x ααββ⎛⎫⎪=+= ⎪ ⎪⎝⎭,其中2T T A ααββ=+所以二次型f 对应的矩阵为2TTααββ+. (Ⅱ)由于,αβ正交,故0TT αβαβ== 因,αβ均为单位向量,故1α==,即1T αα=.同理1T ββ=2(2)22T T T T T T A A ααββαααββααααββαα=+⇒=+=+=由于0α≠,故A 有特征值12λ=.(2)T T A βααββββ=+=,由于0β≠,故A 有特征值21λ=又因为()(2)(2)()()()1123TTTTTTr A r r r r r ααββααββααββ=+≤+=+=+=<,所以0A =,故30λ=.三阶矩阵A 的特征值为2,1,0.因此,f 在正交变换下的标准形为22122y y +.。
2013年全国硕士研究生入学统一考试数学二试题一、选择题 1—8小题.每小题4分,共32分. 1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( ) (A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价无穷小 (D )与x 等价无穷小2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∞→12lim n f n n ( ) (A )2 (B )1 (C )-1 (D )-23.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( ) (A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点. (C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导. 4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 5.设函数()xy f xy z =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I7.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价.(B )矩阵C 的列向量组与矩阵A 的列向量组等价.(C )矩阵C 的行向量组与矩阵B 的行向量组等价.(D )矩阵C 的列向量组与矩阵B 的列向量组等价.8.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数(C )0,2==b a (D )2=a ,b 为任意常数二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9. =⎪⎭⎫ ⎝⎛+-→xx x x 10)1ln(2lim . 10.设函数dt e x f xt ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx . 11.设封闭曲线L 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 . 12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty t x 对应于1=t 处的法线方程为 . 13.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .14.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与n ax 是等价无穷小,求常数n a ,.16.(本题满分10分)设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值.17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2.18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明:(1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f .19.(本题满分10分)求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离.20.(本题满分11) 设函数xx x f 1ln )(+= ⑴求)(x f 的最小值;⑴设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限. 21.(本题满分11)设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标.22.本题满分11分) 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .23(本题满分11分)设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 T T ββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +.。
2013年全国硕士研究生入学统一考试数学二试题一、选择题 1—8小题.每小题4分,共32分. 1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价无穷小 (D )与x 等价无穷小2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∞→12lim n f n n ( ) (A )2 (B )1 (C )-1 (D )-23.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( ) (A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点. (C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导. 4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 5.设函数()xy f xy z =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I7.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价.(B )矩阵C 的列向量组与矩阵A 的列向量组等价.(C )矩阵C 的行向量组与矩阵B 的行向量组等价.(D )矩阵C 的列向量组与矩阵B 的列向量组等价.8.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数(C )0,2==b a (D )2=a ,b 为任意常数二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9. =⎪⎭⎫ ⎝⎛+-→xx x x 10)1ln(2lim . 10.设函数dt e x f xt ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx . 11.设封闭曲线L 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 . 12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty t x 对应于1=t 处的法线方程为 . 13.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .14.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与n ax 是等价无穷小,求常数n a ,.16.(本题满分10分)设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值.17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2.18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明:(1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f .19.(本题满分10分)求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离.20.(本题满分11) 设函数xx x f 1ln )(+= ⑴求)(x f 的最小值;⑵设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限. 21.(本题满分11)设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标.22.本题满分11分) 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .23(本题满分11分)设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 T T ββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +.。
2013年考研数学二真题及答案一、选择题 1—8小题.每小题4分,共32分. 1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小 (C )与x 同阶但不等价无穷小 (D )与x 等价无穷小2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛∞→12lim n f n n ( )(A )2 (B )1 (C )-1 (D )-2 3.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( )(A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点.(C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导.4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 5.设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x-6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( )(A )01>I (B )02>I (C )03>I (D )04>I 7.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价. (B )矩阵C 的列向量组与矩阵A 的列向量组等价. (C )矩阵C 的行向量组与矩阵B 的行向量组等价. (D )矩阵C 的列向量组与矩阵B 的列向量组等价.8.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是 (A )2,0==b a (B )0=a ,b 为任意常数 (C )0,2==b a (D )2=a ,b 为任意常数 二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9. =⎪⎭⎫⎝⎛+-→xx x x 1)1ln(2lim . 10.设函数dt e x f x t ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx. 11.设封闭曲线L 的极坐标方程为⎪⎭⎫⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 .12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty tx 对应于1=t 处的法线方程为 . 13.已知x x x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .14.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = . 三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与n ax 是等价无穷小,求常数n a ,.设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y 轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值.,3,3=+==yxxyyx所围成,求⎰⎰Ddxdyx2.设平面区域D是由曲线8设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ; (2)存在)1,1(-∈η,使得1)()(='+''ηηf f .求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离.20.(本题满分11) 设函数xx x f 1ln )(+= ⑴求)(x f 的最小值; ⑵设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限.设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα. (1)证明二次型f 对应的矩阵为 T T ββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为22212y y +.一.选择1.【详解】显然当0→x 时)(~21~)(sin ,21~)(sin 1cos 2x x x x x x x ααα--=-,故应该选(C ). 2. 【分析】本题考查的隐函数的求导法则信函数在一点导数的定义. 【详解】将0=x 代入方程得1)0(==f y ,在方程两边求导,得01')')(sin(=+-+-yy xy y xy ,代入1,0==y x ,知1)0(')0('==f y . 2)0('22)0()2(lim 212lim ==-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛∞→∞→f nf n f n f n n n ,故应该选(A ). 3. 【详解】只要注意π=x 是函数)(x f 的跳跃间断点,则应该是⎰=xdt t f x F 0)()(连续点,但不可导.应选(C). 4.【详解】⎰⎰⎰∞++-∞++-=e edx xx x dx dx x f 1111ln 1)1()(αα,其中⎰⎰---=-10111)1(e etdt x dxαα当且仅当11<-α时才收敛; 而第二个反常积分xx dx xx x eαξαααln lim 11|ln 1ln 111+∞→∞+-∞++-=-=⎰,当且仅当0>a 才收敛.从而仅当20<<α时,反常积分()dx x f ⎰∞+才收敛,故应选(D). 5. 【详解】)('2)(')(1)(')(22xy yf xy yf xy f xxy f x y xy f x y y x y z x z y x =++⎪⎪⎭⎫ ⎝⎛+-=∂∂+∂∂.应该选(A ).6. 【详解】由极坐标系下二重积分的计算可知()ππππππθθθθθθθθ22122110222)1(|cos sin 31)sin (sin 31)cos (sin )(k k kk k k D k d dr r d dxdy x y I k ---+-=-=-=-=⎰⎰⎰⎰⎰所以ππ32,32,04231-====I I I I ,应该选(B ).7. 【详解】把矩阵A ,C 列分块如下:()()n n C A γγγααα,,,,,,,2121 ==,由于AB=C,则可知),,2,1(2211n i b b b n in i i i =+++=αααγ,得到矩阵C 的列向量组可用矩阵A 的列向量组线性表示.同时由于B 可逆,即1-=CB A ,同理可知矩阵A 的列向量组可用矩阵C 的列向量组线性表示,所以矩阵C 的列向量组与矩阵A 的列向量组等价.应该选(B ).8. 【详解】注意矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 是对角矩阵,所以矩阵A=⎪⎪⎪⎭⎫⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫⎝⎛00000002b 相似的充分必要条件是两个矩阵的特征值对应相等.)22)2((111122a b b aa baa A E -++--=---------=-λλλλλλλ从而可知b a b 2222=-,即0=a ,b 为任意常数,故选择(B ).二.填空 9.【详解】21)(21(lim)1ln(lim 101022202)1ln(1lim )1ln(2lim e ee x x x x x x x o x x x xx x xx xx x x ===⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-+--+-→→→→.10. 【详解】由反函数的求导法则可知11011|1|--==-==e dxdy dy dx x y11. 【详解】12cos 313cos 2121202662662πθθθπππππ====⎰⎰⎰--dt t d d r A 所以.答案为12π. 12. 【详解】当1=t 时,2ln 21,4==y x π,1|111|'1221=++===t t t t t y ,所以法线方程为)4(12ln 21π--=-x y ,也就是042ln 21=--+πx y . 13. 【详解】显然x e y y 331=-和x e y y =-32是对应的二阶常系数线性齐次微分方程两个线性无关的解,由解的结构定理,该方程的通解为x x x xe e C e C y 2231-+=,其中21,C C 为任意常数.把初始条件代入可得1,121-==C C ,所以答案为x x x xe e e y 23--=14. 【详解】由条件)3,2,1,(0==+j i a A ij ij 可知0*=+TA A ,其中*A 为A的伴随矩阵,从而可知A AA A T-===-13**,所以A 可能为1-或0.但由结论⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r n A r n A r 可知,0*=+T A A 可知*)()(A r A r =,伴随矩阵的秩只能为3,所以.1-=A三.解答题15. 【分析】主要是考查0→x 时常见函数的马克劳林展开式.【详解】当→x 时,)(211cos 22x o x x +-=,)(21)()2(2112cos 2222x o x x o x x +-=+-=,)(291)()3(2113cos 2222x o x x o x x +-=+-=,所以)(7))(291))((21))((211(13cos 2cos cos 122222222x o x x o x x o x x o x x x x +=+-+-+--=-,由于x x x 3cos 2cos cos 1-与n ax 是等价无穷小,所以2,7==n a .16. 【详解】由微元法可知πππ35320253a dx x dx y V a ax ===⎰⎰;πππ37340762)(2a dx x dx x xf V a ay ===⎰⎰;由条件y x V V =10,知77=a .17. 【详解】341683622332222221=+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-xx xx D D Ddy dx x dy dx x dxdy x dxdy x dxdy x . 18. 【详解】证明:(1)由于)(x f 为奇函数,则0)0(=f ,由于)(x f 在[]1,1-上具有二阶导数,由拉格朗日定理,存在)1,0(∈ξ,使得101)0()1()('=--=f f f ξ.(2)由于)(x f 为奇函数,则)('x f 为偶函数,由(1)可知存在)1,0(∈ξ,使得()1'=ξf ,且()1'=-ξf ,令)1)('()(-=x f e x x ϕ,由条件显然可知)(x ϕ在[]1,1-上可导,且0)()(==-ξϕξϕ,由罗尔定理可知,存在)1,1(),(-⊂-∈ξξη,使得(),0'=ηϕ即1)()(='+''ηηf f .19. 【分析】考查的二元函数的条件极值的拉格朗日乘子法.【详解】构造函数)1(),(3322-+-++=y xy x y x y x L λ令⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-=-+=∂∂=-+=∂∂10)3(20)3(23322y xy x x y y y L y x x x L λλ,得唯一驻点1,1==y x ,即)1,1(1M . 考虑边界上的点,)0,1(),1,0(32M M ; 距离函数22),(y x y x f +=在三点的取值分别为1)0,1(,1)1,0(,2)1,1(===f f f ,所以最长距离为2,最短距离为1.20. 【详解】(1)22111)('xx x x x f -=-=, 令0)('=x f ,得唯驻点1=x ,当)1,0(∈x 时,0)('<x f ,函数单调递减;当),1(∞∈x 时,0)('>x f ,函数单调递增.所以函数在1=x 处取得最小值1)1(=f . (2)证明:由于11ln 1<++n n x x ,但11ln ≥+n n x x ,所以nn x x 111<+,故数列{}n x 单调递增. 又由于11ln ln 1<+≤+n n n x x x ,得到e x n <<0,数列{}n x 有界. 由单调有界收敛定理可知极限n n x ∞→lim 存在.令a x n n =∞→lim ,则11ln 1ln lim1≤+=⎪⎪⎭⎫⎝⎛++∞→a a x x n n n ,由(1)的结论可知1lim ==∞→a x n n .21. 【详解】(1)曲线的弧微分为dx xx dx x x dx y dx )1(211411'12+=⎪⎭⎫ ⎝⎛-+=+=,所以弧长为41)1(2121+=+==⎰⎰e dx x x ds s e .(2)设形心坐标为()y x ,,则)7(4)32(31271632324324ln 214101ln 21410122---=---===⎰⎰⎰⎰⎰⎰⎰⎰--e e e e e e dy dx dy xdx dxdy xdxdyx x x x x eD D. 22. 【详解】显然由B CA AC =-可知,如果C 存在,则必须是2阶的方阵.设⎪⎪⎭⎫ ⎝⎛=4321x xx x C , 则B CA AC =-变形为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛---++-+-b ax x x x x ax x ax ax x 1103243142132, 即得到线性方程组⎪⎪⎩⎪⎪⎨⎧=-=--=++-=+-bax x x x x ax x ax ax x 324314213211,要使C 存在,此线性方程组必须有解,于是对方程组的增广矩阵进行初等行变换如下()⎪⎪⎪⎪⎪⎭⎫⎝⎛+---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=b a ab a a a ab A 00010000001011101010********0010|, 所以,当0,1=-=b a 时,线性方程组有解,即存在矩阵C ,使得B CA AC =-.此时,()⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000000000011011101|b A ,所以方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=100101110001214321C C x x x x x ,也就是满足B CA AC =-的矩阵C 为 ⎪⎪⎭⎫⎝⎛-++=211211C C C C C C ,其中21,C C 为任意常数. 23. 【详解】证明:(1)()()()()()()()()()()⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+++++=321321321321321321321321321321321321321321233221123322113212,,,,2,,,,,,,,,,2)()(2),,(x x x x x x x x x x x x x x x x x x x x x b b b b b b x x x x x x a a a a a a x x x x b x b x b x a x a x a x x x f TT TTββααββαα所以二次型f 对应的矩阵为 T T ββαα+2. 证明(2)设=A T T ββαα+2,由于0,1==αβαT则()ααββαααββααα2222=+=+=T T T A ,所以α为矩阵对应特征值21=λ的特征向量;()ββββααβββααβ=+=+=222T T T A ,所以β为矩阵对应特征值12=λ的特征向量;而矩阵A 的秩2)()2()2()(=+≤+=T T T T r r r A r ββααββαα,所以03=λ也是矩阵的一个特征值.故f 在正交变换下的标准形为 22212y y +.考研数学二13年真题21 / 21。